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1 Introduction 

We introduce an order structure on K 0 ( - ) � 9  K0(- ;  Z/p ) .  This group may also 
be thought of as Ko(- ;  7z @ Z/p ) .  We exhibit new examples of real-rank zero 
C*-algebras that are inductive limits of finite dimensional and dimension-drop 
algebras, have the same ordered, graded K-theory with order unit and yet are 
not isomorphic. In fact they are not even stably shape equivalent. The order 
structure on K0(- ;  Z ~3 Z / p )  naturally distinguishes these algebras. 

The same invariant is used to give an isomorphism theorem for such real- 
rank zero inductive limits. As a corollary we obtain an isomorphism theorem 
for all real-rank zero approximately homogeneous C*-algebras that arise from 
systems of bounded dimension growth and torsion-free K0 group. 

At the 1980 Kingston conference, Effros posed the problem of  finding suit- 
able invariants for use in studying C*-algebras that are limits of  sequences of  
homogeneous C*-algebras. These are now called almost homogeneous (AH) 
C*-algebras. The classification of AH algebras is a rapidly developing field 
and we will not attempt to summarize all this activity. Instead, we will focus 
on the growth of  the invariants used. 

Specifically, we consider an AH algebra A that is the direct limit o f  a 
system of  the form 

�9 ." --+ (~C(Xn, i, Mmn.i ) --* ~C(Xn+l,i,M,n~+l.i) - * " "  

with the sums assumed finite and the spaces assumed to be finite CW com- 
plexes. Technically, these are not all the AH algebras, but we will use the term 
AH algebra in this paper to refer to this class of inductive limits. 
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In the case in which the Xn.i are one point spaces, A is just an AF algebra 
[Br]. It may well be argued that a major source of inspiration for using K- 
theory as an invariant for C*-algebras was Elliott's classification [Ell] of AF 
algebras up to isomorphism. 

Effros and Karmnker [EfK1] started by studying shape equivalence for some 
higher-dimensional AH algebras. They defined a shape theory for C*-algebras 
and were the first to formally identify the role of semiprojectivity. An apparent 
barrier soon came into view; we have shown in various papers that very few 
C*-algebras, even commutative ones, are semiprojective. For example, among 
the sphere algebras, C(Sn), only C(S 1 ) is semiprojective [Loll, [DL2]. Effros 
and Kaminker initiated a study of the shape of the limits of circle algebras, 
and published a paper [EfK2] classifying, up to shape equivalence, inductive 
limits of Cuntz algebras. That leads to another story, whose telling we leave 
to others. 

Blackadar [BI2] gave a treatment of shape theory that had nice formal prop- 
erties. His approach involved semiprojective maps, which are more common 
than semiprojective C*-algebras, but relied heavily on universal constructions. 
The importance of  these universal constructions (cf. [D1]) remained somewhat 
obscure until the advent of E-theory. 

Several papers appeared around 1988 that made progress despite the 
semiprojectivity problem. One was Blackadar's discovery 0313] that one possi- 
ble limit of circle algebras was a UHF algebra. A subsystem could be seen for 
which the limit was the fixed point algebra under an automorphism of order two 
but which was not AF by virtue of having nontrivial K1. This settled another 
of  the questions Effros [Eft] raised in Kingston. It also sparked a discussion 
at the 1988 Durham Summer Research Institute of whether an inductive limit 
of circle algebras that had real rank zero and trivial K1 group was necessar- 
ily AF. This was settled, positively, and with rapidity, by Elliott, as we shall 
see. 

Soon after Blackadar's result appeared, Evans and Kishimotu [EK] con- 
structed an inductive limit of sub-homogeneous C*-algebras that had real rank 
zero and was not AF by virtue of having non-zero torsion Kl-group. Tensoring 
by a UHF algebra removed this obstruction to being AF, and indeed the result 
was AF. This solved yet another of the problems in [Eft]. The result of [B13] 
was extended to finite group actions in [BEEK]). 

Another paper to emerge in 1988 was by the first named author and 
Nemethi [DN]. It showed that there was a way around the lack of  semiprojec- 
tivity. The basic idea of semiprojectivity is that B is semiprojective when a 
,-homomorphism B--+ A can be replaced by a .-homomorphism B--* An, 
where 

A .  = ~ C ( X . , i ,  Mm.,, ) . 

(Whether replace is to mean "is close to" or "is homotopic to" depends 
on the flavor of semiprojectivity used, as does the degree of uniqueness in 
the replacement.) The approach taken in this paper was to substitute "KK- 
semiprojectivity" and related concepts, the idea being that one can only ask 
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that one can find an element of KK(B,A,~) that, upon composition with the 
.natural map An ~ A, gives the desired element of KK(B,A). This left the 
tricky problem of replacing KK-elements, at least the "positive" ones, by *- 
homomorphisms. This was partially solved using connective KK-theory. 

By this point, a new structure on K-theory was needed. An order on 
Ko(A) @ KI(A) exists, namely that coming from the natural identification with 
Ko(C(S 1 ) | A). In [DN] are many shape results for which the complete invari- 
ant is Ko(C(S 1 ) | A) as an ordered, scaled, graded group. One of the subclasses 
thus classified up to shape were the limits of circle algebras. 

It was Elliott [E12] who successfully combining the new element of real- 
rank zero [BP] with the shape ideas emerged with a classification, now up 
to isomorphism, of those inductive limits of circle algebras that happen to 
have real-rank zero. The invariant was again Ko(A)@ K1(A), with the same 
order as in the shape results, but a slightly different scale. In this case, the 
identification was with KK(C(SI),A) and the positivity was determined by the 
,-homomorphisms. 

Remarkably this invariant was shown to be complete for the simple AH 
algebras of real rank zero arising from inductive systems with spectra of di- 
mension at most three [EG]. This was a far reaching generalization of previous 
work of several authors including notably [Li] and [EGLP]. In several instances 
an apparently larger collection of C*-algebras has been shown to be the same 
as a collection which had already been classified, thus extending that classifi- 
cation result. For example, Lin [Li] showed that when the Xn, i are contractible 
subsets of the plane and the limit A has real rank zero then A is an AF al- 
gebra. In the same spirit, the first author [D3] and Gong [G2], extended the 
classification result of [EG] to simple AH algebras of real rank zero, for which 
the dimensions of the spaces Xn, i are uniformly bounded (or with slow dimen- 
sion growth). This was done by showing that such C*-algebras are isomorphic 
to AH algebras over spaces of dimension at most three which were already 
classified in lEG]. 

In the non-simple case, it was shown by Gong [G1] that this invariant is not 
complete for the AH algebras of real rank zero. We construct below examples 
which shows that the same situation occurs for the class of C*-algebras Elliott 
studied in [El2] and which we called AD algebras (of real rank zero). An 
indirect way for constructing such examples was suggested by Elliott, Gong 
and Su [G2]. The AD algebras are inductive limits of a limited class of sub- 
homogeneous C*-algebras. It was shown in [D2], that the class of AD algebras 
contains a large class of AH algebras. 

We now get to the point of the present paper. In view of the above discus- 
sion, it is clear that stronger algebraic invariants are needed. What we propose 
is an order structure on what we think should be called K-theory with coeffi- 
cients in 71 ~ Zip. The mod p K-theory groups for C*-algebras were studied 
in IS]. The groups K . ( - ;  Z/p)  are determined by K.(A). As opposed to this, 
the order structure we define is not determined by the order on Ko(A)@ KI(A) 
and appears to be genuinely new. It is the extra element needed, in many cases, 
to allow classification of AH (AD) algebras. 
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We henceforth assume all C*-algebras to be nuclear and separable. 

The classes of C*-algebras we shall initially study are all those that are 
obtained, through the processes of direct sum, tensoring by Mn for various n and 
inductive limits, from some basic C*-algebras, or building blocks. The building 
blocks are IE, C(S ~) and the unital dimension-drop intervals Ip, described 
below. We call such C*-algebras AD algebras. 

This class of algebras is almost what Elliott studied in [El2]. Indeed, he 
studied the AD algebras of real rank zero. 

By the dimension-drop interval, we mean either the non-unital version ~p 

Ip = { f  E C([0, 1],Mp) [ f ( 0 )  = 0 and f ( 1 )  E C} 

or the unital version 

Jp = { f  ~ C([0, 1],Mp) [ f ( 0 ) , f ( 1 )  ~ r  

We can now give a simplified version of our example by exhibiting two 
AD C*-algebras Ap and Bp that are not stably shape equivalent, and hence 
not homotopic, and yet Ko(Ap)~K1(Ap) ~- Ko(Bp)@Kl(Bp), even as ordered 
groups. 

In both cases, the inductive limit is of the form 

. . .  _.. ~ j , ,  C2n+1 ~ j j , ,  r ___, . . .  

For Ap the connecting maps are 

( f  ,X-n,...,xn) H ( f  , f(O),x_n,.. . ,xn, f (0 ) )  

while for Bp, 

( f  ,X-n,... ,xn) ~-~ ( f  , f(O),x-n .... ,Xn, f (1 ) )  

It is not hard to see that 

ap ~ { f  e C(X, Mp) l f (n )  E C for n E 2~ and f ( f ) , f ( i )  E ~E} 

and 

Bp ~- { f  C C(Y, Mp) I f (n )  e tE for n C Z and f (O) , f ( ] )  E IE} 

where X and Y are spaces that contain a copy of Z as an open subset, with 
complement a copy of [0, 1], (with t E [0, 1] denoted by i') topologized so that 

lim n = 0 ,  lim n =  
n.--~ ~ c o  n - - * + o o  

in X while, in Y, 
lim n = 0 ,  lim n = i .  

n'- ' r  ~ O0 tI---~+O0 

One way to describe the order Elliott imposes on 

K.(D) = Ko(D) (9 K~(D) 
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is that the positive elements are those that are in the image of hom (C(S l), 
D | ~d) under the mapping 

H ([~(  1 )], [~o(e 2~i')]). 

An alternative picture is K.(D)= KK(C(S 1 ),D) with 

K.(D)+ = {[~o] Itp E hom(C(S1),Mn(D)) for some n.} 

From [El2] we recall 

g . ( r  = g.(C)ev = 7Z, K.(C)+ = ]hi 

and 
K . ( ~ p ) ~ - Z @ Z / p ,  K.(/p)ev = X @ 0,  

K.(~p)+ = {(a, /~)ta = b - -  0 or a => 1}. 

(We assume b normalized so that 0 < b < p -  1.) 
Given any C*-algebra D with unit e we denote by fij: ~p--~ D, for 

j = 0 , 1 ,  the map cSj ( f )=f ( j )e ,  while for 0 < t < 1 we use 3t: H? 
Mp(D) for the map 3 t ( f )  = e | f( t) .  We can calculate now that 

induces 
( a ,g )  ~ a 

as the map (5j).  : K . ( ~ ? )  --~ K.(C).  However 30 and 31 correspond to distinct 
KK-classes. 

Our example exploits this inability of K. to distinguish right from left end- 
point. Since K. commutes with inductive limits, the above calculation is enough 
to show that K,(Ap) ~- K.(Bp) as ordered, graded abelian groups. The addi- 
tional structure of order unit is also preserved. In fact, one may calculate that 
K,(Ap) = K.(B?) consists of those elements (a, (a j), b) E 7. @ I-I_~oo X $ X/p 
for which there is m >__ 0 such that a: = a for IJ[ --- m An element (a,(an),b) 
is positive if aj > 0 for all j and either/~ = 0 or a > 1. 

To create an invariant that can distinguish the two ends of Kp we let ~p 
itself play the role that C(S l ) plays for K.. That is, while the positive elements 
in K.(`4) are those represented by a .-homomorpMsm ~p: C(S 1 ) --* .4 | Mn, in 
our invariant, the positive elements will be defined as those that are represented 
by a .-homomorphism from ~? to `4 | Mn. This leads to a manageable invari- 
ant since we have previously shown that ~p and Hp have many of the same 
properties that are had by Co(0,1) and C(S l) (see [Lo2] and [DLl]). 

2 The invariant 

Throughout the paper we denote by G? the group Z @ Z/p  where p >__ 2 is 
not necessarily a prime. As a graded group, our invariant is defined as 

Ko(A; Gp) = Ko(`4) �9 Ko(`4; Z/p)  
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with the grading 

Ko(A; G;) ev =Ko(A)@0,  Ko(A; Gt,) ~ = O @ Ko(A; Z / p )  . 

To define Ko(A;Z/p)  one may choose any nuclear C*-algebra P in the 
bootstrap category of [RS] such that Ko(P)= 0 and K I ( P ) =  7Z/p. Then 
Ko(A;Z/p)  -~KI(A |  ~ KK(P,A) (see [S], [BI1]). Naturally, we choose 
P = lit,. We may then use the split-exact sequence in KK arising from 
0 --* lip ~ ~p ~ C ~ 0 to see that 

Ko(A; Gt, ) = KK( ~p,A ) . 

The six-term exact sequence for KK now gives us an exact sequence 

K0(I;Gt,)  , K0(A;Gt,) , Ko(A/I;Gp) 

l l 
Ko(S(A/1); Gp) , Ko(SA; Gp) , Ko(SI; Gp) 

for any ideal I of  A. 
The following lemma, which follows from the universal coefficient theorem, 

shows that the group structure of/s Gp) is completely determined by the 
ordinary K-theory. The complication will be in the order. 

2.1. Lemma. ISI There is a natural exact sequence of  groups 

1(o(,4) Xr --~ Ko(A;Z/p)  ~ KI(A) • KI(A) �9 

2.2. Proposition. Let A be unital. Given ~ E Ko(A;Z/p)  = KK(llp,A), there 
exist n and a ,-homomorphism q~: 6t, ~ Mn(A) such that [~pllv] = ~. 

Proof We showed in [DL1] that 

Ko(A; Z/p )  = ~ l ~ [ I p , M . ( . 4 ) ] .  

Choose any ,-homomorphism Kp ~ Mn(A) that has KK class ~ and extend by 
sending unit to unit. Q.E.D. 

Given this proposition, it makes sense to ask what are the possible K0 
classes obtained as [~o(1)] for maps ~o: ]p -~ A | ~,~ such that r represents 
a given KK class. We thus define 

Ko(A; Gp) + = {([~o(1 )], [~PI~vl eKo(A) @ Ko(A; Z / p ) )  I r E hom( ~p, Mn(A))}.  

The above Proposition can be restated as the statement that, for any 
E Ko(A; Z/p) ,  and assuming I E A, 

(a E Ko(A) I ( a , . )  _~ 0 } 4 : 0  �9 

Another consequence deserves a formal statement. 
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2.3. Lemma. Suppose 1 E A. Every element o f  Ko(A; Gp) can be expressed as 
[q~] - n[6o] jbr some natural number n and some .-homomorphism ~o: ~p 
Mn(A). 

2.4. Lemma. Suppose 1 E A. Given q)o, Ol: ~p ~ Mn(A) ,-homomorphisms, 
[~Oo] = [q~l] in Ko(A; Gp) iJ'and only i f  there is a ,-homomorphism t 1 of  the 

form ~ = 6o (9 . . .  @ 6o @ 0 @ .. .  (9 0 such that q)o (9 q is homotopic to q)l (9 q 
as ,-homomorphisms ~p ~ MK(A). 

Proof This follows from [DL1] in a similar fashion as Lemma 2.3. Q.E.D. 

2.5. Proposition. I f  A = limAn then 

Xo(A; = l Xo(An; 

as ordered, graded groups, 

Proof It is easy to reduce to case where A and the An have a common unit. 
The semiprojectivity for ~p implies any map 

qg: 1I e ~ Mk(A) = limMk(An) 

is homotopic, hence equal in KK, to the composition of a map ~p ~Mk(A , )  
with the natural map Mk(A,)---~Mk(A). Since also go: ~p ~ A n  followed 
by the natural map An----rA is again 60: Rp ~ A ,  we have shown that 
the induced maps Ko(An;Gp)---~Ko(A;Gp) combine to define a surjection 
of lim K0(An; Gp) onto K0(A; Gp). We have also shown that every positive 

- . +  

element is the image of a positive element. Semiprojectivity also shows that 
if q~o, q~l : ~p ~ Mk(A,) become homotopic after composition with Mk(An) --* 
Mk(A), they are in fact homotopic after only composing with the natural map 
Mk(An) ~ Mk(At) for some l _~ n. Injectivity follows, by using Lemma 2.4. 

Q.E.D. 

2.6. Proposition. The graded ordered group Ko(-;  Gp) is a shape invariant. 

Proof We know from [DI] that A and B are shape equivalent i f  and only if  
there are asymptotic morphisms 

(at)- A --, 8,  (# , ) :  a 

that compose in either direction to be homotopic to the appropriate identity 
map. These determine, via the Connes-Higson E-theory, elements in KK(A, B) 
and KK(B,A), which, being inverse, determine ~. = /~- i :  KK(Ip,A) 
KK(~p,B).  A consequence of the semiprojectivity of ~p is that the natural 
map 

[ ~p, O] ---+ [[ Ip, O]] 
is always an isomorphism. ([[-,-]] denoting homotopy classes of asymptotic 
morphisms.) Consider a positive element of KK(Ip ,A) ,  represented by 
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cp: jt,--oA| This is sent by ~, to the KK class of the asymptotic morphism 
((~t | 1)~0): ~p ~ A | But this is homotopic to a ,-homomorphism, and 
so represents a positive KK element. Thus ~,, and similarly ~21, is positive. 

Q.E.D. 

One can regard the ordered group Ko(A; Gp) as a homotopy invariant functor 
on the category of C*-algebras. By Proposition 2.5 this functor is continuous. 
Therefore Ko(A, Gp) factorizes though the shape functor of [Bl2]. This argument 
gives an alternative proof to Proposition 2.6. 

3 Examples 

Our goal is to calculate Ko(Ap;@) and Ko(Bp;Gp) and show that the order 
distinguishes these C*-algebras. With a little more work we will do the same 
for related C*-algebras of  real rank zero. 

3.1. Lemma. 

Ko(~, 6p) = G~ = �9 ~ X/p, Ko(C, Cp) ov = Z �9 0 ,  

K0(C; Gp) + = {(a,~) I a >_ x} 

with the identification [6;] = (1,j) fbr j = O, 1. 

Proof By Lemma 2.1, Ko(C;Gp) is, as a graded group, isomorphic to Z@ 
Z/p.  A specific map from Ko0E; @) to �9 @ Zip  can be defined as follows. 
Every ,-homomorphism q~: Ip--* Mn can be decomposed into co copies of  
go, Cl copies of 31 and m copies of  various 3t for t E (0,1). As ~p varies 
continuously, co can vary as 3t converges to p copies of go, and similarly cl 
may vary, but both Co and Cl remain well defined mod p. Sending the homotopy 
class of ~p to (co + Cl + rap, 61 ) E Z @ ~ /p  is a map that is additive, relative 
to direct sums. Therefore this extends to a group homomorphism K0(C; Gp) --, 
Z ~ ZIp. It is onto because 

[~j] --o (1,j),  j = 0 , 1 ,  

and so must be an isomorphism and, one may verify, graded. Also, since Co 
and m are non-negative, we have 

K,(tI2; Gp) + C_ {(a,~?) I a > x},  

while the other inclusion follows from the fact that [3y] is positive. Q.E.D. 

By i-d: i l, -4 ip  we mean id ( f ) ( t )  = f ( l  - t). 

3.2. Lemma.  

Ko(Rp;Ge)= Z ~ Z / p @ 7 / p ,  Ko(ip;G,) e~ = 7 .@O~O,  

K0(Ip;  Gp) + = {(a,/~,~) [ a ~_ b and a > c} 



Classifying C*-algebras 609 

with the identification [6j] = (1, j , j ) ,  jbr j = 0, 1, [id] = (1,0, 1) and [id] 
= (1,1,0). 

Proof It follows from Lemma 2.1 that Ko(SMp; Gp) = 0. Recall that 6j: ~p 
~E are evaluation maps. Since a copy of SMp sits inside St,, with quotient 
~E (3 ~E, the quotient map being 60 (3 61: ~p-~  �9 (3 ~E, we have by the six- 
term exact sequence an injection 

(60). (3 (61). : Ko( Ip; Gp) ~ (Z (3 7~/p) (3 (7I (3 Z/p)  . 

The image is clearly contained in the subgroup {(a,b,a,6)}. Since (6j). is 
positive, the image of the positive cone is contained in 

{(a ,b ,a ,?) la  > b and a > c ) .  

That these containments are actually equalities follows from the calculation of 
the image of some specific elements under (6o). (3 (c~1).: 

[6i]~-+(1,j,l,j), [id] ~-, (l, O, l, l ), [ i d ] H ( i , l , l , O ) .  Q.E.D. 

Using the above identifications it is now easy to calculate 0~. : K.(A; Gp) 
K.(B; Gp) for various maps ~ between building blocks. Using matrix notation 
for the group homomorphisms, we find: 

=~o:  ~ p - - + r  

~ = 3 1 :  Re --+ r ==~ ~. = 

~: r ~p, ~ ( 2 ) = 2 / ~  ~. = 

= i-d: ~p --,  ~p  ~ ~ .  = 

0 1 " 

0 0 ' 

0 

1 

~ 1 0 

0 

section one. The 

c~ =,5,: ~p ~MA~p) ,  o < t < I, ==r ~, = [ !  

We now return to the examples Ap and Bp described in 
group Ko(- ;  Gp) is, in both cases, the limit of a system 

�9 . .  --, ( z  (3 Z / p  �9 Z / p )  (3 (z (3 Z/p) 2"§ - , - . .  

where a typical element 

g = (a,b,e) @ (a-n,'Y-n . . . .  ,an, Y,.) 
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is positive if a ~ b, c and aj >-_ xj for all j. For Ap, the connecting maps act 
by sending # to 

(a,[~,~) ~ (a,[~,a_, , ,L,  . . . . .  a,,,y,,a,D) 

while, for Bp, the same element is sent to 

(a,f~,Y) @ (a ,b ,a_n , s  . . . .  ,an,s 

Therefore, we may identify both groups as subgroups of 

+o~  + o o  

Z @ Z / p ~ Z / p @  [I Z ~  I'I Z / p .  
j = - ~  j=-oo 

Indeed, Ko(Ap;Gp) consists of  those elements ((a,b,6) ,(aj) , (s  for which 
there is m ~ 0 such that aj = a and Yj =/~ for IJl >= m. An element ((a,D,5), 
(aj) ,(s  is positive if 

a >_ b,c and Vj, aj >- xj . 

(As always, inequalities are taken after normalizing f so that 0 _-< r _< p - 1.) 
On the other hand, Ko(Bp;Gp) consists of those elements ((a,b,5),(aj) ,  

(s for which there is m _>- 0 such that a j =  a for JJl => m, s =/~ for j __< 
- m  and s = 5 for j _>_ m. An element ((a,b,5),(aj) ,(Yj))  is positive if 

a >__ b,c and Vj, aj >-_ x 2 . 

In both cases, an element ((a,b,6),(ay),(Yj))  is even if and only if/~ -- ~ = 
Yi = 0. This even subgroup is a familiar ordered group, cl(TZ). 

Now suppose that ~: Ko(Ap;Gp)--+ Ko(Bp; Cap) is an isomorphism of or- 
dered, graded groups. The only order-preserving automorphisms of c1(~) are 
found by reindexing the indices. As there is an evident automorphism (graded 
and order-preserving) on Ko(Ap; Gp) found by simultaneously reindexing the 
ay and the XJ we may as well assmne that �9 acts as the identity on the even 
subgroup. 

Consider the elements z and hk of  K0(Ap; Gp), 

= ((o, o, 1 ) , ( o ) , ( o ) ) ,  

hk = ( 0 , o , o ) , ( 1  - 6~k) , (o) )  >___ o .  

Since q~ preserves the grading, ~(z) is of the form 

�9 (z) = fro, ~, f ) ,  (0), ( ~ ) ) .  

Since q~ acts as identity on the even subgroup, ~(hk) = hk. Each element hk + z 
is positive. Thus, the element 

�9 (hk + z )  = ( O , ~ , f ) , O  - ajk),~j)) 

must be positive. This implies that zk = 0. Varying k we see that i j  = 0 for 
all j .  Then 6 and f ,  being limits of the ~j, are also zero. Therefore, ~(z)  = 0, 
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contradicting the injectivity of  ~. By this contradiction we have proven that 
the ordered group K0(Ap; Go) is not isomorphic to Ko(Bp; Gp). 

With the final observation that Ko(D | J r ;  Gp) + ~ K0(D; Gp) +, we have 
proven that A e | Ji r and Bp | ~ff are not shape equivalent, hence not homotopie 
and not isomorphic. 

The fact that this phenomenon can occur for real rank zero AD algebras 
was suggested by Elliot't, Gong and Su, [G2]. Their idea was to construct an 
even dimensional analogue of an example of Gong [GI]. That will involve 
inductive limits of homogeneous C*-algebras with 3-dimensional spectra and 
torsion free K0-groups. Then one may apply Theorem 2.4 in [D2] to conclude 
that such an algebra is isomorphic to an AD algebra. We adopt a more direct 
approach that illustrates the essential nature of our invariant. 

3.3. Theorem. There exists, jor every p = 2, 3, 4 . . . . .  unital AD algebras Cp 
and D v such that RR(Cp) = RR(Dp) = 0 and K,(Cp) ~ K,(Dv) as graded, 
ordered groups with order unit, and yet Cp | ~ and Dp | v~ are not iso- 
morphic or shape equivalent. 

Proof To modify Ap and Bp to have real rank zero, we need to replace the 
dimension drop intervals by large matrix algebras over them. This allows us 
to include many point-evaluations at interior points. The C*-algebras Cp and 
Dp we construct below will have real rank zero by Theorem 6.2(ii) in [El2]. 

Define On = id@ 6t~: ~p--o Mp+l(~p) where t, is a sequence dense in 
(0, 1). Now set q = p + 1 and set 

(Pn = On | id: Mq,,+,(~p) --+ Mqn+2(~p). 

Both Cp and Dp are inductive limits of the form 

�9 , 

MqO+=( J p )  e M q . . ,  m . . . e �9 r e e . . . e M r  m M q . + ,  . 

For Cp the connecting maps are 

( f ,  x_,, . . . . .  xn) --* (q~(f ) ,  f (0 ) ,  x-n . . . .  , xn, f ( 0 ) )  

while for Dp, 

( f  ,x-n . . . . .  Xn) -'~ (q)n(f), f(O),x-n,... ,xn, f ( 1 ) )  

These inductive systems satisfy the condition (ii) of Theorem 6.2 in [El2], 
hence both Cp and D e have real rank zero. One may check that K,(Cp)= 
K,(Dp) consists of those elements (a,(aj),b) E Z[l/q] @ H_~176 @ Z/p  for 

which there is m > 0 such that ai = aq Ijl for [Jl > m. An element ((aj),/~) 
is positive if aj > 0 for all j and 

b = O  or a > 0 



612 M. Dadarlat, T.A. Loring 

The ordered, graded, K0(- ;  Gp) groups are, as before, the limit of a system 

�9 . .  ~ (7. �9 7 . / p  �9 Z / p )  �9 ( z  �9 ~./p)z,+~ _ , . . . ,  

where a typical element 

g = ( a , b , 5 ) @ ( a _ , , , ~ _ ,  . . . .  , a , , s  

is sent by the connecting maps to 

(qa, b,5) @ ( a , ~ a - n , ~ - ,  . . . .  ,an,s 1)) 

in the case of Cp, while, for D e, it is sent to 

( q a , ~ , 5 ) ~ ( a , ~ , a _ . , ~ _ .  . . . .  , a . , ~ . , a , 5 )  

Therefore, we may identify both K0(- ;  Gp) groups as subgroups of 

q-co + o o  

~ . [ 1 / q ] r  ~ Z @  1-I Z / p .  
j=-o~ j=- oo 

Indeed, Ko(Cp;Ge) consists of  those elements ((a,b,5) , (aj) , (s  for which 
there is m > 0 such that a] = aq Ijl and s  for IJl => m. An element 
((a,/~, 5), (aj), (s is positive if 

(b = c = O or a > O) and Vj, af > xj . 

On the other hand, Ko(Dv;Gp) consists of  those elements ((a,f~,5),(_aj), 
(s for which there is m >- 0 such that aj = aq ljl for IJl --> m, ~j = b for 
j < - m  and s = 5 for j >- m. The positivity is determined by the same 
conditions. 

In both cases the even part is a copy of the ordered group 

{(a,(ag)) E Z[1/q] @ l-I z I aj = aq fjl for large enough IJl}, 

It is not hard to see that any order-preserving automorphism of this group 
is of the form 5e(a,(aj) )= (qra,(aa(j))) where r E Z and a: Z---} Z is a 
bijection such that (r(j) E { - j  - r , j  + r} for all but finitely many j .  Any 
such automorphism extends in an obvious way to a graded automorphism 
of  the ordered group Ko(Ce;Gp). Therefore any possible isomorphism 
4:  Ko(Cp; G r)  ~ Ko(Dp; Gp) can be modified to one that acts identically on 
the even subgroup. 

The rest of the argument works with obvious minor changes. One uses the 
elements 

z = ((0,0,1) ,(0) ,(0)) ,  hk=((1 ,O,O) , ( (1 -S jk )q lJ l ) , (O) ) .  Q.E.D. 
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4 An isomorphism theorem 

Recall that the scale S(A) of a C*-algebra A is defined as the image of [~,A] 
into Ko(A) = KK(C,A). For g E KK(A,B) the Kasparov product with ~ induces 
maps 

~, : K,(A)  = KK(C(S1),A) ---+ KK(C(S1),B) = K,(B)  

~.: K0(A; Gp) = KK(~p,A) ~ KK(J . ,B)  = Ko(B; G.) 

Let aS- denote the compact operators acting on a separable infinite dimensional 
Hilbert space. 

4.1. Theorem. Suppose A and B are AD alyebras of  real rank zero. I f  there 
exists an invertible element o~ 6 KK(A, B) such that, Jbr all p > 2, 

~, : K , (A)  ~ K,(B), ct, : K0(A; Op) --~ Ko(B; Ge) 

and their reverses, are all positive, then A | ~" ~- B | ~r. I f  in addition ~, 
reduces a bijection Z(A) ~ X(B), then A -~ B. 

Proof Our strategy is basically the same as Elliott's. In fact, after we have 
realized ~ and /3 = ~ - l  in an intertwining diagram of ,-homomorphisms 
that commute in KK, we will appeal to step four of the proof of [El2; 
Theorem 7.1 ]. 

Since E(A | ~ff) = Ko(A) + it suffices to consider the case when the two 
C*-algebras have isomorphic scales. Write A and B as inductive limits of ba- 
sic blocks Ak and Bk. Let ktk and vk denote the maps Ak ~ A and Bk ~ B. 
Consider Al = ~ M , j ( D y )  where each D/equa l s  c ( s  1 ) or ~j,j. (Dropping 
as a building block is no restriction.) We denote by [ - ]  the KK class of a 
,-homomorphism. Let 7j denote the KK-class of the ,-homomorphism 

Dj "~ D j N e ,  t ~--~ Mnj(Dj)'--~ A~ -+ A .  

We know by our assumptions that e*(?i) is a positive element in either 

KK(C(Sl) ,B)  or KK(~p,B),  so there is a ,-homomorphism ~.: Dj ~ B | 0~ 
whose KK-class equals this. Using the fact that Dj is unital we are able to find 
now a ,-homomorphism qh : A1 --+ B N a~ such that, as a KK-diagram, 

AI ~1 ~ A 

commutes, with all arrows except g actual ,-homomorphisms. Let e denote the 
unit of  A~. Since c~, preserves the scales, [q~l(e)] = g,[#t(e)] = I f ]  for some 
projection f E B. Since the AD-algebras have stable rank one, it follows that 
~01(e) is Murray-yon Neumann equivalent to f .  Therefore after conjugating 
with a partial isometry in B | X ,  we may assume that qh maps into B. Using 
the semiprojectivity of  Al we can find a ,-homomorphism al so that, after 
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reindexing, we have a commutative diagram in KK 

Al tq ~ A 

B1 ~ B 
Vl 

Now, working with g and Bl in place of a and A1, we can find a , -  
homomorphism fll so that, after reindexing once, we have a diagram 

Al ~ A 2  ..... ~ A 

Bt , B 

that commutes except that the top-left triangle commutes only after com- 
posing with the map to A. Since K,(B1 ) is finitely generated, KK(BbA)= 
limKK(BI,Aj) by [RS], hence we have equality in fact after composing 

with some connecting map A2 --* Am. So re-indexing a second time we know 
the above diagram commutes in KK, with only ~ and fl not actual , -  
homomorphisms. 

By Elliott's step four, we conclude A ~ B. Q.E.D. 

4.2. Remarks (a) Suppose A and B are unital AD algebras of real rank zero. 
Then the last condition of Theorem 4.1 can be replaced by ~,[1A] = [IB]. 

(b) Our isomorphism result is not a true classification result as it involves 
an invariant, KK(A,B), of the pair A and B. However, it does imply Elliott's 
classification theorem for simple AD algebras of real rank zero. This goes 
as follows. Let A and B denote simple AD algebras of real rank zero. If 
a E Ko(A) + is nonzero, then (a,x) E K0(A; Gp) + for any x E K0(A; 7Z/p) and 
p > 2. Also (a,y) E K,(A) + for all y E K1(A). Using the universal coefficient 
theorem of [RS], it follows from Theorem 4.1 that A is isomorphic to B if 
and only if Ko(A) ~- Ko(B) as scaled, ordered groups and K1(A) -~ KI(B) as 
abstract groups. 

4.3. Corollary The isomorphism Theorem 4.1 is true ]br C*-algebras of real 
rank zero which are inductive limits of C*-algebras of  the Jbrm 

m 

An = ~M~(0(X/) 
i = |  

where Xi are finite CW complexes with K~ torsion free and the dimensions 
of  the spectra oJ" A, form a bounded sequence. 

Proof Let A be a C*-algebra as in the statement of the Corollary. By Theorem 
2.4 in [D2], A is isomorphic to an AD algebra. Q,E.D. 

The invariant studied in this paper has an odd-dimensional analogue. We 
can present these invariants in a compact way by defining K.(A; Gp) + to 
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be the image of hom(~p,A |174 in KK(~e,A | ~ K,(A)~ 
K,(A, Z/p). 
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