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Abstract: We prove that all unital separable continuous fields of C*-algebras over [0, 1]
with fibers isomorphic to the Cuntz algebra On (2 ≤ n ≤ ∞) are trivial. More generally,
we show that if A is a separable, unital or stable, continuous field over [0, 1] of Kirchberg
C*-algebras satisfying the UCT and having finitely generated K-theory groups, then A
is isomorphic to a trivial field if and only if the associated K-theory presheaf is trivial.
For fixed d ∈ {0, 1} we also show that, under the additional assumption that the fibers
have torsion free Kd -group and trivial Kd+1-group, the Kd -sheaf is a complete invariant
for separable stable continuous fields of Kirchberg algebras.

1. Introduction

A separable nuclear purely infinite simple C*-algebra is called a Kirchberg algebra. In
this paper we shall consider separable unital or stable continuous fields of Kirchberg
algebras over the unit interval. We shall prove an approximation result, Theorem 6.1,
and an inductive limit representation, Theorem 6.2, for these fields. These results lead us
to Theorem 7.3 (a triviality result for unital On-fields), Theorem 7.5 (a triviality result
for fields whose associated K -theory presheaf is isomorphic to the presheaf of a trivial
field), and Theorem 8.2 (a classification result based on the Kd -theory sheaf). The fields
classified by Theorem 8.2 may have a rather complicated structure and can fail to be
locally trivial at any point in [0, 1], as illustrated by Example 8.4.

We shall rely heavily on the classification theorem (and related results) of Kirchberg
and Phillips [24], and on the work on non-simple nuclear purely infinite C*-algebras of
Blanchard and Kirchberg [6] and Rørdam and Kirchberg [15, 16]. The results of Blacka-
dar [2] and Spielberg [28] on the semiprojectivity of Kirchberg algebras and the results
of Spielberg [27] and Lin [19] on the weak semiprojectivity of Kirchberg algebras also
play an important role.
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There are two key ideas on which we base our approach. The first is to approximate
continuous fields by what we shall call elementary fields—i.e., fields which are locally
trivial at all but finitely many points; see Sect. 6. The second is to introduce the notion
of fibered morphism of fields, a natural blow-up construction based on the usual notion
of morphism of fields; see Sect. 5.

The triviality of O2-stable continuous fields was announced by Kirchberg [14] in a
vastly more general context. An isomorphism theorem for continuous fields of Kirchberg
algebras over zero dimensional spaces was given in [10].

One word concerning the terminology: in many of our statements, we will refer to
the C*-algebra of continuous sections associated to a continuous field of C*-algebras
over a compact space X as a continuous C*-bundle over X . This is consistent with the
terminology used in [4, 17 and 5].

2. Semiprojective Algebras

Recall that a separable C*-algebra D is weakly semiprojective if for any finite subset
F ⊂ D and any ε > 0, any C*-algebra B, any increasing sequence (Jn) of (closed,
two-sided) ideals of B and any ∗-homomorphism ι : D → B/J (where J is the clo-
sure of

⋃
n Jn) there is a ∗-homomorphism ϕ : D → B/Jn (for some n) such that

‖πnϕ(c) − ι(c)‖ < ε for all c ∈ F (where πn : B/Jn → B/J is the natural map). If
we assume that there is ϕ such that πnϕ = ι, then A is semiprojective. We shall use
(weak) semiprojectivity in the following context (see Sect. 3 for terminology). Let B be
a continuous C*-bundle over a compact metric space X , let x ∈ X and consider the sets
Un = {y ∈ X : d(y, x) ≤ 1/n}. Then Jn = CUn (X)B is an increasing sequence of
ideals of B such that B/Jn ∼= B(Un) and B/J ∼= B(x). Here CUn (X) denotes the ideal
of C(X) consisting of all continuous functions that vanish on Un .

Let us recall that all unital Kirchberg algebras A with K∗(A) finitely generated and
satisfying the UCT are weakly semiprojective by a result of Spielberg [27] and Lin [19].
If moreover K1(A) is torsion free, then A is semiprojective by a result of Spielberg [28].
Blackadar showed that a Kirchberg algebra A is semiprojective if and only if A ⊗ K
is semiprojective [2]. Similarly, a Kirchberg algebra A is weakly semiprojective if and
only if A⊗K is weakly semiprojective [8]. Let A be a C*-algebra, a ∈ A and F ,G ⊆ A.
If ε > 0, we write a ∈ε F if there is b ∈ F such that ‖a − b‖ < ε. Similarly, we write
F ⊂ε G if a ∈ε G for every a ∈ F .

Proposition 2.1 [12, Thms. 3.1, 4.6]. Let D be a separable weakly semiprojective C*-
algebra. For any finite subset F ⊂ D and any ε > 0 there exist a finite subset G ⊂ D
and δ > 0 such that for any C*-algebra B ⊂ A and any ∗-homomorphism ϕ : D → A
with ϕ(G) ⊂δ B, there is a ∗-homomorphismψ : D → B such that ‖ϕ(a)−ψ(a)‖ < ε

for all a ∈ F .

The following two results appear in Loring’s book [20], except that he makes a cer-
tain assumption that is not necessary. Specifically, the assumption that the semiprojective
algebras are finitely presented can be removed. While the proofs of the sharpened results
do not really require new ideas, the consequences are quite useful. Although it is not
clear whether or not O∞ or other semiprojective Kirchberg algebras are finitely pre-
sented in Loring’s sense, Propositions 2.2 and 2.3 now allows us to deal with arbitrary
semiprojective Kirchberg algebras.

Proposition 2.2. Let A be a separable semiprojective C*-algebra and let (xi ) be a
sequence dense in the unit ball of A. For any n ≥ 1 and ε > 0 there are m ≥ 1 and
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δ > 0 such that for any diagram

B

π

��
A

ψ
���������� σ �� B/J

of C*-algebras and ∗-homomorphisms (J an ideal of B and π the quotient map) such
that ‖πψ(xi )− σ(xi )‖ < δ for all 1 ≤ i ≤ m, there is a ∗-homomorphism ϕ : A → B
such that πϕ = σ and ‖ϕ(xi )− ψ(xi )‖ < ε for all 1 ≤ i ≤ n.

Proposition 2.3. Let A be a separable semiprojective C*-algebra and let (xi ) be a
sequence dense in the unit ball of A. For any n ≥ 1 and ε > 0 there are m ≥ 1 and
δ > 0 such that for any C*-algebra B and any two ∗-homomorphisms ϕ,ψ : A → B
such that ‖ϕ(xi ) − ψ(xi )‖ < δ for all 1 ≤ i ≤ m, there is a homotopy χt : A → B,
t ∈ [0, 1], of ∗-homomorphisms from ϕ to ψ that satisfies

‖ϕ(xi )− χt (xi )‖ < ε, for all 1 ≤ i ≤ n and all t ∈ [0, 1].
Propositions 2.2 and 2.3 remain valid if one requires that all C*-algebras and morphisms
are unital.

Proposition 2.4. Let A be a semiprojective Kirchberg algebra. Let B be a separable
C*-algebra with a full projection such that B ∼= B ⊗ O∞ ⊗ K, let J be a proper
ideal of B and let π : B → B/J denote the quotient map. Let σ : A → B/J be a
full ∗-homomorphism. Assume that there is α ∈ K K (A, B) such that [π ]α = [σ ] in
K K (A, B/J ). Then there is a full ∗-homomorphism ϕ : A → B such that [ϕ] = α and
πϕ = σ .

Proof. Let (xi ) be a sequence dense in the unit ball of A. By Proposition 2.3 there are
n ≥ 1 and ε > 0 such that any two ∗-homomorphisms ϕ,ψ1 : A → B satisfying
‖ϕ(xi ) − ψ1(xi )‖ < ε, for all 1 ≤ i ≤ n, are homotopic. Let m and δ be as in Propo-
sition 2.2. By [24, Thm. 8.2.1] there is a full ∗-homomorphism ψ : A → B such that
[ψ] = α. Since [πψ] = [σ ] in K K (A, B/J ) and both maps are full, it follows from
[24, Thm. 8.2.1] that there is a unitary v ∈ M(B/J ) such that

‖πψ(xi )− v∗σ(xi )v‖ < δ,

for all 1 ≤ i ≤ m. Since B is stable, so is B/J [24]. Hence the unitary group of M(B/J )
is path connected. It follows that v lifts to a unitary u ∈ M(B). The map ψ1 = uψu∗ is
an approximate lifting of σ in the sense that ‖πψ1(xi )− σ(xi )‖ < δ for all 1 ≤ i ≤ m.
By Proposition 2.2 there is a ∗-homomorphism ϕ : A → B lifting σ and such that
‖ϕ(xi )− ψ1(xi )‖ < ε for all 1 ≤ i ≤ n. By Proposition 2.3, ϕ is homotopic to ψ1 and
hence [ϕ] = [ψ1] = [ψ] = α. Moreover ϕ is full, since for every nonzero projection
e ∈ A, ϕ(e) is homotopic to the full projection uψ(e)u∗. �

The following result was proved by H. Lin [18] in the case that A is a separable nuclear
unital C*-algebra. While the result extends to exact C*-algebras (as stated below; the
proof is similar) the nuclear case is all we shall need in the present paper.

Theorem 2.5. Let A be a separable exact unital C*-algebra and let B be a unital C*-
algebra. Let ϕ,ψ : A → B be two unital nuclear full ∗-monomorphisms with [ϕ] = [ψ]
in K Knuc(A, B). Let j : B → B ⊗ O∞ be defined by j (b) = b ⊗ 1. Then j ◦ ϕ is
approximately unitarily equivalent to j ◦ ψ .
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Let G ⊂ A and let δ > 0. A map ϕ : A → B is called (G, δ)-multiplicative if
‖ϕ(a)ϕ(b)− ϕ(ab)‖ < δ for all a, b ∈ G.

Theorem 2.6. Let A be a unital Kirchberg C*-algebra. Suppose that K∗(A) is finitely
generated and that A satisfies the UCT. Then for any finite subset F of A and any
ε, ε′ > 0, there are a finite subset G of A and δ > 0 with the following property. For
any unital Kirchberg C*-algebra B, any (G, δ)-multiplicative unital completely positive
map ϕ : A → B and any unitary w ∈ B with spectrum δ-dense in T and satisfying

‖[ϕ(a), w]‖ < δ, for all a ∈ G,
there is a unital full ∗-homomorphism φ : C(T)⊗ A → B such that

‖φ(1 ⊗ a)− ϕ(a)‖ < ε for all a ∈ F, and

‖φ(z ⊗ 1)− w‖ < ε.

If in addition K K (S A, B) = 0, then there is a continuous path (wt )t∈[0,1] of unitaries
in B with w0 = 1, w1 = w and

‖[ϕ(a), wt ]‖ < ε′, for all a ∈ F and all t ∈ [0, 1].
For the second part of the theorem the condition that the spectrum of w is δ-dense in T

is not needed.

Proof. Suppose, to obtain a contradiction, that there are a finite subset F of the unit
ball of A and ε > 0 for which no G and δ can be found satisfying the conclusion
of the theorem. Choose a sequence (an) dense in the unit ball of A. In particular, for
each n, the finite set Gn = {a1, . . . , an} and the tolerance δn = 1/n will not do. In
other words, for each n there exist a unital Kirchberg algebra Bn , a unital completely
positive map ϕn : A → Bn which is (Gn, δn)-multiplicative, and a unitary wn with
‖[wn, ϕn(ai )]‖ < δn for 1 ≤ i ≤ n, with the spectrum of wn δn-dense in T, such
that the pair (ϕn, wn) cannot be approximated as in the statement. The sequence (ϕn)

defines a unital ∗-homomorphism ϕ∞ : A → ∞(Bn)/c0(Bn). The sequence (wn)

defines a unitary w∞ ∈ ∞(Bn)/c0(Bn) which commutes with the image of ϕ∞. Thus
we obtain a ∗-homomorphism�∞ : C(T)⊗ A → ∞(Bn)/c0(Bn). One verifies imme-
diately that �∞ is a unital full ∗-monomorphism. Indeed, if I is a nonzero ideal of
C(T)⊗ A, let us show that �∞(I ) is contained in no proper ideal of ∞(Bn)/c0(Bn).
Since A is simple, I = CF (T) ⊗ A for some proper closed subset F of T, where
CF (T) = { f ∈ C(T) : f |F = 0}. Let g ∈ CF (T) with 0 ≤ g ≤ 1 be such that
g(t) = 1 on some arc c disjoint from F . It suffices to show that �∞(g ⊗ 1) is full in
∞(Bn)/c0(Bn). Note that (g(wn)) is a lifting of �∞(g ⊗ 1) to ∞(Bn). Since there is
n0 such that the spectrum of wn intersects the arc c for n ≥ n0, we have ‖g(wn)‖ = 1
for n ≥ n0. Since Bn is unital simple and purely infinite, by [24, Lemma 4.1.7] we find
bn ∈ Bn of norm at most two with bng(wn)b∗

n = 1Bn , for all n ≥ n0. Thus (g(wn)) is
full in ∞(Bn) and hence so is its image in ∞(Bn)/c0(Bn).

Since the extension

0 → c0(Bn) → ∞(Bn) → ∞(Bn)/c0(Bn) → 0 (1)

is quasidiagonal, the boundary map ∂ : K(∞(Bn)/c0(Bn)) → K(c0(Bn)) vanishes by
[7, Thm. 8]. By the UMCT of [9], if D is a separable C*-algebra that satisfies the UCT
and such that K∗(D) is finitely generated, then there is a natural isomorphism

K K (D, E) ∼= Hom�(K(D),K(E)),
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for any σ -unital C*-algebra E . Under this isomorphism, the boundary map

K K (D, ∞(Bn)/c0(Bn)) → K K (SD, c0(Bn))

corresponds to composition with ∂ , so that it also vanishes. Therefore, by the six-term
exact sequence in KK-theory, the map

K K (D, ∞(Bn)) → K K (D, ∞(Bn)/c0(Bn))

is surjective. Using Kirchberg’s theorem [24, Thm. 8.3.3], and the hypothesis that Bn
are Kirchberg algebras, we verify immediately that the natural map

∏
n Hom(D, Bn) →

Hom(D, ∞(Bn)) induces a surjection
∏

n K K (D, Bn) → K K (D, ∞(Bn)). In view
of the above discussion, we obtain a surjective map

∏

n

K K (C(T)⊗ A, Bn) → K K (C(T)⊗ A, ∞(Bn)/c0(Bn)).

By applying [24, Thm. 8.3.3] again, we find a sequence of unital ∗-monomorphisms
φ′

n : C(T)⊗ A → Bn which induces a unital full ∗-monomorphism�′∞ : C(T)⊗ A →
∞(Bn)/c0(Bn) and which has the same KK-theory class as �∞. Therefore, by Theo-
rem 2.5, j ◦�∞, j ◦�′∞ : C(T)⊗ A → (∞(Bn)/c0(Bn))⊗ O∞ are approximately
unitarily equivalent. In particular, there is a unitary v ∈ (∞(Bn)/c0(Bn))⊗ O∞ such
that

‖v(j ◦�∞(a)
)
v∗ − j ◦�′∞(a)‖ < ε, (2)

for all a ∈ {1 ⊗ b : b ∈ F} ∪ {z ⊗ 1}, where z denotes the identity map of T. Since the
extension (1) is quasidiagonal, we can lift v to a unitary in ∞(Bn) ⊗ O∞ given by a
sequence of unitaries vn ∈ Bn ⊗O∞. By a result of Kirchberg (see also [24, Thm. 8.4.1]),
for each n, there is an isomorphism νn : Bn ⊗ O∞→Bn, whose composition with the
inclusion map jn : Bn → Bn ⊗O∞ is approximately unitarily equivalent to idBn . Using
this in conjunction with (2), we find unitaries un ∈ Bn such that

lim sup
n→∞

‖un
(
φ′

n(1 ⊗ a)
)

u∗
n − ϕn(a)‖ < ε,

lim sup
n→∞

‖un
(
φ′

n(z ⊗ 1)
)

u∗
n − wn‖ < ε,

for all a in F . Letting φn(−) = un
(
φ′

n(−)
)

u∗
n , we have

lim sup
n→∞

‖φn(1 ⊗ a)− ϕn(a)‖ < ε,

lim sup
n→∞

‖φn(z ⊗ 1)− wn‖ < ε,

which produces a contradiction.
Consider now the second part of the theorem. Once again we will assume that the

conclusion is false for some finite set F ⊂ A and ε′ > 0 and will seek a contradiction.
Let α : [0,+∞) → [0,+∞) be a continuous function with α(0) = 0 which will be
specified later. There is ε > 0 such that α([0, ε]) ⊂ [0, ε′). Let (ϕn), Gn , δn and (wn)

be as in the first part of the proof, except that we make no assumptions on the spectrum
Kn of the unitary wn . After passing to a subsequence of (wn) we may assume that the
sequence of compact subsets (Kn) converges in the Gromov-Hausdorff distance to a
nonempty compact subset K of T by [23, Prop. 7.2]. If K = T, then we apply the first
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part of the theorem to ϕ = ϕn andw = wn for some sufficiently large n. Thus, we obtain
a unital ∗-monomorphism φ : C(T)⊗ A → B such that

‖φ(1 ⊗ a)− ϕ(a)‖ < ε for all a ∈ F, and ‖φ(z ⊗ 1)− w‖ < ε.

Observe that if K K (S A, B) = 0, then the canonical injection

K K (A, B) → K K (C(T)⊗ A, B)

is bijective. Thus, if ν : B ⊗O∞ → B is an isomorphism as above, then the class of [φ]
in K K (C(T) ⊗ A, B) is equal to the class of some unital ∗-monomorphism φ′ of the
form ν ◦ (θ ′ ⊗ψ ′) for some ∗-homomorphisms ψ ′ : A → B and θ ′ : C(T) → O∞. By
Phillips’s theorem [24, 8.2.1], φ is approximately unitarily equivalent to φ′. Without any
loss of generality, we may assume that φ is unitarily equivalent to φ′. Set φ(z ⊗1) = u1.
Since the unitary group of O∞ is path connected, we find a continuous path of unitar-
ies (ut )t∈[0,1] in O∞ joining u1 with 1, satisfying [φ(1 ⊗ a), ut ] = 0 for all a ∈ A
and t ∈ [0, 1]. It follows that ‖[ϕ(a), ut ]‖ < 2ε for all a ∈ A and t ∈ [0, 1]. If
vt = (1 − t)w + tu1, then vt |vt |−1/2 is a path of unitaries in B joining w to u1. Then the
juxtaposition of this path with ut gives a path wt from w to 1 with

‖[ϕ(a), wt ]‖ < α(ε), for all a ∈ F, and t ∈ [0, 1].
Here α is a universal non-negative continuous function with α(0) = 0 (recall that
‖a‖ ≤ 1 for all a ∈ F). Since α(ε) < ε′ we ran into a contradiction.

It remains to argue the case when K is a proper subset of T. After dropping finitely
many wn’s we may assume that there is some fixed closed neighborhood V of K in
T such that V �= T and each Kn is contained in V . By functional calculus we find a
sequence of selfadjoint elements hn ∈ Bn such that limn→∞ ‖[ϕn(a), hn]‖ = 0 for all
a ∈ A, wn = exp(ihn) and supn ‖hn‖ < ∞. Let us set vn(t) = exp(i thn). One shows
immediately that for some sufficiently large n,

‖[ϕn(a), vn(t)]‖ < ε′, for all a ∈ F and all t ∈ [0, 1],
which gives a contradiction, since vn(0) = 1 and vn(1) = wn . �
Corollary 2.7. Let A be a unital Kirchberg C*-algebra. Suppose that K∗(A) is finitely
generated and that A satisfies the UCT. Then for any finite subset F of A ⊗ K and any
ε > 0 there are a finite subset G of A ⊗ K and δ > 0 with the following property. For
any unital Kirchberg C*-algebra B with K K (S A, B) = 0, any full ∗-homomorphism
ϕ : A ⊗ K → B ⊗ K and any unitary w ∈ M(B ⊗ K) satisfying

‖[ϕ(a), w]‖ < δ, for all a ∈ G,
there is a continuous path (wt )t∈[0,1] of unitaries in M(B ⊗ K) with w0 = w, w1 = 1
and

‖[ϕ(a), wt ]‖ < ε, for all a ∈ F and all t ∈ [0, 1].
Proof. We may assume that F ⊂ A ⊗ eKe for some projection e ∈ K. Let δ′ > 0 and
G ⊂ A ⊗ eKe (with 1A ⊗ e ∈ G) be given by the second part of Theorem 2.6 applied to
A⊗eKe, F and ε. Let us choose δ > 0 small enough such that if ‖[ϕ(a), w]‖ < δ for all
a ∈ G, then there is a unitary v ∈ M(B ⊗K) such that v commutes with f = ϕ(1A ⊗ e)
and v is sufficiently close to w so that ‖[ϕ(a), v]‖ < δ′ for all a ∈ G and there is a
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continuous path of unitaries (ωt ) fromw to v such that ‖[ϕ(a), ωt ]‖ < ε for all a ∈ F . In
particular ‖[ϕ(a), f v f ]‖ < δ′ for all a ∈ G. By Theorem 2.6, there is a continuous path
(yt ) of unitaries in f (B⊗K) f joining f v f to f such that ‖[ϕ(a), yt ]‖ < ε for all a ∈ F .
Let us argue that there is a continuous path (zt ) of unitaries in (1− f )M(B ⊗K)(1− f )
joining (1 − f )v(1 − f ) to 1 − f . Indeed, since f ∈ B ⊗ K, (1 − f )HB ∼= HB by
Kasparov’s absorption theorem [13] (where HB is the Hilbert B-module B ⊕ B ⊕ · · · ),

(1 − f )M(B ⊗ K)(1 − f ) ∼= L((1 − f )HB) ∼= L(HB) ∼= M(B ⊗ K).
Since the unitary group of M(B ⊗ K) is path connected, we have verified the existence
of the path (zt ). Finally let us observe that the juxtaposition of the paths (ωt ) and (yt +zt )

gives a continuous path of unitaries (wt ) in M(B ⊗ K) such that the path t �→ wt has
the desired properties. �

3. C*-Bundles

Let X be a compact Hausdorff space. A C*-bundle A over X is a C*-algebra A endowed
with a unital ∗-monomorphism from C(X) to the center of the multiplier C*-algebra
M(A) of A. If Y ⊆ X is a closed subset, we let CY (X) denote the ideal of C(X) con-
sisting of functions vanishing on Y . Then CY (X)A is a closed two-sided ideal of A. The
quotient of A by this ideal is a C*-bundle denoted by A(Y ) and called the restriction of
A = A(X) to Y . The quotient map is denoted by πY : A(X) → A(Y ). If Z is a closed
subset of Y we have a natural restriction map πY

Z : A(Y ) → A(Z) and πZ = πY
Z ◦ πY .

If Y reduces to a point x , we write A(x) for A({x}) and πx for π{x}. The C*-algebra
A(x) is called the fiber of A at x . The image πx (a) ∈ A(x) of a ∈ A is denoted by a(x).
For any a ∈ A, the map x �→ ‖a(x)‖ is upper semi-continuous. If the map x �→ ‖a(x)‖
is continuous for all a ∈ A, then A is called a continuous C*-bundle. If ϕ : A → B
is a morphism of C(X)-bundles and Y is a closed subset of X , then the induced map
A(Y ) → B(Y ) is denoted by ϕY .

Lemma 3.1. Let X be a compact Hausdorff space and let A be a continuous C*-bundle
over X. If Y , Z are closed subsets of X, then M(A(Y ∪ Z)) is isomorphic to the pullback
of the two restriction maps M(A(Y )) → M(A(Y ∩Z)) and M(A(Z)) → M(A(Y ∩Z)).

Proof. The pullback of the diagram A(Y )
π �� A(Y ∩ Z) A(Z) ,

π�� is isomor-
phic to A(Y ∪ Z) by [11, Prop. 10.1.13]. The statement follows now from the description
of the multiplier algebra of a pullback given by [21, Prop. 7.2]. Alternatively, one can
derive the statement from [1, Thm. 3.3] which identifies M(A) with the set of sections
(s(x))x∈X , s(x) ∈ M(A(x)) which are bounded and strictly continuous. �
Proposition 3.2. Let A be a stable Kirchberg algebra. Suppose that K∗(A) is finitely
generated and that A satisfies the UCT. Then for any finite subset F of A and any ε > 0
there are a finite subset G of A and δ > 0 with the following property. Let B be a stable
continuous C*-bundle of Kirchberg algebras over [α, β] and let φ : A → B be a full
∗-homomorphism. Let z ∈ [α, β] and let w ∈ M(B(z)) be a unitary such that

‖[πzφ(a), w]‖ < δ, for all a ∈ G.
Assume that K K (S A, B(z)) = 0. Then there is a neighborhood [z1, z2] of z and there
is a unitary W ∈ M(B) such that

‖[φ(a),W ]‖ < ε, for all a ∈ F,
W (z) = w, and W (x) = 1 for all x ∈ [α, β]\[z1, z2].
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Moreover one may arrange that [z1, z2] is contained in a given neighborhood of z.

Proof. If G and δ are as in Corollary 2.7, then there is a continuous path (wt )t∈[0,1] of
unitaries in M(B(z)) with w0 = 1, w1 = w and

‖[πzφ(a), wt ]‖ < ε, for all a ∈ F .
Let [z1, z2] be a neighborhood of z. Since w1 = 1, the path (wt )t∈[0,1] lifts to a contin-
uous path of unitaries in M(B[z1, z2]), denoted by (�t )t∈[0,1], such that �1 = 1. After
passing to a smaller neighborhood of z if necessary, we may arrange that

‖[π[z1,z2]φ(a),�t ]‖ < ε, for all a ∈ F and t ∈ [0, 1].
Let h : [z1, z2] → [0, 1] be a continuous map such that h(z) = 1 and h vanishes on
{z1, z2}\{z}. Then the map

x �→
{
�h(x)(x), if x ∈ [z1, z2],
1, if x ∈ [α, β] \ [z1, z2],

defines a unitary W in M(B) (by Lemma 3.1) which satisfies the conclusion of the
proposition. �
Corollary 3.3. Let A be a stable Kirchberg algebra satisfying the UCT and such that
K∗(A) is finitely generated. Let Z = [z1, z2] be an interval with z1 < z2. Then for
any finite subset F of C(Z) ⊗ A and any ε > 0 there exist a finite subset G of A and
δ > 0 with the following property. Let B be a stable continuous C*-bundle of Kirchberg
algebras over Z and let φ,ψ : C(Z) ⊗ A → B be two injective ∗-homomorphisms
which are C(Z)-linear. Let ui ∈ M(B(zi )), i = 1, 2, and let v ∈ M(B) be unitaries
such that

‖uiφzi (a)u
∗
i − ψzi (a)‖ < δ, for all a ∈ G and i = 1, 2, (3)

‖vφ(a)v∗ − ψ(a)‖ < δ, for all a ∈ G. (4)

Assume that K K (S A, B(zi )) = 0, i = 1, 2. Then there is a unitary u ∈ M(B) such that
u(zi ) = ui , i = 1, 2, and

‖uφ(a)u∗ − ψ(a)‖ < ε, for all a ∈ F .
Proof. Since both φ and ψ are C(Z)-linear it suffices to prove the statement for ε > 0
and F ⊂ A. Choose G and δ as in Proposition 3.2 such that δ < ε. Assume that (3) and
(4) are satisfied for δ/2. Then

‖[v(zi )
∗ui , φzi (a)]‖ < δ, for all a ∈ G. (5)

By applying Proposition 3.2 to both ends of Z , we find a unitary w ∈ M(B) such that
w(zi ) = v(zi )

∗ui , i = 1, 2, and

‖[φ(a), w]‖ < ε, for all a ∈ F .
Consider the unitary u = vw ∈ M(B). We have u(zi ) = ui , i = 1, 2, and

‖uφ(a)u∗ − ψ(a)‖ ≤ ‖v(wφ(a)w∗ − φ(a)
)
v∗]‖ + ‖vφ(a)v∗ − ψ(a)‖ < ε + δ < 2ε

for all a ∈ F, as desired. �
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4. Invariants

Let X be the unit interval. Let U be the set of all closed subintervals of X of positive
length. We regard U as a category with morphisms given by inclusions. A presheaf on
U consists of the following data:

(a) An assignment to each U ∈ U of a set S(U ).
(b) A collection of mappings (called restriction homomorphisms)

rU
V : S(U ) → S(V ) for each pair U , V in U such that V ⊂ U , satisfying

(1) rU
U = idU (the identity map),

(2) for W ⊂ V ⊂ U , rU
W = r V

W rU
V .

If S and S ′ are presheaves over U , then a morphism of presheaves α ∈ Hom(S,S ′)
is a collection of maps αU : S(U ) → S ′(U ) for each U ∈ U such that for V ⊂ U the
following diagram commutes:

S(U )
rU

V
��

αU �� S ′(U )

rU
V

��
S(V )

αV
�� S ′(V )

(6)

In other words, S is a contravariant functor from the category U to the category of
sets and α is a natural transformation of functors. In our examples, S will take val-
ues in a category that has some algebraic structure (e.g., abelian semigroups, groups,
ordered groups, etc.) Naturally, we shall require that the restriction maps and the mor-
phisms preserve the algebraic structure. Our main example is the presheaf S = Kd(A)
associated to a continuous C*-bundle A on X :

S(U ) = Kd(A)(U ) = Kd(A(U )), rU
V = Kd(π

U
V ),

where d ∈ {0, 1} is fixed and πU
V : A(U ) → A(V ) is the natural quotient map. A mor-

phism of C*-bundles over X , ϕ : A → B induces a morphism of presheaves Kd(ϕ) ∈
Hom(Kd(A),Kd(B)). Let us observe that we can extend S to singletons V = {x} by
setting S(V ) = Kd(A(x)) and rU

V = Kd(π
U
x ). The stalk of S at x ∈ X is the direct limit

Sx = lim−→x∈ ◦
U

S(U ) with respect to the restriction maps (rU
V ), where U runs through

those elements of U which contain x in their interior. Since A(x) = lim−→x∈ ◦
U

A(U ), we

can identify S({x}) with Sx , by continuity of K-theory. Consequently, if B is a C*-
bundle over X and α ∈ Hom(Kd(A),Kd(B)), then for any V = {x} ⊂ U we have
a commutative diagram as in (6), where α{x} : S({x}) → S ′({x}) corresponds to the
map Sx → S ′

x induced by α, and S ′ = Kd(B). Since a map α{x} which makes the
diagram (6) commutative for all U with x ∈ U and V = {x} is uniquely determined
by a morphism of presheaves α : Kd(A) → Kd(B), we see that for any morphism of
C*-bundles ϕ : A → B, Kd(ϕ){x} = Kd(ϕx ).

We are going to verify that the presheaf S = Kd(A) on U satisfies the following
properties which are similar to those of a sheaf. For every U ∈ U and any collection
U1, . . . ,Un of elements of U with U = ⋃

i Ui ,

(i) If s, t ∈ S(U ) and rU
Ui
(s) = rU

Ui
(t) for all i , then s = t .
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(ii) If si ∈ S(Ui ) for all i and if for Ui ∩ U j �= ∅, we have rUi
Ui ∩U j

(si ) = r
U j
Ui ∩U j

(s j ),

then there exists s ∈ S(U ) such that rU
Ui
(s) = si for all i .

Every sheaf S is isomorphic to the sheaf of sections of an etale bundle π : ES → X
[29]. This is also the case with S = Kd(A). There is a natural map rU

x : S(U ) → Sx . If

s ∈ S(U ) and x ∈ ◦
U , then sx := rU

x (s) is called the germ of s at x . Consider the disjoint
union

ES =
⊔

x∈X

Sx

and denote by π : ES → X the natural projection which maps Sx to x . For each

s ∈ S(U ) consider the section ŝ: ◦
U→ ES defined by ŝ(x) = sx . The family of sets

{ŝ( ◦
U ) : U ∈ U , s ∈ S(U )}

forms a basis for a topology on ES . This topology glues together all the stalks (Sx )x∈X
forming the space ES . The bundle π : ES → X is called etale since the continuous
surjection π is a local homeomorphism. For U ∈ U let �(U, ES) denote the set of con-
tinuous sections from U to ES . Using the conditions (i) and (ii) (that we verify next) and
the continuity of the K-theory one shows (as in the proof of [29, Thm. 2.2, Chap. II]) that
the natural map S(U ) → �(U, ES), s �→ ŝ, is an isomorphism. Thus we are justified
in calling Kd(A) a sheaf.

Proposition 4.1. Let A be a continuous C*-bundle over X = [0, 1]. Fix d ∈ {0, 1} and
assume that Kd+1(A(x)) = 0 for all fibers of A. Then Kd(A)(U ) = Kd(A(U )) is a
sheaf and the natural map Kd(A)(U ) → �(U, EKd (A)) is an isomorphism of sheaves.

Proof. Let us give the proof in the case d = 0, the case d = 1 being similar. We need
to verify the conditions (i) and (ii) from above. It is clear that, given (Ui ), it suffices
to verify (i) and (ii) for some cover of U which refines the cover (Ui ). Therefore we
may assume that Ui ∩ Ui+1 reduces to a point, and that Ui ∩ U j = ∅ if |i − j | > 1.
Set Xi = U1 ∪ · · · ∪ Ui and note that K1(A(Xi ∩ Ui+1)) = K1(A(Ui ∩ Ui+1)) = 0 by
assumption. If Y, Z are closed subsets of U , one has the Mayer-Vietoris exact sequence
([26]):

K0(A(Y ))⊕ K0(A(Z))
� �� K0(A(Y ∩ Z)) �� K1(A(Y ∪ Z))

��
K0(A(Y ∪ Z))

ρ

��

K1(A(Y ∩ Z))�� K1(A(Y ))⊕ K1(A(Z))��

This yields the exact sequence

0 �� K0(A(Xi+1))
ρ �� K0(A(Xi ))⊕K0(A(Ui+1))

� �� K0(A(Xi ∩Ui+1)),

(7)

where ρ is the natural restriction map and � = K0(π
Xi
Xi ∩Ui+1

)− K0(π
Ui+1
Xi ∩Ui+1

).
One easily verifies (i) and (ii) by induction using the exactness of the sequence (7),

at its first term for (i) and at its second term for (ii). �
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5. Fibered Morphisms of C*-Bundles

Let C be a class of Kirchberg algebras and set X = [0, 1]. Let us use the term
admissible cover of X to mean closed intervals Yi = [a2i , a2i+1] and Z j = [a2 j+1, a2 j+2],
where 0 = a0 < a1 < · · · < a2m+1 = 1. Let us set Y = [a0, a1] ∪ [a2, a3] ∪ . . .,
Z = [a1, a2] ∪ [a3, a4] ∪ . . . .; thus Y ∩ Z = {a1, a2, . . . , a2m}. For the sake of brevity
let us refer to the above cover by {Y, Z}. Consider diagrams D of the form

D
π �� F E

η�� (8)

based on an admissible cover {Y, Z} of X . Let us assume that D, E , F are locally
trivial C*-bundles over Y , Z and Y ∩ Z respectively with fibers in C. More precisely,
D = ⊕m

i=0 C(Yi , Di ) and E = ⊕m−1
j=0 C(Z j , E j ), where Di , E j ∈ C. Let us also

assume that F is the restriction of D to Y ∩ Z , so that

F = D(Y ∩ Z) =
⊕

Yi ∩Z j �=∅
C(Yi ∩ Z j , Di ) =

m−1⊕

i=0

(Di ⊕ Di+1).

The map π : D → F is the restriction πY∩Z : D(Y ) → D(Y ∩ Z) and the map
η : E → F is obtained as the composition

E(Z)
πY∩Z �� E(Y ∩ Z)

γ �� D(Y ∩ Z) = F,

where γ is a monomorphism of C*-bundles. It is useful to denote the components of γ
by γi,i = γa2i+1 : Ei → Di and γi,i+1 = γa2i+2 : Ei → Di+1, and the corresponding
components of η by ηi,i : C(Zi , Ei ) → Di and ηi,i+1 : C(Zi , Ei ) → Di+1.

The pullback of D is the continuous C*-bundle over X ,

PD = {(d, e) ∈ D ⊕ E : π(d) = η(e)}.
Its fibers are isomorphic to E j on Z j and to Di on Yi\Z .

Let us call a diagram D satisfying all the conditions described above admissible. Let
us call a continuous C*-bundle A elementary if there is an admissible diagram D such
that A ∼= PD. For a fixed isomorphism ι : A → PD there is a commutative diagram

A(Y )
π ��

ιY

��

A(Y ∩ Z)

ιY∩Z

��

A(Z)
π��

ιZ

��
D

π �� F E
η��

(9)

with the vertical maps monomorphisms of C*-bundles, such that the induced
∗-homomorphism A → PD can be identified with ι. An admissible diagram D comes
with a closed cover of X , namely {Y, Z}. If A is a continuous C*-bundle over X , it is
convenient to denote by DA the (not necessarily admissible) diagram

A(Y )
π �� A(Y ∩ Z) A(Z),

π��

whose pullback is isomorphic to A by [11, Prop. 10.1.13]. Moreover if ϕ : A → B
is a morphism of C*-bundles we denote by Dϕ the corresponding morphism of dia-
grams DA → DB, with components ϕY , ϕY∩Z , ϕZ . Thus, a continuous C*-bundle A
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is elementary if there is an admissible diagram D and a unital morphism of diagrams
ι : DA → D which induces a ∗-isomorphism A → PD. In that case let us say that
ι : DA → D is a fibered presentation of A.

Let A, B be continuous C*-bundles over X such that A is elementary. A fibered
morphism φ from A to B consists of a fibered presentation of A, ι : DA → D, together
with injective morphisms of C*-bundles φY , φY∩Z , φZ such that the following diagram
is commutative:

A(Y )
π ��

ιY

��

A(Y ∩ Z)

ιY∩Z

��

A(Z)
π��

ιZ

��
D

π ��

φY

��

F

φY∩Z

��

E
η��

φZ

��
B(Y )

π �� B(Y ∩ Z) B(Z).
π��

Equivalently, a fibered morphism from A to B is given by a triple (ι,D, φ),

DA
ι �� D φ �� DB,

where ι : DA → D is a fibered presentation of A and φ = (φY , φY∩Z , φZ ). To simplify
notation we will write φ for (ι,D, φ). Note that a fibered morphism φ induces a mor-
phism of C*-bundles φ̂ : A → B. A morphism ϕ of C*-bundles is called elementary
if it is induced by a fibered morphism φ, i.e. ϕ = φ̂. The set of all fibered morphisms
from A to B, corresponding to a given fibered presentation ι : DA → D of A will be
denoted by HomD(A, B). There is a natural composition of fibered morphisms

HomD(A, B)× HomD′(B,C) → HomD(A,C),

(φ, ψ) �→ ψ ◦φ = D( ψ̂ ) ◦φ. In other words the components of ψ ◦φ are (ψ ◦φ)Y =
ψ̂Y ◦ φY , (ψ ◦ φ)Y∩Z = ψ̂Y∩Z ◦ φY∩Z and (ψ ◦ φ)Z = ψ̂Z ◦ φZ .

Two fibered morphisms φ,ψ ∈ HomD(A, B) are approximately unitarily equivalent
if there is a sequence of unitaries (un) in M(B) such that the sequence (πY (un)) induces
an approximate unitary equivalence between φY and ψY and the sequence (πZ (un))

induces an approximate unitary equivalence between φZ and ψZ . It follows that φY∩Z
and ψY∩Z are also approximately unitarily equivalent since they are restrictions of φY
and ψY , respectively. It is obvious that if φ is approximately unitarily equivalent to ψ ,
then φ̂ is approximately unitarily equivalent to ψ̂ .

Fix d ∈ {0, 1}. By a fibered Kd -morphism from A to B, corresponding to a given
fibered presentation ι : DA → D of A, let us mean a triple of maps α = (αY , αY∩Z , αZ ),
where αY has components αi : Kd(D(Yi )) → Kd(B(Yi )), αZ has components α j :
Kd(E(Z j )) → Kd(B(Z j )), and αY∩Z has components αi, j : Kd(D(Yi ∩ Z j )) →
Kd(B(Yi ∩ Z j )), such that the following diagram is commutative:

Kd(A(Y ))
π∗ ��

ι∗
��

Kd(A(Y ∩ Z))

ι∗
��

Kd(A(Z))
π∗��

ι∗
��

Kd(D)
π∗ ��

αY

��

Kd(F)

αY∩Z

��

Kd(E)
η∗��

αZ

��
Kd(B(Y ))

π∗ �� Kd(B(Y ∩ Z)) Kd(B(Z))
π∗��
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Let us summarize the above diagram by the notation

Kd(DA)
Kd (ι) �� Kd(D) α �� Kd(DB). (10)

Note that αY∩Z (Kd(D(Yi ∩ Z j ))) ⊆ Kd(B(Yi ∩ Z j )) and

αY (Kd(D(Yi ))) ⊆ Kd(B(Yi )), αZ (Kd(E(Z j ))) ⊆ Kd(B(Z j )),

by definition. The set of fibered Kd -morphisms from A to B corresponding to a given
fibered presentation ι : DA → D of A is denoted by Hom(Kd(D), Kd(DB)). If B and
H are C*-bundles over X and D is as above let us denote by Hom(Kd(DB), Kd(DH))
the families of group morphisms βY = (βYi ), βY∩Z = (βYi ∩Z j ), βZ = (βZ j ) which
make the following diagram commutative:

Kd(B(Y ))
π ��

βY

��

Kd(B(Y ∩ Z))

βY∩Z

��

Kd(B(Z))
π��

βZ

��
Kd(H(Y ))

π �� Kd(H(Y ∩ Z)) Kd(H(Z))
π��

Note that despite the conspicuous notation, the role of D here is limited to giving an
admissible cover. One has an obvious composition (α, β) �→ β ◦ α,
Hom(Kd(D), Kd(DB))× Hom(Kd(DB), Kd(DH)) → Hom(Kd(D), Kd(DH)).

There is a natural restriction map

Hom(Kd(B),Kd(H)) → Hom(Kd(DB), Kd(DH)),

β �→ Dβ which depends only on the admissible cover {Y, Z} of [0, 1] that appears in
the definition of D. This map takes the family of maps β = (βU ) to the subfamily Dβ
consisting of those βU with U of the form Yi , Z j or Yi ∩ Z j . If U = {x}, βU stands for
βx : Kd(B(x)) → Kd(H(x)).

If D is a C*-algebra and B is a C*-bundle over X , then any morphism of groups
α : Kd(D) → Kd(B) induces a morphism of presheaves α̂ : Kd(C(X, D)) → Kd(B),
where for a closed subinterval U ⊂ X , α̂U : Kd(C(U, D)) ∼= Kd(D) → Kd(B(U )) is
defined by α̂U = (πU )∗α. This observation extends to elementary C*-bundles:

Proposition 5.1. Let A, B and H be continuous C*-bundles over [0, 1] whose fibers have
vanishing Kd+1-groups. Assume moreover that A is an elementary C*-bundle given by
a fibered presentation ι : DA → D. Then, there is a map Hom(Kd(D), Kd(DB)) →
Hom(Kd(A),Kd(B)), α �→ α̂, such that

(a) K̂d(φ) = Kd(φ̂) for all φ ∈ HomD(A, B),
(b) ((Dβ) ◦ α)̂ = β ◦ α̂ for all α ∈ Hom(Kd(D),Kd(DB)) and β ∈ Hom(Kd(B),

Kd(H)).

Proof. Let α ∈ Hom(Kd(D), Kd(DB)). For each closed subinterval U of [0, 1] we
shall construct a morphism of groups α̂U : Kd(A(U )) → Kd(B(U )) as follows.

Let us consider the diagram DU ,

D(Y ∩ U )
π �� F(Y ∩ Z ∩ U ) E(Z ∩ U )

η�� ,
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and note that it enjoys all the essential properties of an admissible diagram. The only
possible differences are that Yi ∩ U or Z j ∩ U can reduce to boundary points of U (for
at most two indices) and that the cover {Y ∩ U, Z ∩ U } of U may begin or end by a
subinterval of the form Z j ∩ U rather than Yi ∩ U . We also consider the diagram DU B,

B(Y ∩ U )
π �� B(Y ∩ Z ∩ U ) B(Z ∩ U )

π�� .

Let I (U ) and J (U ) consist of those indices i and j such that Yi ∩ U �= ∅ and respec-
tively Z j ∩ U �= ∅. The proof relies on three observations. First, we note that A(U ) is a
pullback of DU . Second, we note that since Kd(D(Yi ∩ U )) ∼= Kd(D(Yi )) ∼= Kd(Di )

if i ∈ I (U ) and Kd(E(Z j ∩ U )) ∼= Kd(E(Z j )) ∼= Kd(E j ) if j ∈ J (U ), the diagram
Kd(DU ) can be naturally identified with the following full subdiagram of Kd(D):
⊕

i∈I (U )Kd(D(Yi ))
π ��

⊕
i∈I (U ), j∈J (U )Kd(F(Yi ∩Z j ))

⊕
j∈J (U ) Kd(E(Z j ))

η�� ,

denoted by Kd(D)U . Third, we observe that Kd(B(U )) is isomorphic to the pullback
of the diagram Kd(DU B), as a consequence of the Mayer-Vietoris exact sequence and
the assumption that all the fibers of B have vanishing Kd+1-groups. Let us denote by
Kd(DB)U the following full diagram of Kd(DB):

⊕
i∈I (U )Kd(B(Yi ))

π ��
⊕

i∈I (U ), j∈J (U )Kd(B(Yi ∩Z j ))
⊕

j∈J (U )Kd(B(Z j ))
π�� .

The first observation gives a morphism of groups from Kd(A(U )) to Kd(PDU )

and hence to PKd (DU ), the pullback of the diagram Kd(DU ). The second observation
allows us to restrict α to a map of diagrams Kd(DU ) ∼= Kd(D)U → Kd(DB)U →
Kd(DU B) (as explained in more detail below), giving a map PKd (DU ) → PKd (DU B).
By the third observation we can identify PKd (DU B) with Kd(B(U )). Then we define
α̂U : Kd(A(U )) → Kd(B(U )) as the composition of the three maps from above. Fi-
nally it is easy to verify that the family α̂ = (̂αU )U∈U is a morphism of sheaves and that
the properties (a) and (b) are satisfied.

Let us verify the properties (a) and (b) using an explicit calculation of α̂ : Kd(A) →
Kd(B). While this calculation is not really needed, we think that it is useful to compute
the basic invariant Kd(A) at least for elementary C*-bundles. Since the fibers of A have
vanishing Kd+1-groups, we may identify Kd(A(U ))with PKd (DU ) by the Mayer-Vietoris
exact sequence. Thus

Kd(A(U )) ∼= {(di , e j ) ∈ ( ⊕

i∈I (U )

Kd(Di )
) ⊕ ( ⊕

j∈J (U )

Kd(E j )
) : Kd(γ j i )(e j ) = di },

where the condition Kd(γ j i )(e j ) = di is required for j ∈ {i − 1, i}. To simplify nota-
tion we let (di , e j ) stand for ((di )i∈I (U ), (e j ) j∈J (U )). One can rewrite the calculation of
Kd(A(U )) in the following equivalent form. If J (U ) = ∅ then I (U ) = {i} for some
i and Kd(A(U )) ∼= Kd(Di ). If J (U ) = {s, . . . , s + k}, then Kd(A(U )) ∼= Kd(Es) if
k = 0 and

Kd(A(U )) ∼= {(e j ) ∈ ( ⊕

j∈J (U )

Kd(E j )
) : Kd(γ j−1, j )(e j−1) = Kd(γ j, j )(e j ),

j = s + 1, . . . , s + k}



One-Parameter Continuous Fields of Kirchberg Algebras 809

if k ≥ 1. Let x ∈ Kd(A(U )) be viewed as an element of the pullback of the diagram

Kd(DU ), x = (di , e j ). Then α̂U (x) = (
Kd(π

Yi
Yi ∩U )αi (di ), Kd(π

Z j
Z j ∩U )α j (e j )

)
viewed

as an element of the pullback of the diagram Kd(DU B), where i runs in I (U ) and j
runs in J (U ). To verify (a) we need to show that K̂d(φ)U = Kd(φ̂U ):

K̂d(φ)U (x) = (
Kd(π

Yi
Yi ∩U )Kd(φYi )(di ), Kd(π

Z j
Z j ∩U )Kd(φZ j )(e j )

)

= (
Kd(φYi ∩U )(di ), Kd(φZ j ∩U )(e j )

)

= Kd(φ̂U )(x).

To verify (b) we need to show that ((Dβ) ◦ α)̂U = βU ◦ α̂U . With notation as above we
have

((Dβ) ◦ α))̂U (x) = (
Kd(π

Yi
Yi ∩U )βYiαi (di ), Kd(π

Z j
Z j ∩U )βZ jα j (e j )

)

= (
βYi ∩U Kd(π

Yi
Yi ∩U )αi (di ), βZ j ∩U Kd(π

Z j
Z j ∩U )α j (e j )

)

= βU ◦ α̂U (x).

�

6. Approximation and Inductive Limit Results

The results in this section are useful for describing the structure of continuous C*-bun-
dles of Kirchberg algebras. The following result applies to C*-bundles whose fibers are
Kirchberg algebras satisfying the UCT. Indeed, such Kirchberg algebras are isomorphic
to inductive limits of weakly semiprojective Kirchberg algebras (see [24]).

Theorem 6.1. Let C be a class of unital weakly semiprojective Kirchberg algebras. Let
A be a unital continuous C*-bundle over the unit interval such that all of its fibers are
inductive limits of sequences of algebras in C. For any finite subset F ⊂ A and any ε > 0
there are an elementary continuous C*-bundle A1 with fibers in C and an elementary
unital morphism of C*-bundles �̂ : A1 → A such that F ⊂ε �̂(A1). A similar result is
valid if one assumes that all the C*-algebras in C are stable rather than unital.

Proof. We give the proof of the unital case. The stable case is entirely similar. Let F
and ε be as in the statement. We must find points 0 = a0 < a1 < · · · < a2m+1 = 1
and C*-algebras Di , E j ∈ C (0 ≤ i ≤ m, 0 ≤ j ≤ m − 1) such that if we set
Yi = [a2i , a2i+1], Z j = [a2 j+1, a2 j+2] and D = ⊕

i C(Yi , Di ), E = ⊕
j C(Z j , E j ),

Y = ⋃
i Yi , Z = ⋃

j Z j , then there are C*-bundle monomorphisms ϕ : D → A(Y ),
ψ : E → A(Z) such that

π Z
Y∩Z

(
ψ(E)

) ⊂ πY
Y∩Z

(
ϕ(D)

)
, (11)

πY (F) ⊂ε ϕ(D), πZ (F) ⊂ε ψ(E). (12)

Let A1 be the pullback of the maps πY
Y∩Zϕ and π Z

Y∩Zψ ,

A1 = {(d, e) ∈ D ⊕ E : πY
Y∩Zϕ(d) = π Z

Y∩Zψ(e)}.
If D is defined by

D
π �� F E

η�� , (13)
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where F = D(Y ∩ Z) and η is obtained as the composition

E(Z)
πY∩Z �� E(Y ∩ Z)

γ �� D(Y ∩ Z) = F,

where γ (e) = (ϕ−1ψ)|Y∩Z (e), then A1 ∼= PD. Letting ϕF be the restriction of ϕ to F ,
we obtain a commutative diagram

D
π ��

ϕ

��

F

ϕF

��

E
η��

ψ

��
A(Y )

π �� A(Y ∩ Z) A(Z)
π��

and hence a unital fibered morphism � ∈ HomD(A1, A). Using a partition of unity
one verifies immediately that the induced ∗-homomorphism �̂ : A1 → A satisfies
F ⊂ε �̂(A1) as a consequence of (12). Therefore it remains to construct D, E , ϕ andψ
with properties as above. By hypothesis, if x ∈ [0, 1], then A(x) is an inductive limit of
a sequence of C*-algebras in C with unital connecting maps. Therefore there are Ex ∈ C
and a unital ∗-homomorphism ıx : Ex → A(x) such thatπx (F) ⊂ε/2 ıx (Ex ). Let H be a
finite subset of Ex such that for each a ∈ F there is ha ∈ H satisfying‖ıx (ha)−πx (a)‖ <
ε/2. Since Ex is weakly semiprojective, there are a closed neighborhood Ux of x and
a ∗-homomorphism ηx : Ex → A(Ux ) such that ‖πxηx (h) − ıx (h)‖ < ε/2 for all
h ∈ H. Therefore, ‖πx (ηx (ha)− πUx (a))‖ = ‖πxηx (ha)− πx (a)‖ < ε for all a ∈ F .
Using the semicontinuity of the norm for C*-bundles, after passing to a smaller neigh-
borhood if necessary, we may arrange that ηx is unital and ‖ηx (ha) − πUx (a)‖ < ε

for all a ∈ F . In particular, πUx (F) ⊂ε ηx (Ex ). By compactness of [0, 1], there are
points 0 = y0 < y1 < · · · < ym = 1, C*-algebras E j ∈ C (0 ≤ j ≤ m − 1), unital
∗-homomorphisms η j : E j → A(U j ), where U j = [y j , y j+1], and finite sets F j ⊂ E j
such that

πU j (F) ⊂ε/2 η j (F j ) (14)

for all 0 ≤ j ≤ m − 1. Let G j ⊂ E j and δ j be given by Proposition 2.1 applied to
E j for the input data F j and ε/2. Choose δ > 0 such that δ < min{δ0, . . . , δm−1}.
By repeating the reasoning from above for the fibers A(yi ) we obtain mutually disjoint
closed intervals Yi = [a2i , a2i+1] (0 ≤ i ≤ m), such that Yi is a neighborhood of yi
and there are C*-algebras Di ∈ C and unital ∗-homomorphisms ϕi : Di → A(Yi ) such
that πYi (F) ⊂ε ϕi (Di ) and πU j ∩Yi (η j (G j )) ⊂δ ϕi (Di ) for all i, j for which U j ∩ Yi is
nonempty, i.e., for which j ∈ {i − 1, i}. Consider the C*-subbundle of A,

B = {a ∈ A : πx (a) ∈ πx (ϕi (Di )), whenever x ∈ Yi , 0 ≤ i ≤ m}.
By construction we have η j (G j ) ⊂δ B(U j ) for all j . Since each E j is weakly semipro-
jective, by Proposition 2.1 we can perturb η j to a unital ∗-homomorphism ψ j : E j →
B(U j ) such that

‖ψ j (a)− η j (a)‖ < ε/2 (15)

for all a ∈ F j . Hence if we set Z j = [a2 j+1, a2 j+2] ⊂ U j , then the sets in the family
(Z j ) are mutually disjoint and πZ j ∩Yiψ j (E j ) ⊂ πZ j ∩Yiϕi (Di ) (whenever Z j ∩Yi �= ∅).
Extend ϕi : Di → A(Yi ) and ψ j : E j → A(Z j ) to maps of continuous C*-bundles and
define ϕ and ψ as above. Then ϕ and ψ satisfy (11). Moreover, ϕ satisfies (12) since
πYi (F) ⊂ε ϕi (Di ), and ψ satisfies (12) as a consequence of (14) and (15). �
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Let A be a separable C*-algebra. A sequence (Ak) of C*-subalgebras of A is called
exhaustive if for any finite subset F of A and any ε > 0 there is k such that F ⊂ε Ak .
If we further assume that each Ak is weakly semiprojective, then A is isomorphic to
the inductive limit of a subsequence (Ak(n)) of (Ak), where the connecting maps are
perturbations of the inclusion maps Ak(n) ↪→ A; see [20, 15.2.2]. Let us now show that
the elementary continuous C*-bundles with semiprojective fibers satisfy a similar weak
semiprojectivity property in the category of fibered morphisms. The following result
applies to C*-bundles whose fibers are Kirchberg algebras satisfying the UCT and hav-
ing torsion free K1-groups. Indeed, such Kirchberg algebras are isomorphic to inductive
limits of semiprojective Kirchberg algebras (see [24]).

Theorem 6.2. Let C be a class of unital semiprojective Kirchberg algebras. Let A
be a separable unital continuous C*-bundle over the unit interval such that all of
its fibers are inductive limits of sequences of algebras in C. There exists an induc-
tive system (Ak, �̂k,k+1) consisting of elementary continuous C*-bundles with fibers
in C and elementary morphisms of C*-bundles �̂k,k+1 ∈ Hom(Ak, Ak+1) such that
lim−→(Ak, �̂k,k+1) ∼= A. A similar result is valid if one assumes that all the C*-algebras
in C are stable rather than unital.

Proof. We give the proof of the unital case. The stable case is entirely similar. By The-
orem 6.1 there is a sequence of admissible diagrams (Dk) and fibered unital morphisms
�k,∞ ∈ HomDk (Ak, A), where Ak = PDk , such that if we set Bk = �̂k,∞(Ak), then
the sequence (Bk) is exhaustive for A. Arguing as in the proof of [20, 15.2.2], we see that
it suffices to prove a natural weak semiprojectivity property for elementary bundles and
fibered morphisms that we describe below. Using that property we then perturb �k,∞
to a fibered morphism �k,n ∈ HomDk (Ak, Bn) for some large n that depends on k and
then we set �k,k+1 = Dk(�̂n,∞)−1 ◦�k,n to conclude the proof.

Let D be an admissible diagram (with components Di , E j semiprojective Kirchberg
algebras and based on a cover {Y, Z} of X as above) and let

D
π ��

ϕ

��

F

ϕF

��

E
η��

ψ

��
A(Y )

π �� A(Y ∩ Z) A(Z)
π��

be a commutative diagram with the vertical maps unital morphisms of C*-bundles.
Then, we assert that for any finite sets FD ⊂ D, FE ⊂ E and any ε > 0 there are
finite sets GD ⊂ D, GE ⊂ E and δ > 0 such that for any C*-subbundle B ⊂ A with
ϕ(GD) ⊂δ B(Y ) and ψ(GE ) ⊂δ B(Z), there is a commutative diagram

D
π ��

ϕ′
��

F

ϕ′
F

��

E
η��

ψ ′
��

B(Y )
π �� B(Y ∩ Z) B(Z)

π��

(16)

with the vertical maps unital morphisms of C*-bundles, such that ‖ϕ(d)− ϕ′(d)‖ < ε

for all d ∈ FD and ‖ψ(e) − ψ ′(e)‖ < ε for all e ∈ FE . Let us outline the proof of
the above assertion. Using the semiprojectivity of Di and E j , for given FD , FE and ε
we can find GD , GE and δ such that ϕ and ψ perturb to ϕ′ and ψ ′, by Proposition 2.1.



812 M. Dadarlat, G. A. Elliott

By defining ϕ′
F to be the restriction of ϕ′ to F , we arrange that the left square of the

diagram (16) is commutative, whereas we only have that the right square is approxi-
mately commutative. However, since the degree of approximate commutativity of the
right square can be controlled by choosing GD , GE and δ appropriately, we may invoke
Proposition 2.2 to perturbψ ′ further to a ∗-homomorphism which makes the right square
of (16) commutative and which approximates ψ as desired. �

7. Unital C*-Bundles of Cuntz Algebras

Proposition 7.1. Let A be an elementary continuous C*-bundle given by an admissible
diagram as in (9) such that all its maps are unital and Di = E j = B for all i and
j where B is a unital Kirchberg algebra. Assume that all the components of γ are
K K -equivalences. Then A is isomorphic to the trivial C*-bundle C(X)⊗ B.

Proof. Since X is contractible it suffices to prove that A is locally trivial. Therefore we
may assume that the spaces Y and Z are closed intervals with Y ∩ Z consisting of a single
point and that D = C(Y )⊗ B and E = C(Z)⊗ B. Then γ is a unital ∗-homomorphism
γ : B → B which induces a KK-equivalence. For the sake of simplicity, let us assume
that Y = [0, 1] and Z = [1, 2].

Since [γ ] ∈ K K (B, B)−1, by the Kirchberg-Phillips theorem [24, Thm. 8.4.1 and
Cor. 8.4.10], there is an automorphism θ : B → B and a continuous unitary-valued map
t �→ u(t) ∈ B, with t ∈ [0, 1), such that

lim
t→1

‖u(t)θ(b)u(t)∗ − γ (b)‖ = 0,

for all b ∈ B. By hypothesis A is isomorphic to

{(g, h) ∈ C[0, 1] ⊗ B ⊕ C[1, 2] ⊗ B : g(1) = γ (h(1))}.

One verifies immediately that the equation ι( f ) = (g, h), where

g(t) =
{

u(t)θ( f (t))u(t)∗, if 0 ≤ t < 1,
γ ( f (1)), if t = 1,

and h(t) = f (t) for 1 ≤ t ≤ 2, defines an isomorphism ι : C[0, 2] ⊗ B → A. �
Proposition 7.2. Let n ∈ {2, 3, . . . ,∞} be fixed. If A is an elementary unital continu-
ous C*-bundle over [0, 1] with all fibers isomorphic to On, then A is ∗-isomorphic to
C[0, 1] ⊗ On .

Proof. Since K∗(On) = K0(On) is cyclic and generated by the class of the unit, any
unital ∗-homomorphism γ : On → On induces an automorphism of K∗(On) and
therefore [γ ] ∈ K K (On,On)

−1, since On satisfies the UCT. Therefore A is trivial by
Proposition 7.1. �
Theorem 7.3. Let n ∈ {2, 3, . . . ,∞} be fixed. Any separable unital continuous
C*-bundle over an interval, or over a circle, with all fibers isomorphic to On is trivial.



One-Parameter Continuous Fields of Kirchberg Algebras 813

Proof. Let A be as in the statement. It suffices to prove that A is locally trivial. Indeed,
if that is the case, then A is given by a principal Aut(On)-bundle. On the other hand
Aut(On) is path connected [22, Thm. 4.1.4]. Since all principal G-bundles over the circle
are trivial whenever the structure group G is path-connected, our assertion is justified.

To prove that A is locally trivial it suffices to prove that A is trivial if its spec-
trum is an interval. By Theorem 6.2 (applied with C = {On}) and Proposition 7.1, A
is isomorphic to the limit of an inductive system (Ai , φi ), where Ai = C[0, 1] ⊗ On
and φi : Ai → Ai+1 are unital ∗-homomorphisms. We assert that φi is approximately
unitarily equivalent to the identity map of C[0, 1] ⊗ On . Indeed, since φi is C[0, 1]-
linear, it suffices to verify that the restriction of φi to On is approximately unitarily
equivalent to the unital ∗-homomorphism which maps On onto the constant functions
in C[0, 1] ⊗ On . This holds by [24, Thm. 8.2.1]. We conclude that A ∼= C[0, 1] ⊗ On
by Elliott’s intertwining argument [24, Cor. 2.3.3]. �
We need the following results of Blanchard, Kirchberg and Rørdam:

Theorem 7.4. Let A be a separable continuous C*-bundle over a finite dimensional
compact space with fibers which are Kirchberg algebras. If A is either stable or unital,
then A ⊗ O∞ ∼= A. A is stable if and only if each fiber is stable.

Proof. By [6, Cor. 5.11], A ⊗ O∞ ⊗ K ∼= A ⊗ K, and hence A ⊗ K is strongly purely
infinite by [16, Thm. 9.1]. It follows that A is strongly purely infinite by [15, Prop. 5.11].
Therefore A ⊗O∞ ∼= A by [16, Thm. 8.6]. The last part of the statement is a result from
[25]. �

We give now a trivialization result for C*-bundles A in terms of the K-theory presheaf
K∗(A), where for a closed interval V of [0, 1], K∗(A)(V ) is the graded group K∗(A(V )).
For unital C*-bundles we require that the morphisms of presheaves preserve the class
of unit.

Theorem 7.5. Let A be a separable unital continuous C*-bundle over [0, 1] the fibers
of which are Kirchberg algebras satisfying the UCT. Assume that the K -theory presheaf
of A is (unitally) isomorphic to the K -theory presheaf of C[0, 1] ⊗ D, for some unital
Kirchberg algebra D with finitely generated K -theory groups and satisfying the UCT.
Then A ∼= C[0, 1] ⊗ D. A similar result is valid if one assumes that all the fibers of A
are stable rather than unital.

Proof. We give only the proof of the unital case as the stable case is entirely
similar. By assumption, for every closed nondegenerate subinterval U of X = [0, 1]
there is an isomorphism αU : K∗(D) = K∗(C(U, D)) → K∗(A(U )) such that the
family (αU ) defines a morphism of presheaves. We assert that for any finite set F ⊂ A
and ε > 0 there is a unital morphism of C*-bundles φ : C(X, D) → A such that
K∗(φx ) : K∗(D) → K∗(A(x)) is bijective for each x ∈ X and F ⊂ε φ

(
C(X, D)

)
.

Let us show how this assertion implies the theorem. Since K∗(C(X, D)) = K∗(D) is
finitely generated, there exists a finite set G ⊂ D ⊂ C(X, D) and a number δ > 0 such
that if φ and ψ are two unital ∗-homomorphisms defined on C(X, D) and satisfying
‖φ(a) − ψ(a)‖ < δ for all a ∈ G, then K∗(φ) = K∗(ψ). Let (εk) be a sequence of
numbers such that 0 < εk < δ and

∑
k εk < ∞. Using the assertion, and the weak

semiprojectivity of D, we construct inductively two sequences of unital morphisms of
C*-bundles, φk : C(X, D) → A, θk : C(X, D) → C(X, D), k = 1, 2, . . . , and a
sequence of finite sets Fk ⊂ C(X, D) that contain G, such that
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(i) K∗((φk)x ) is bijective for all x ∈ X and k ≥ 1;
(ii) ‖φk+1θk(a)− φk(a)‖ < εk for all a ∈ Fk and all k ≥ 1;

(iii) θk(Fk) ⊂ Fk+1 for all k ≥ 1;
(iv)

⋃∞
j=k

(
θ j ◦ · · · ◦ θk

)−1
(F j+1) is dense in C(X, D) and

⋃∞
j=k φ j (F j ) is dense in

A for all k.

Arguing as in the proof of [24, Prop. 2.3.2], one verifies that the sequence (φk) induces
an isomorphism of unital C*-bundles lim−→k

(C(X, D), θk) → A. Let us show that each
K∗(θk) is bijective. It suffices to check that K∗((θk)x ) is bijective for some x . Since
G ⊂ Fk and εk < δ, we deduce from (ii) that ‖(φk+1θk)x (a) − (φk)x (a)‖ < δ for
all a ∈ G and hence K∗((φk+1)x )K∗((θk)x ) = K∗((φk)x ) for all x ∈ X . Consequently
K∗((θk)x ) is bijective since K∗((φk)x ) is so for all k, by (i). Since D satisfies the UCT, θk
is a KK-equivalence. By [24, Thm. 8.2.1], each θk is approximately unitarily equivalent
to a C(X)-linear automorphism of C(X, D) of the form idC(X)⊗σk , whereσk ∈ Aut(D).
Hence A is isomorphic to C(X, D) by Elliott’s intertwining argument.

Let us prove now the assertion made at the beginning of the proof. The first part
of the argument is essentially a repetition of the proof of Theorem 6.1 together with
the observation that one can arrange that the components of the fibered morphism � ∈
HomD(A1, A) have the property that K∗(φYi ) = αYi and K∗(φZ j ) = αZ j .

We have that A ⊗ O∞ ∼= A by Theorem 7.4. Since A absorbs O∞ and D satis-
fies the UCT, we can apply Phillips’s Theorem [24, Thm. 8.2.1] to lift αX to a unital
∗-homomorphism η : D → A. If U is a closed subinterval of X , set ηU = πUη. Since
the horizontal maps in the commutative diagram

K∗(C(X)⊗ D)

��

αX �� K∗(A(X))

��
K∗(C(U )⊗ D)

αU �� K∗(A(U ))

are bijections by hypothesis, the restriction map K∗(A(X)) → K∗(A(U )) is also a
bijection. Let x ∈ X and consider the sets Un = {y ∈ X : |y − x | ≤ 1/n}. We
deduce that K∗(A(X)) → K∗(A(x)) = lim−→ K∗(A(Un)) is also a bijection, and hence
ηx : D → A(x) induces a bijection K∗(D) → K∗(A(x)) and K0(ηx )[1] = [1]. By the
Kirchberg-Phillips classification theorem, ηx is approximately unitarily equivalent to an
isomorphism. Therefore there is a unitary ux ∈ A(x) such that πx (F) ⊂ε/2 uxηx (D)u∗

x .
Using the continuity of the norm for sections of continuous C*-bundles, we find a
closed neighborhood Ux of x and a unitary uUx ∈ A(Ux ) such that πUx (F) ⊂ε/2
uUxηUx (D)u

∗
Ux

. We also have K∗(ηUx ) = αUx by construction. In this manner we
obtain a family of maps η j : D → A(U j ), 0 ≤ j ≤ m, as in the proof of Theorem 6.1,
with the additional property that K∗(η j ) = αU j . Let ϕi : D → A(Yi ) be constructed
as in the proof of Theorem 6.1, with the modifications described above, so that we
can arrange to have K∗(ϕi ) = αYi . Arguing as there, we perturb η j to ψ j such that
‖ψ j (a) − η j (a)‖ < ε/2 for all a ∈ F j . By choosing F j appropriately this last con-
dition also implies that K∗(ψ j ) = K∗(η j ) and hence after restricting both ψ j and η j
to Z j ⊂ U j , we have K∗(ψ j ) = αZ j . Consider the maps φYi : C(Yi ) ⊗ D → A(Yi )

and φZ j : C(Z j ) ⊗ D → A(Z j ) obtained by extending ϕi and ψ j to morphisms of
C*-bundles. They satisfy the conclusion of Theorem 6.1 and moreover they have the
property that K∗(φU ) = αU for any closed interval U ⊂ Yi or U ⊂ Z j . This implies
immediately that the components of γ induce the identity map on K∗(D). Let A1 be the
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pullback of the first row of the commutative diagram

C(Y )⊗ D
π ��

φX

��

C(Y ∩ Z)⊗ D

φY∩Z

��

C(Z)⊗ D
η��

φZ

��
A(Y )

π �� A(Y ∩ Z) A(Z)
π��

This diagram defines a fibered morphism which induces a unital ∗-homomorphism
φ̂ : A1 → A such that K∗(φ̂x ) is bijective for all x ∈ X and F ⊂ε φ̂

(
A1

)
. By

Proposition 7.1, A1 ∼= C(X, D). �

8. Classification Results

For the remainder of the paper we fix d ∈ {0, 1}. When employing the terminology of
Sects. 5 and 6 we shall restrict ourselves to the class C = Cd of stable Kirchberg algebras
satisfying the UCT, with Kd -group finitely generated and torsion free and Kd+1-group
equal to zero. If B is a stable Kirchberg C*-algebra satisfying the UCT and such that
Kd(B) is torsion free and Kd+1(B) = 0, then B can be written as an inductive limit of
a sequence of C*-algebras in Cd [24]. By the UCT, K K (S A, B) = 0 for all A ∈ Cd and
B as above. The following theorem gives an existence and uniqueness result for fibered
morphisms.

Theorem 8.1. Let A and B be continuous C*-bundles over [0, 1] such that the fibers of
A are in Cd and the fibers of B are nonzero inductive limits of sequences of C*-algebras
in Cd . Suppose that A is elementary with fibered presentation ι : DA → D. For any
Kd-fibered morphism α ∈ Hom(Kd(D), Kd(DB)) there is a fibered monomorphism
φ ∈ HomD(A, B) such that Kd(φ) = α. Ifψ ∈ HomD(A, B) is another fibered mono-
morphism satisfying Kd(ψ) = α, then φ is approximately unitarily equivalent toψ , and
hence φ̂ is approximately unitarily equivalent to ψ̂ .

Proof. We need to find φ ∈ Hom(D,DB) such that Kd(φY ) = αY , Kd(φZ ) =
αZ , and Kd(φY∩Z ) = αY∩Z . By assumption we have αY (Kd(D(Yi ))) ⊆ Kd(B(Yi )),
αZ (Kd(E(Z j ))) ⊆ Kd(B(Z j )) and αY∩Z (Kd(D(Yi ∩ Z j ))) ⊆ Kd(B(Yi ∩ Z j )).
Let αD

i and αE
j denote the corresponding components of αY and αZ . Similarly let

αi, j : Kd(Di ) → Kd(B(Yi ∩ Z j )) denote the components of αY∩Z when Yi ∩ Z j �= ∅.
We have B ∼= B ⊗ O∞ ⊗ K by Theorem 7.4 and B contains a properly infinite
full projection by [6, Prop. 5.6]. By [24, Thm. 8.2.1] there are ∗-monomorphisms
φi, j : Di → B(Yi ∩ Z j ), such that Kd(φi, j ) = αi, j . By Proposition 2.4, for each
i = 0, . . . ,m there is a ∗-monomorphism φD

i : Di → B(Yi ), which we then extend to
a monomorphism of C*-bundles φD

i : C(Yi )⊗ Di → B(Yi ), with Kd(φ
D
i ) = αD

i and
such that φD

i lifts simultaneously the maps φi,i−1 ◦πYi ∩Zi−1 and φi,i ◦πYi ∩Zi . Similarly,
by applying Proposition 2.4 again, for each j = 0, . . . ,m − 1 there is a monomor-
phism of C*-bundles φE

j : C(Z j )⊗ E j → B(Z j ) which lifts simultaneously the maps

φ j, j ◦ η j, j and φ j+1, j ◦ η j, j+1, such that Kd(φ
E
j ) = αE

j . Then φY = (φD
i ), φZ = (φE

j )

and φY∩Z = (φi, j ) is the desired lifting of α.
We must now address the degree of uniqueness of a lifting. Let φ and ψ be as

in the statement, with Kd(φ) = Kd(ψ) = α and components φD
i , ψ

D
i , φE

j , ψ
E
j ,

φi, j , ψi, j . By [24, Thm. 8.2.1], φD
i is approximately unitarily equivalent to ψD

i and
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similarly, φE
j is approximately unitarily equivalent to ψ E

j . This yields unitaries ui ∈
M(B(Yi )) and v j ∈ M(B(Z j )) which approximately intertwine the corresponding
pairs of ∗-monomorphisms. While the restrictions of these unitaries to Yi ∩ Z j are
not necessarily equal, we may use Corollary 3.3 to replace each unitary v j by a uni-
tary which agrees with ui on Yi ∩ Z j for i = j, j + 1. This procedure yields unitaries
u(n) ∈ M(B) implementing an approximate unitary equivalence between φ andψ . More
explicitly, let us focus on a fixed component Zi = [a2i+1, a2i+2]. Its neighbors are Yi
and Yi+1. If we let ≈u denote approximate unitary equivalence for ∗-homomorphisms,
from the discussion above we have: φD

i ≈u ψ
D
i (implemented by a sequence (u(n)i )n),

φD
i+1 ≈u ψD

i+1 (implemented by (u(n)i+1)n), and φE
i ≈u ψ E

i (implemented by (v(n)i )).
After restricting to the endpoints of Zi and composing with ηi,i and ηi,i+1 (in the first
two equivalences), we obtain (φE

i )a2i+1 ≈u (ψ
E
i )a2i+1 implemented by

(
πa2i+1(u

(n)
i )

)
n ,

and (φE
i )a2i+2 ≈u (ψ

E
i )a2i+2 implemented by

(
πa2i+2(u

(n)
i+1)

)
n . This enables us to apply

Corollary 3.3 to φE
i , ψ

E
i : C(Zi )⊗ Ei → B(Zi ) and replace the sequence (v(n)i ) by a

sequence of unitaries (w(n)i ) in M(B(Zi )) which still implements φE
i ≈u ψ

E
i and such

that πa2i+1(w
(n)
i ) = πa2i+1(u

(n)
i ) and πa2i+2(w

(n)
i ) = πa2i+2(u

(n)
i+1). The unitaries u(n)i and

w
(n)
i then glue together to a unitary u(n) ∈ M(B), by Lemma 3.1, and the sequence

(u(n))n gives an approximate unitary equivalence between φ and ψ . �
Recall that if A is a C*-bundle over X = [0, 1], we are working with the Kd -theory

sheaf

Kd(A)(U ) = Kd(A(U )),

defined on the category of closed subintervals U of [0, 1].
We are now ready to prove the main isomorphism result of the paper.

Theorem 8.2. Fix d ∈ {0, 1}. Let A, B be separable continuous C*-bundles over [0, 1]
the fibers of which are stable Kirchberg algebras satisfying the UCT, with torsion free
Kd-groups and vanishing Kd+1-groups. Then any morphism α : Kd(A) → Kd(B) of
Kd-sheaves lifts to an injective morphism of C*-bundles � : A → B, which is unique
up to approximate unitary equivalence. If α is an isomorphism of sheaves, then we may
arrange that � is an isomorphism of C*-bundles.

Proof. By Theorem 6.2 there exist a sequence (Ak) of elementary C*-bundles with fibers
in Cd such that Ak = PDk for admissible diagrams Dk and injective fibered morphisms
φk,k+1 ∈ HomDk (Ak, Ak+1), φk,∞ ∈ HomDk (Ak, A) such that φ̂k,∞ = φ̂k+1,∞ ◦ φ̂k,k+1.

Moreover, these morphisms induce an isomorphism A ∼= lim−→ (Ak, φ̂k,k+1). In the first
part of the proof we establish the following uniqueness result. If �,� : A → B are
monomorphisms of C*-bundles such that Kd(�) = Kd(�) then � ≈u �. It suffices to
show that � ◦ φ̂k,∞ ≈u � ◦ φ̂k,∞ for each k ≥ 1. This would follow provided that we
show that Dk� ◦ φk,∞ ≈u Dk� ◦ φk,∞. These maps are illustrated in the diagram

Dk
φk,∞ �� Dk A

Dk� ��
Dk�

�� Dk B.

By Theorem 8.1 it suffices to show that Kd(Dk� ◦ φk,∞) = Kd(Dk� ◦ φk,∞). But this
is verified using the functoriality of Kd and the assumption that Kd(�) = Kd(�):

Kd(Dk� ◦φk,∞)=DkKd(�) ◦Kd(φk,∞)=DkKd(�) ◦Kd(φk,∞)= Kd(Dk� ◦φk,∞).
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In the second part of the proof we shall lift a morphism of sheaves α : Kd(A) →
Kd(B) to a monomorphism of C*-bundles A → B. To that purpose we are going
to construct a sequence (ϕk) of fibered monomorphisms ϕk ∈ HomDk (Ak, B) such
that ϕ̂k+1 ◦ φ̂k,k+1 ≈u ϕ̂k and Kd(ϕ̂k) = α ◦ Kd(φ̂k,∞). The conclusion of the the-
orem will then follow by applying Elliott’s intertwining argument [24, Sec. 2.3]. Let
αk ∈ Hom(Kd(Dk), Kd(Dk B)) be defined by the commutative diagram

Kd(Dk B)

Kd(Dk)

αk

������������

Kd (φk,∞)
�� Kd(Dk A)

Dkα

��

By Theorem 8.1, for each k ≥ 1 there is a fibered monomorphism ϕk ∈ HomDk (Ak, B)
which lifts αk , i.e. Kd(ϕk) = αk . By Proposition 5.1,

α ◦ Kd(φ̂k,∞) = α ◦ ̂Kd(φk,∞) = (Dkα ◦ Kd(φk,∞))̂= ̂Kd(ϕk) = Kd(ϕ̂k),

and hence the diagram

Kd(B)

Kd(Ak)
Kd (φ̂k,∞)

��

Kd (ϕ̂k )
�����������
Kd(A)

α

��

is commutative for each k ≥ 1. Therefore the left triangle of the diagram

Kd(B)

Kd(Ak)
Kd (φ̂k,k+1)

��

Kd (ϕ̂k)

����������������������������������
Kd(Ak+1)

Kd (φ̂k+1,∞)
��

Kd (ϕ̂k+1)

		�������������
Kd(A)

α

��

is commutative. By the uniqueness result established in the first part of the proof we
obtain that ϕ̂k+1 ◦ φ̂k,k+1 ≈u ϕ̂k . �
Corollary 8.3. Let A, B be separable unital continuous C*-bundles over [0, 1] the fibers
of which are Kirchberg algebras satisfying the UCT, with torsion free K0-groups and
vanishing K1-groups. Suppose that there is an isomorphism of K0-sheavesα : K0(A) →
K0(B) such that α[1A] = [1B]. Then A ∼= B.

Proof. By the previous theorem there is an isomorphism ϕ : A ⊗ K → B ⊗ K such
that K0(ϕ)[1A ⊗ e] = [1B ⊗ e] for a rank one projection e ∈ K. Since both ϕ(1A ⊗ e)
and 1B ⊗ e are properly infinite and full projections in B ⊗ K, we may arrange that
ϕ(1A ⊗ e) = 1B ⊗ e after conjugating ϕ by a suitable unitary in M(B ⊗ K), by [24,
Lemma 4.1.4]. It follows that ϕ induces an isomorphism A ∼= A ⊗ e → B ⊗ e ∼= B. �
Example 8.4. In order to illustrate the possible complexity of the continuous C*-bundles
classified by Corollary 8.3, we construct now a continuous C*-bundle A satisfying all
the assumptions of that theorem and such that for any closed nondegenerate subinterval
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I of [0, 1], A(I ) is not isomorphic to a trivial continuous C*-bundle, even though all the
fibers of A are mutually isomorphic.

Let D be a unital Kirchberg algebra satisfying the UCT and such that K0(D) = Z⊕Z,
[1A] = (1, 0) and K1(D) = 0. Let γ : D → 0D be a unital ∗-homomorphism such
that K0(γ )(0, 1) = (0, 0). Let (xn) be a sequence of numbers dense in [0, 1]. For each
n consider the continuous C*-bundle over [0, 1],

Dn = { f ∈ C([0, 1], D) : f (xn) ∈ γ (D)}.
Let us define A1 = D1, An+1 = An ⊗C[0,1] Dn+1, and A = lim−→(An, θn), where θ :
An → An+1 is defined by θn(a) = a ⊗ 1. In other words A is the infinite tensor product
over C[0, 1] of C[0, 1]-modules A = ⊗∞

n=1 Dn . It is a continuous C*-bundle of Kirch-
berg algebras over [0, 1] (see [3]) which satisfies the assumptions of Theorem 8.2. It is
not hard to see that, while all its fibers are isomorphic to

⊗∞
n=1 D, A is nowhere locally

trivial. Let us verify the latter assertion. This is done by showing that for any closed
nondegenerate subinterval I of [0, 1] and any x ∈ I , the evaluation map A(I ) → A(x)
induces a non-injective map K0(A(I )) → K0(A(x)). Such a situation cannot occur
for trivial continuous C*-bundles. Fix I as above and observe that Dn(I ) = C(I, D)
if xn /∈ I and that the map φn : D → Dn(I ), defined by φn(d)(x) = γ (d), x ∈ I ,
induces an isomorphism K0(D) → K0(Dn(I )) if xn ∈ I . Moreover, if xn ∈ I and if
x ∈ I\{xn}, then the projection πx : Dn(I ) → Dn(x) ∼= D induces a map K0(πx )

which can be identified with K0(γ ) and hence it is not injective. Using the Künneth
Theorem, one verifies that the inclusion θn : An → An+1 ∼= An ⊗C[0,1] Dn+1 induces
an injective map K0(An(I )) → K0(An+1(I )) for any I as above. Therefore the map
η : K0(An(I )) → K0(A(I )) is injective. For x ∈ I , let us consider the commutative
diagram induced by evaluating at x :

K0(An(I ))
η ��

K0(π
(n)
x )

��

K0(A(I ))

K0(π
(∞)
x )

��
K0(An(x)) �� K0(A(x))

.

Fix x ∈ I . Since the sequence (xn) is dense in [0, 1], there is n such that xn ∈ I and
x �= xn . Using the Künneth Theorem again, one verifies that the map K0(π

(n)
x ) is not

injective if x ∈ I \{xn}, since it can be identified with

K0(π
(n−1)
x )⊗ K0(πx ) : K0(An−1(I ))⊗ K0(Dn(I )) → K0(An−1(x))⊗ K0(Dn(x)),

and as seen earlier K0(πx ) is not injective. Since η is injective, it follows that K0(π
(∞)
x )

is not injective and hence A(I ) cannot be isomorphic to C(I,
⊗∞

n=1 D).
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