ON HOMOMORPHISMS OF MATRIX ALGEBRAS OF CONTINUOUS FUNCTIONS

MARIUS DĂDĂRLAT

If X is a topological space we denote by $C(X) \otimes M_n$ the algebra of continuous functions from X to the algebra M_n of $n \times n$ complex matrices. A complete characterization of those topological spaces Y is given (in terms of vector bundles on Y) such that each unital algebrahomomorphism $\Phi: C(X) \otimes M_n \to C(Y) \otimes M_{kn}$ is of the form $\alpha \circ$ $(\Phi' \otimes id_n)$ for some homomorphism $\Phi': C(X) \to C(Y) \otimes M_k$ and some suitable inner (or C(Y)-linear) automorphism α of the algebra $C(Y) \otimes M_{kn}$. In particular this decomposition is assured provided that Y is a finite CW-complex of dimension $\leq 2k$ and $K^0(Y)$ does not have n-torsion.

Our interest in such homomorphisms arose in connection with a question of E. G. Effros [1] concerning the structure of inductive limits of C^* -algebras of the form $C(X) \otimes M_n$. In this context certain classes of homomorphisms related to a covering $X \to Y$ have been considered by C. Pasnicu [5]. When restricted to the case of automorphisms our results give nothing new (see [4], [6] and [7]).

1. Preliminaries. Let $GL_n(C)$ be the general linear group (nonsingular $n \times n$ matrices over the complex field) and denote by 1_n its unit. Let $\operatorname{Vect}_m(Y)$ denote the set of isomorphism classes of complex vector bundles of rank m on the topological space Y. In $\operatorname{Vect}_m(Y)$ we have one naturally distinguished element—the class of the trivial bundle of rank m. Let $T_n \operatorname{Vect}_m(Y)$ be the subset of $\operatorname{Vect}_m(Y)$ given by all vector bundles E such that the direct sum $E \oplus E \oplus \cdots \oplus E$ (*n*-times) is isomorphic to the trivial bundle of rank *nm*.

If A, B are unital complex algebras we denote by $\operatorname{Hom}(A, B)$ the set of all unital algebra-homomorphisms from A to B. Two homomorphisms $\Phi_1, \Phi_2 \in \operatorname{Hom}(A, B)$ are said to be inner equivalent if $\Phi_2 = u\Phi_1 u^{-1}$ for some invertible element $u \in B$. Let $\operatorname{Hom}(A, B)/\sim$ be the set of classes of inner equivalent homomorphisms from A to B.

We need some elementary sheaf cohomology. Let G be a Lie group and let H be a closed subgroup of G. For each topological space Y the fibration $H \to G \to G/H$ induces the following exact sequence of pointed cohomology sets:

 $H^0(Y,H) \to H^0(Y,G) \to H^0(Y,G/H) \xrightarrow{\delta} H^1(Y,H) \to H^1(Y,G).$

We have $H^0(Y,H) = C(Y,H)$ (continuous maps from Y to H) and $H^0(Y,G) = C(Y,G)$. These sets are pointed by the constant map $f = 1_G$ given by the unity of G. Similarly $H^0(Y,G/H) = C(Y,G/H)$ is pointed by the constant map $f = \{H\}$. The cohomology sets $H^1(Y,H)$ and $H^1(Y,G)$ are pointed by the trivial cocycles $(Y,1_H)$ and $(Y,1_G)$ respectively [2]. Given $f \in C(Y,G/H)$ the cocycle $\delta(f)$ represents the obstruction for lifting f to a function in C(Y,G). By the exactness of the above sequence f has a continuous lifting if and only if $\delta(f) = (Y,1_H)$. The action of G on G/H induces an action of C(Y,G) on C(Y,G/H). If $f_1, f_2 \in C(Y,G/H)$ then $\delta(f_1) = \delta(f_2)$ if and only if $f_2 = gf_1$ for some $g \in C(Y,G)$.

2. Results.

PROPOSITION 1. Let Y be a topological space. Then there is a bijection $\operatorname{Hom}(M_n, C(Y) \otimes M_{kn}) / \sim \to T_n \operatorname{Vect}_k(Y)$.

Proof. We describe the exact sequence induced by the following fibration:

 $\operatorname{GL}_k(C) \xrightarrow{\gamma} \operatorname{GL}_{kn}(C) \xrightarrow{j} \operatorname{GL}_{kn}(C) / \operatorname{GL}_k(C)$

where the imbedding γ is given by

$$\gamma(u) = u \otimes 1_n, \quad M_{kn} = M_k \otimes M_n.$$

There is a commutative diagram of pointed sets:

$$\begin{array}{cccc} C(Y, \operatorname{GL}_{kn}(C)) & \to & C(Y, \operatorname{GL}_{kn}(C)/\operatorname{GL}_{k}(C)) & \stackrel{\delta}{\to} & H^{1}(Y, \operatorname{GL}_{k}(C)) & \stackrel{\gamma_{\bullet}}{\to} & H^{1}(Y, \operatorname{GL}_{kn}(C)) \\ \| & & \downarrow \alpha & & \downarrow \beta & & \downarrow \beta_{1} \\ C(Y, \operatorname{GL}_{kn}(C)) & \to & \operatorname{Hom}(M_{n}, C(T) \otimes M_{kn}) & \stackrel{\delta'}{\to} & \operatorname{Vect}_{k}(Y) & \stackrel{\gamma'}{\to} & \operatorname{Vect}_{kn}(Y) \end{array}$$

The vertical arrows are bijections. To describe α recall that

$$\operatorname{Hom}(M_n, M_{kn}) \simeq \operatorname{GL}_{kn}(C) / \operatorname{GL}_k(C)$$

as topological spaces, the homeomorphism being induced by the map η : $\operatorname{GL}_{kn}(C) \to \operatorname{Hom}(M_n, M_{kn})$ given by $\eta(v)(a) = v(1_k \otimes a)v^{-1}$, $a \in M_n$. Let η_1 be the map

$$C(Y, \operatorname{GL}_{kn}(C) / \operatorname{GL}_{k}(C)) \rightarrow C(Y, \operatorname{Hom}(M_{n}, M_{kn}))$$

induced by η . By definition we set $\alpha = \alpha_1 \eta_1$ where

 $\alpha_1: C(Y, \operatorname{Hom}(M_n, M_{kn})) \to \operatorname{Hom}(M_n, C(Y) \otimes M_{kn})$

is given by $\alpha_1(\Psi)(a)(y) = \Psi(y)(a), a \in M_n, y \in Y$. If in

Hom $(M_n, C(Y) \otimes M_{kn})$

we distinguish the homomorphism $a \mapsto a \otimes 1_k$, α will be an isomorphism of pointed sets. The maps β and β_1 are the natural ones. Namely if (U_i, g_{ij}) is a GL_k-cocycle, then $\beta(U_i, g_{ij})$ is the isomorphism class of the vector bundle obtained by clutching the trivial bundles $U_i \times C^k$ with the transition functions (g_{ij}) . The map β_1 is defined in a similar way. The other maps are defined to make the diagram commutative. If $v \in C(Y, \operatorname{GL}_{kn}(C))$ then $j'(v): M_n \to C(Y) \otimes M_{kn}$ is defined by

$$j'(v)(a)(y) = v(y)(1_k \otimes a)v(y)^{-1}, \qquad a \in M_n, \ y \in Y_k$$

The map γ' takes the vector bundle E to the direct sum $E \oplus E \oplus \cdots \oplus E$ (*n*-times). After the above identifications, it follows that two homomorphisms $\Phi_1, \Phi_2 \in \text{Hom}(M_n, C(Y) \otimes M_{kn})$ are inner equivalent if and only if $\delta'(\Phi_1) = \delta'(\Phi_2)$. The isomorphism class of the vector bundle $\delta'(\Phi_1)$ represents the obstruction for lifting Φ_1 to an invertible element in $C(Y) \otimes M_{kn}$. Also, by the exactness of the second row in the above diagram, the image of δ' is equal to $T_n \text{Vect}_k(Y)$.

THEOREM 2. Let X, Y be topological spaces. Then the following assertions are equivalent:

(i) The set $T_n \operatorname{Vect}_k(Y)$ reduces to the trivial bundle of rank k.

(ii) Each homomorphism $\Phi \in \text{Hom}(C(X) \otimes M_n, C(Y) \otimes M_{kn})$ is inner equivalent to a homomorphism of the form $\Phi' \otimes \text{id}_n$ for some $\Phi' \in \text{Hom}(C(X), C(Y) \otimes M_k)$.

Proof. The implication (i) \Rightarrow (ii) follows easily from Proposition 1. Indeed, if we choose a point x in X and a homomorphism Φ_1 in Hom $(M_n, C(Y) \otimes M_{kn})$ which is not inner equivalent to the homomorphism $a \mapsto 1_k \otimes a$ then the homomorphism $C(X) \otimes M_n \ni F \mapsto \Phi_1(F(x)) \in C(Y) \otimes M_{kn}$ failed to satisfy (ii).

To prove the other implication we assume, as a preliminary step, that Φ acts on matrices as an amplification:

$$\Phi(1_{C(X)} \otimes a) = 1_{C(Y)} \otimes 1_k \otimes a, \qquad a \in M_n.$$

Under this assumption we get

$$\Phi(f \otimes a) = \Phi(f \otimes 1_n)\Phi(1 \otimes a) = \Phi(1 \otimes a)\Phi(f \otimes 1_n)$$

= 1 \otext{ } 1_k \otext{ } a \cdot \Phi(f \otimes 1_n), \qquad a \in M_n, \ f \in C(X).

The previous computation shows us that the algebra $\Phi(C(X) \otimes 1_n)$ lies in the relative commutant of $1_{C(Y)} \otimes 1_k \otimes M_n$ in $C(Y) \otimes M_k \otimes M_n$ which is equal to $C(Y) \otimes M_k \otimes 1_n$. It follows that there is a unique homomorphism $\Phi' \in \text{Hom}(C(X), C(Y) \otimes M_k)$ such that $\Phi(f \otimes 1_n) = \Phi'(f) \otimes 1_n$. Using again our assumption on Φ we get $\Phi = \Phi' \otimes \text{id}_n$.

Consider now an arbitrary homomorphism Φ and let Φ_1 denote its restriction to M_n . Using (i) it follows by Proposition 1 that there is some invertible element $u \in C(Y) \otimes M_{kn}$ such that

$$\Phi_1(a) = \Phi(1 \otimes a) = u(1 \otimes 1_k \otimes a)u^{-1}, \qquad a \in M_n.$$

Hence the homomorphism $u^{-1}\Phi u$ acts on matrices as an amplification.

REMARK 3. The assertion (i) in the above theorem holds provided that Y is homotopy equivalent to a finite CW-complex of dimension $\leq 2k$ and the K-theory group $K^0(Y)$ does not have *n*-torsion. This follows from the stability properties of vector bundles (see [3, Ch. 8, Th. 1.5]).

Note that $T_n \operatorname{Vect}_1(Y)$ is a subgroup of the group $(\operatorname{Vect}_1(Y), \otimes)$. We have a natural action of $T_n \operatorname{Vect}_1(Y)$ on $T_n \operatorname{Vect}_k(Y)$ given by $(L, E) \mapsto L \otimes E$. By similar methods one can prove the following

THEOREM 4. Let X, Y be topological spaces. Then the following assertions are equivalent:

(i) $T_n \operatorname{Vect}_1(Y)$ acts transitively on $T_n \operatorname{Vect}_k(Y)$.

(ii) For any homomorphism $\Phi \in \text{Hom}(C(X) \otimes M_n, C(Y) \otimes M_{kn})$ there is an automorphism α of $C(Y) \otimes M_{kn}$ which is C(Y)-linear such that $\alpha \circ \Phi = \Phi' \otimes \text{id}_n$ for some homomorphism $\Phi' \in \text{Hom}(C(X), C(Y) \otimes M_k)$.

References

- E. G. Effros, On the structure of C*-algebras: Some old and some new problems, in Operator Algebras and Applications. Proc. Symp. Pure Math., Amer. Math. Soc., Providence, RI, 1982.
- [2] F. Hirzebruch, *Topological Methods in Algebraic Geometry*, Springer-Verlag, New York, 1965.
- [3] D. Husemoller, Fibre Bundles, McGraw-Hill Book Company, 1966.
- [4] R. V. Kadison and J. R. Ringrose, *Derivations and automorphisms of operator algebras*, Commun. Math. Phys., **4** (1967), 32-63.
- [5] C. Pasnicu, On certain inductive limit C*-algebras, Indiana Univ. Math. J., 35 (1986), 269–288.
- [6] J. Phillips and I. Raeburn, Automorphisms of C^{*}-algebras and second Cech cohomology, Indiana Univ. Math. J., **29** (1980), 799-822.

230

[7] K. Thomsen, Automorphisms of homogeneous C^{*}-algebras, Bull. Austral. Math. Soc., 33 (1986), 145–154.

Received December 15, 1986.

The National Institute for Scientific and Technical Creation Bdul Pacii 220 79622 Bucharest, Romania