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1 Introduction

The purpose of this paper is to investigate the homotopy theory of C*-
algebras of the formd'y (X)) ® K, whereX is a finite connected CW complex
with base point; her€y(X) is the C*-algebra of continuous complex-valued
functions which vanish at the base poii,is the C*-algebra of compact
operators on a separable infinite dimensional complex Hilbert space, and a
homotopybetween two C*-algebra maps is a path in the space of such maps.

Itis customary in the theory of C*-algebras to refer to tensoring Wits
“stabilization,” because it gives the same result as tensoring with the matrix
algebraif,,(C) and then letting: go to oo. (Note that sincé ® K = KC,

A® K = AwhenevelA is already stabilized.) We can therefore restate our
goal as investigating the “stable” homotopy theory of C*-algebras of the
form Cy(X).

Of course, this meaning of the word “stable” is very different from the
way topologists use the word. Our first main result, Theorem 3.5, and its sup-
plement Proposition 6.2 show that there is, nevertheless, a close connection
with the theory of module spectra (as defined in [17]) over the connec-
tive K-theory spectrunbu: if C is the category of C*-algebras of the form
Cy(X) ® K and homotopy classes #homomorphisms between them and
B is the category obu-modules of the formbu A X (see [17, Theorem
[11.1.1(i)]) and homotopy classes bfi-module maps between them thén
is equivalent to the opposite category®fOur proof of this relies on work
of Segal [30]. The analogous result (and everything else in the first three
sections) holds for real C*-algebras anatmodules.

* The authors were partially supported by NSF grants.
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One consequence of Theorem 3.5 is that the homotopy classes of maps
fromCy(X)®@KtoCy(Y)®K canbe calculated by using a spectral sequence
originally introduced by Robinson and perfected by the authors of [17]. In
Sects. 4—-6 we develop tools for calculating with this spectral sequence, and
we apply them to the question of whélg(X') ® K is homotopy equivalent
to Cy(Y) ® K. As background for this question, we remark that there is
a variant of the notion of homotopy equivalence for C*-algebras, called
asymptotic homotopy equivalence, and that X)) ® K is asymptotically
homotopy equivalent t6'y(Y") @ K if and only if K, (X) = K.(Y) (see
[13],[7], [21]); thus itis natural to ask whether there is a similar phenomenon
for ordinary homotopy equivalence. In the positive direction, we show that
if bu.(X) = bu.(Y) andbu,(X) has projective dimension 0 or 1 as a
module over the coefficient rinigu, (which has global dimensioR,) then
Co(X) ® K is homotopy equivalent t@(Y') ® K. On the other hand, we
give in Theorem 4.1 an example of two finite based CW complékesmd
Y for which bu,(X) = bu.(Y) asbu,.-modules butCy(X) ® K is not
homotopy equivalent t6’y(Y') @ K. (We should mention here that Wolbert
[33] has defined an invariant which detebtsmodules that have the same
homotopy groups but are not equivalent; we will discuss the relation between
Wolbert’s theory and our example at the end of Sect. 6).

Theorem 4.1 also contains an example of two spactasdY which are
not stably homotopy equivalent as spaces but for whighX') andCy(Y)
are “stably” homotopy equivalent as C*-algebras.

A number of related results were announced in [10]. That announcement
is now superseded by the present paper. For other applications of connective
K-theory to C*-algebras we refer the reader to [28], [14], [12],[16], [9], [15]
and [11].

The first named author thanks E. Effros for valuable discussions and A.
Robinson for some very helpful electronic correspondence.

2 The groupskk(X,Y)

For a compact spac& with a base-pointz, let Co(X) denote the C*-
algebra of continuous complex-valued functionsXmwhich vanish at.

If X andY are spaces with base-point, lliap(X,Y) denote the set of
continuous functions fronX to Y which preserve the base-point. The ho-
motopy classes of these functions are denotekby].

If A and B are C*-algebras lef{om(A, B) denote the space 6f
homomorphisms fromd to B with the topology of pointwise-norm con-
vergence. Its base point is the null homomorphism. The homotopy classes
[A, B] correspond to the path componentghim (A, B). The tensor prod-
uct Cp(X) ® B is isomorphic to the C*-algebra of continuous functions
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from X to B which vanish atzy. One has”y(X) @ Co(Y) 2 Co(X AY).
The suspension of a C*-algebrais defined byX' 4 = Cy(S!) @ A. If
¢ € Hom(A, B) then its suspension is defined BYp = idq, 1) ® ¢ €
Hom(X'A, ¥B). This induces a map4, B] — [Y'A, ¥B].

For compact spaceXk, Y with base points we define the semigroup

kk(X,Y) = [Co(Y), Co(X) @ K]

where/C stands for the compact operators acting on a infinite dimensional
separable (complex) Hilbert space. The addition is defined by taking di-
rect sum ofx-homomorphisms and identifyiny/s () with 1C. Using the
suspension map we define the groups

Skko(X,Y) = lim kk(X9T"X, 5"Y), q € Z.

n—oo

Proposition 2.1 Leti : A — X be a pair of finite connected CW complexes
and letp : X — X/A denote the quotient map. Then for any finite CW
complexy” there are long exact sequences:

o Sk (Y, A) 25 Skk (Y, X) 25 Sk, (Y, X/A)
= Skky_1 (Y, A) — ..

e = kR (X/AY) s k(XL Y) - Sk (A, Y)
= *kkpt1(X/AY) — ...
Since we are dealing with finite CW complexes, the mapping cone of
Co(X) — Cp(A) ishomotopic ta’y(X/A). The two sequences correspond
to the Puppe sequences for stable homotopy classefi@momorphisms
of [28].
There is a natural identification

(1) X : Map(X, Hom(A, B)) = Hom(A, Co(X) ® B)

x(f)(a)(z) = f(z)(a), f: X — Hom(A,B), x € X anda € A. This
induces a bijection

[X,Hom(A, B)] — [A,Cy(X) @ BJ.
Let F'(X) denote the spacH om(Cy(X), K). In particular
kk(Y,X) = [Co(X),Co(Y)® K] =Y, Hom(Co(X),K)] = [Y, F(X)].

Throughout the paper we identify with x(f). Let M,, denote the C*-
algebra ofn x n complex matrices and It (X) = U2, Hom(Cp(X),
M,,) with union taken by embeddiny,, in M,,;+1 by a — a®0. The natural
inclusion Fy(X) — F(X) is a homotopy equivalence by [30, Proposition
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1.2], hencek(Y, X) = [Y, Fo(X)]. G. Segal [30, Proposition 1.5] showed
that if A C X is a pair of finite connected CW-complexes, then the natural
map Fy(X) — Fy(X/A) is a quasifibration with all the fibers homeomor-
phic to Fy(A). This is a key result which leads to the following (see [14]).

Theorem 2.2 Let X, Y be finite connected CW complexes. Then the sus-
pension map induces an isomorphisk( X,Y) — kk(X X, XY).

A complete proof in given in [14, Corollary 3.1.8]. Here we just sketch
the argument. Le€ X denote the cone oveX and (27 the loop space of
a based space Z. One checks that the inverse of the boundary imépe
homotopy exact sequence

— [V, QF,(CX)] — [V, RFy(5X)] -5 [V, Fo(X)] = [V, Fo(CX)] —

associated with the quasifibratiép(C X ) — Fy (X X) with fiber Fy (X)) is
given by the suspension map. Singg C X) is contractible the conclusion
follows by exactness. QED

The above theorem shows thatXf, Y are finite connected CW com-
plexes, therkk(X,Y') is a group isomorphic tékk(X,Y"). Letting

_ [KR(Z9X,Y), forg>0
kko(X,Y) = {k;k:(X, X7y, forq <0,

we have thakk,(X,Y') is isomorphic to°kk,(X,Y’). An important con-
sequence of this isomorphism is that the exact sequences of Proposition
2.1 become available for the groupg,(X,Y). The groupskk,(X,Y)
were introduced in [14] as a connective version of the Kasparov group
KK(Cy(Y),Co(X)). Theyrepresentavery convenient framework for deal-
ing with the multiplicative structure of connective K-theory. The relation to
connective K-theory will be explained in the next section.

The groupskk, have a rich multiplicative structure. We begin by de-
scribing the multiplication orkk.
Givengoo S HOTn(C()(X), C()(Y) & IC) andwo < HO?TL(C()(Y), C()(Z) ®
K), we define the “compositiondy X ¢y € Hom(Cy(X),Co(Z) @ K) to
be thex-homomorphisnidc,z) ® A(1o ® idic)¢o.

Yo®idx

id RA
Co(X) 2% Co(V) @ K 2%, 0y (Z) @Kok — 27

Co(Z)®K.

The map) is a fixedx-isomorphism whose specific choice is irrelevant as
the automorphism group @& is path-connected. This composition induces
a bilinear product

kk(Y, X) ® kk(Z,Y) — kk(Z,X)
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[po] @ [tho] = [0 B ¢po].

The bilinearity is a general fact [28], [19]. One checks th&t)y X X" oy =
X" (1po W g). Thus the diagram

kk(Y,X) © kk(Z,Y) = kk(Z,X)
() } Zrezn }en
kk(ZMY, 5" X) @ kk(S"Z, 5"Y) — kk(S"Z, 57 X)

is commutative. Using the operatioiX” and the suspension functor we
define a product

kk(XPY, X" X) @ kk(X1Z,5"Y) — kk(XPT1Z, X X)),

(o] ® [¥] — [@][Y] = [XPy K X"p]. The various maps involved in this
definition are illustrated in the diagram

kk(XPY, X" X)) @ kk(X1Z, X"Y)
l Zreoxr
kk(XPTry, Xmin X)) @ kk(XPtaz, Xptny)

B, kk(Zptaz, smtnx)

Sincekk, (X,Y) = lim,, kk(X"™ X, X™Y"), by using the commutativity
of the diagram 2, one checks that we obtain a well defined product

Kk (Y, X) © kks(Z,Y) — kkyys(Z, X).

In particular,T = kk,(S*,S') is a ring which is seen to be isomorphic
to Z[u] [14]. Hereu has degre@ and corresponds to the Bott element
B € Hom(Cy(Sh),Co(S?) @ K) which is a generator of3(U(c0)) =
[S3, F(SY)] =2 [Co(S1), Co(S?) @ K] = Z. Moreoverk, (X) 1= ®yezk,
(X), wherek,(X) = lim, kk(S?t", ¥1X), is a T-module and we have a
map

I':kk(Y,X) = Homp(k«(Y), ki (X)).

In Sect. 3 we need the following description of the product structure of
kk.. If we identify ¢ and with x-homomorphisms
w € Hom(Co(S™ N X),Co(SP NY) ® K) andyp € Hom(Co(S™ A
Y),Co(SINZ)®K), (usinghomeomorphisms of the typ#' X = S™A X,
etc.) thenXPy K X" will correspond to the “composition) X ¢ €
Hom(Cy(S™ N S" N X),Co(SP NSTAZ)® K) given by

Co(S™AS" A X)L Co(S™ A S™ A X)

Loy (sm)®@¢
T

3) Co(SPASPAY) @ K 22%,
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Co(SP A S™ AY) @ K
1 id,
LComEVEE G (SPASTA Z) @ K @ K
Co(SPASTAZ) @K .

The mapsy are induced by flip homeomorphisraé A S? = Sb A S9,

Let e € K be a one dimensional orthogonal projectionAlfis a C*-
algebra, let4 : A — A ® K be the map4(a) = a ® e. The unit of the
ring kk. (X, X), denoted by, is given by the class o, (x).

idoA
—

Proposition 2.3 Suppose thak, Y are finite, connected CW complexes.
ThenCy(X) ® K is homotopy equivalent 10, (Y') @ K if and only if there
area € kk(X,Y)andp € kk(Y, X) such thata5 = 1 and fa = 1.

Proof.For C*-algebrasA, Bletf : Hom(A, B®K) - Hom(A®K, B®
K) denote the map(py) = (idp ® ) o (g ® idx). It was shown in [32]
thatd induces a bijectiof4, B K] — [A® K, B® K] and that (¢y X ¢)
is homotopic tod(1g) o () for any oy € Hom(A, B ® K) andyy €
Hom(B,C ® K). Moreoverf(.4) is homotopic taid,®x. The statement
is obtained by applying these facts far= Cy(X) andB = Cy(Y"). QED

Theorem 2.4 Suppose thaX, Y are finite, connected CW complexes. Then
Co(X) ® K is homotopy equivalent t6)(Y) @ K if and only if there is

a € kk(X,Y) such thatl'(«) : k. (X) — k.(Y) is an isomorphism of
groups.

Proof. Suppose that’y(X) ® K is homotopy equivalent t6(Y") ® K and
let « and3 be given by Proposition 2.3. Théi(«) is an isomorphism with
inversel'(3). Conversely, suppose thA{«) is an isomorphism. From the
very definition ofkk(X,Y) there isp € Hom(Cy(Y'), Co(X) ® K) with
[¢] = a. Theng inducesamap : Hom(Cy(X),K) — Hom(Cy(Y), K),
f) =¥ X e. At the level of homotopy groups this gives a map

fe i meHom(Cy(X),K) = mHom(Cy(Y), K).

Since we can make the identificatidi«) = f., f. is an isomorphism,
hencef is a weak homotopy equivalence. Consequently, for any finite,
connected CW compleX, the map

(f2)« : [Z, Hom(Co(X),K)] = [Z, Hom(Co(Y), K)]
induced byf is an isomorphism. Sindgfz ). can be identified with the map
kk(Z,X) =% kk(Z,X),

by abstract nonsense, we obtain that thefedskk (Y, X) such thatys = 1
andfa = 1. We conclude the proof by applying Proposition 2.3. QED
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3 Theisomorphism[X*X,bu A Y] — kk.(X,Y)

The reader is referred to [2] for the basic theory of spectra.Rigtde-

note the spectrum of (reduced) complex K-theory. The spectrum of (re-
duced) complex connective K-theory will be denotedthy There is a
map of spectrébu — BU such thatr,(bu) — «(BU) is an isomor-
phism forr > 0 andn,(bu) = 0 for » < 0. These conditions determine
bu uniquely up to a weak equivalence. L&t Y be finite connected CW
complexes. The Kasparov groufsx, (Cy(Y"), Co(X)) are isomorphic to
[2*X,BUAY][20]. Itis then natural to consider the connective version of
KK,.(Cy(Y),Co(X)) which is[X* X, bu A Y]. Remarkably, one can give
these groups a very nice realization in terms of C*-algebras and homotopy
classes ok-homomorphisms. To be specific, one shows that

X, bu A Y] = kk(X,Y) 2 [Co(Y), Co(X) @ K].

This isomorphism follows from a remarkable result of Segal [30] who
identifiedbu,, with F(S™) = Hom(Cy(S™), K). The structure mag* A
F(S") — F(S™*1) takest A p to

5 @@ Co(S™M) =2 Cy(SY) @ Cy(S") = CK =K

whered; : Co(S') — C is the evaluation map;(a) = a(t). This result
gives a nice realization dfu the (2-)spectrum of complex connective K-
theory in terms of homotopy classes of homomorphisms of C*-algebras. Let
bu, (X) denote the reduced connective K-homology bnti X') denote the
reduced connective K-theory. K is a finite connected CW-complex then
we have isomorphisnis. (X) = bu, (X ) andk*(X) = bu*(X). Recall that

we denoted by € Hom(Cy(S1), Co(S?) ® K) a morphism representing a
generator ofr3 (U (00)) = [S3, F(S1)] 2 [Co(S1), Co(S?) ® K] = Z. The

Bott operatiorbu,, ;o — bu, is given by the magi om(Cy(S"+?),K) —
Hom(Cy(S™), K) which sendsp to the composite

Co(5™) 28, o5 @ kP2 ko kN K

As before the map\ is a fixedx-isomorphism whose specific choice is
irrelevant as the automorphism groupf6fis arcwise connected. Let :
kn(X) — kn+2(X) denote the Bott operation. The ring structureéafis
induced by the multiplicatiop : F'(S™) x F(S™) — F(S™"), o A

Ao (p ®1) as this is easily seen to be compatible with the multiplicative
structure ofBU.

Recall that for a fixed”, kk,(—, Y) is a generalized cohomology theory.
The spectrum of this theory denotedIBy is given by the sequence of spaces
F(X™Y) = Hom(Cy(X"Y),K). The structure map A F(X"Y) —
F(X"*Y) is given byt A p — §; ® ¢. The dual of this mag’(X"Y) —
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NF(X"HY) takes a--homomorphisny to its suspensioy. Recall that
the suspension mapk(X,Y) — kk(XX,XY) is an isomorphism. Thus
Fy is an{? spectrum. We want to show that A Y is equivalent taFy-.
To this purpose we define maps: F(S") AY — F(S™ AY), given by
th(p Ny) = ¢ ® &y, whered, : C(Y) — C is the evaluation map at

Proposition 3.1 The mapgt,,) induce a weak equivalence of spectra
bu AY — Fy. Thus there is an isomorphism : [2*X,bu A Y] —
kk (X, Y).

Proof. The diagram

SUAF(SP)AY 258 S1UA F(S™ AY)
\ \
F(S™)AY 5 F(S™IAY)

is commutative. The vertical arrows are given by the structure maps. There-
fore 7 is a map of spectra. We need to show thahduces isomorphisms

on the homotopy groupst,(bu A Y) — m,(Fy) The above map can be
identified with a magk,(Y) — kk,—1(S*,Y). Since these are reduced ho-
mology theories it is enough to check the isomorphisnifes S'. But this

is certainly clear since for’ = S*, the mapt,, : F(S™) A St — F(S™H)
coincides up to a flip with the structure maptaf. QED

Next observe that the ring structurelaf gives a multiplication
[2°Y,buA X| @ [X"Z,bu A Y] — [T Z bu A X].

On the other hand we have seen in the second section that the composition
of x-homomorphisms gives rise to a multiplication

kks(Y, X) ® kkp(Z,Y) — kkgir(Z, X)

We are going to show that the isomorphispfirom Proposition 3.1 preserves
the multiplicative structure.

If we identify bu,, with F'(S™), then the produdbu,,, x bu,, — bu,,4,
is given by(a, 3) — Ao (a® ) wherea ® 3 € Hom(Co(S™), K2 K)
and\ : L@ K= K.

The product

[2°Y,buA X| @ [X"Z,bu A Y] — [257"Z bu A X].
w ® n — wn is defined as follows. I&b andn are represented by

feMap(SPAY,F(S")ANX), ge&Map(SINZ F(S")NY)
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with r = p — m ands = ¢ — n, thenwn is represented by the composite
g* [

1 ny A
SPASTAZ N9, gp A RS AY D F(SM)ASPAY —EEN,

F(S™) A F(S™) A X 225 psm A sy A X s F(S™AS™) A X
(4)

The mapsy correspond to various flip homeomorphisms.

Proposition 3.2 With f andg as abovet,,, 1,0 (g% f) = (tn,og)X(tmo f).

Proof.Recall that,,, : F/(S™)AX — F(S™ A X) maps an element A x
toa®d, € Hom(Co(S™ A X),K)andt,, o f: SPAY — F(S™AX)is
identified viay with ax-homomorphisnp € Hom/(Cy(S™ A X), Co(SP A
Y) ® K). Similarly we identifyt,, o g with somey € Hom/(Cp(S™ A
Y),Co(STA Z)® K) andt,+p, o (g * f) with somer € Hom/(Co(S™ A
SP"AX),Co(SPASINZ)RK). Leta®b®c € Cp(S™)@CH(S™)@CH(X) =
Co(S™ N S™ A X)) be an elementary tensor. It suffices to show that

(5) ma®@b®c)= (Y Hp)la®b® c)

when both sides are evaluated at any pointwheret € SPandz € SINZ.
In order to fix the notation let’s say that

9(z) =BAy e F(S")ANY, (1pmy Af)BAEAY)
(6) —BAaAzeF(SY)AF(S™)AX

Then using (4) we computg  f)(t A z2):
tAz = tABAY — BAtAY — BAaAz — (Ao(BRa)Ax)oy = (gxf)(tAz)
(7)

Therefore

Ta@bRc)(tNz)= Ao (f®a)®d)(b®a®c)
®) = A(B(b) ® afa))c()

In order to compute the right-hand side of (5) we show first that, with the
notation as in (6)

(9) (1gy(sry @Y @idic)y(b@w)(tAz) =) @uw(tAy) e LK

forallb € Cy(S™) andw € Cy(SPAY) ® K. The mapyis asin (1.3). Since
the both sides of (8) depend linearly and continuoushwopwe may assume
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thatw is an elementary tensar = v @ v ® k € Cy(SP) ® Cp(Y) @ K. We
havey(b@u®v® k) =u®b® v ® K, and using (6)

(leysry @Y @ide)(u@b@v@K)(EA2) =u(t) @b v)(2) @K
=u(t) ® B(b) @ v(y) ® k = B(b) @ u(t)v(y)k = B(b) ® w(t A y)

We have identified ® K = K ® C = K. After this preparation we are able
to compute(y) K ) (a ® b ® ¢)(t A z) using (2) and (6). We have

(1co(sp)®¢®idic)mz\

AaRbRc—>bRaRc— bR pla®c)
B(b) @ p(a® )t Ay) (by (8) withw = p(a ® c))
= 6(b) ® a(a) ® c(x) — A(B(b) ® a(a))c(x) .

Combining (8) and (10) we see that (5) holds true and this concludes the
proof of the Proposition. QED

As a consequence of Proposition 3.2 we obtain the following.

Corollary 3.3 The mapr, : [X*X,bu A Y] — kk.(X,Y) preserves the
products.

Corollary 3.4 LetX,Y be finite connected CW complexes. TOgAX ) ®
K is homotopy equivalent t64(Y) ® K if and only if the image of the
natural map

& : [X,buAY] = Homyp,, (bu.X,bu,Y)

contains an isomorphism.

Proof.By Proposition 3.1 and Corollary 3.3, there is a commutative diagram

kk(X,Y) LY [X,bu \Y]
br l o
Homyp(ko(X), ko (Y)) =5 Hompy, (bu, X, bu,Y)

with both horizontal arrows being bijections. We conclude the proof by
applying Theorem 2.4. QED

Our next result gives a categorical interpretation of the results of this
section. LetC be the category whose objects are C*-algebras of the form
Co(X) ® K, with homotopy classes of maps between them.& &e the
category whose objects are finite connedfdd -complexesX, with the
maps fromX to Y defined to bé X, bu A Y]. The composition i3 is the
multiplication

[(X,buAY]® [V,buA Z] = [X,buA Z]

which has already been defined.
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Theorem 3.5 The category is equivalent to the opposite of the category
B.

Proof. We have seen in the proof of Proposition 2.3 that there is a natural
isomorphism

[Co(Y) @ K, Co(X) @ K] 2 kk(X,Y)

which takes composition on the left to the multiplication on the right. Propo-
sition 3.1 and Corollary 3.3 give a natural isomorphism

kk(X,Y) = [X,bunrY]
which preserves multiplication. The result follows immediately. QED

In Sect. 6 we will see that the categafycan also be described as a
certain full subcategory of the homotopy categorppafmodules as defined
in [17].

4 A spectral sequence and some examples.

Recall that we are using to denote homotopy equivalence of C*-algebras.

Let bu, denoter,.bu = Z[u|, whereu is the Bott operation and has
degree 2. Sincg[u] has global dimension two, the homological projective
dimension of théu, modulebu, (X)) is at most two. In this section we will
begin the proof of the following:

Theorem 4.1 (a) LetX andY be finite connected CW complexes. Suppose
that the homological projective dimension of the. modulebu, (X)) is
at most one. The€)(X) ® K ~ Cp(Y) ® K if and only ifbu,(X) is
isomorphic tobu,(Y') asbu, modules.

(b) There exists a pair of finite connected CW-compleXeand Y such
thatbu, X = bu,Y asbu,-modules buCy(X) ® K % Cp(Y) ® K.

(c) There exists a pair of finite connected CW-compleXesnd Y (each
having two cells) such thai(X) ® £ ~ Cy(Y) ® K but X andY are
not stably homotopy equivalent.

It has been shown in previous sections thgtX) @ K ~ Cy(Y) ® K
if and only if the image of the natural map

& : [X,buAY] — Homy,, (bu. X, bu,Y)

contains an isomorphism. Thus to prove part (a) we will show ¢hi
surjective, to prove part (b) we will show that whiteormy,,, (bu. X, bu.Y)
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contains isomorphisms, no isomorphism is in the image,a&nd to prove
part (c) we will show that there is an isomorphism in the imagé.of

Our main tool for doing this will be the following spectral sequence,
which was discovered by Robinson [25] and improved by ElImendorf, Kriz,
Mandell and May [17, Theorem 1V.3.1].

Theorem 4.2 (a) There is a spectral sequengg(X,Y') which converges

(b) to [Y 7t X, bu A Y] and is natural inX andY'.

Ey(X,Y) = Exty (bu,X,bu.Y),
and the edge homomorphism
[X,buAY] = E% — EY° = Homy,, (bu, X, bu,Y)

is equal tod.
(c) ES' =0fors > 2.
(d) The only possible nonzero differential is

dy : Homl,, (bu,X,bu,Y) — Ext}! " (bu. X, bu.Y)

Here Ext®' means the part oExt® which has internal degreg for
exampleExt%' = Hom' denotes the homomorphisms of graded groups
which lower degree byt. The filtration of[X* X, bu A Y] is described in
Sect. 6. We have exact sequences:

0 — FSHY™ 57X buAY]
(10) — P X buAY] — B3 =0

andFs[ X5 X buAY]=0fors > 2.

Corollary 4.3 Let X andY be finite connected CW complexes. Suppose
that the homological projective dimension of the. modulebu, (X) is at
most one. Then there is an exact sequence

0 — Exty ' (bwX, buY) — [X,buAY]

U

(11) 2, Hompy, (bu, X, bu,Y) — 0

Proof. The assumption on the homological projective dimensiobugfX
implies thatExt>! (bu. X, bu,Y') = 0fors > 1. Thus all thel, differentials
are zero and the edge homomorphiBiis surjective. The statement follows
now from (10). QED

RemarkNotice that if we letX andY” be the spaces described in part (b) of
4.1 thendsy # 0 in the spectral sequendg (X, Y'). It will become apparent
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from our arguments below thatX, Y are finite connected CW complexes,
thenCy(X) ® K ~ Cp(Y) ® K if and only if there is an isomorphism
a € EY° = Homy,, (bu, X, bu,Y') with dy(a) = 0.

The statement of Theorem 4.2 does not agree precisely with the corre-
sponding statements in [25] and [17]; we shall explain how to deduce it
from the work of those authors in Sect. 6, except that we will show part (c)
in Sect. 5.

It is now easy to complete the proofs of part (a) and (c) of Theorem 4.1.
Part (a) is a straightforward consequence of Corollary 4.3 and Corollary 3.4.
Next we deal with part (c). Letr : S™ — S™ be any map which is
not stably trivial. LetX be the cofiber ofr and lety” = S™*! v S” (i.e.,
Y is the cofiber of the trivial map fromy™ to S™). The stable maps from
S™ to S™ form a finite group, bubu,.S™ is either zero or torsion free, so
a must induce the zero map bfi-homology. Now the long exact sequence
for bu, X shows at once that

bu, X = bu, 5™ @ bu,S™ = bu,Y.

In particularbu, X is a freebu,-module, and so we have tHakt* (bu, X,
bu,Y) = 0 for s > 0. Thus the spectral sequence collapses d@risl an
isomorphism, implyingCy(X) ® K ~ Cy(Y') ® K. On the other hand, if
X were stably homotopic t& then the composite of stable maps

gm A8 X S Y - S”

(where the last map is the projection¥obn its wedge-summangf*) would
be nullhomotopic (since the first two of these maps are consecutive maps
in a cofiber sequence), while the composite of the last three would be a
stable equivalence " (since it is clearly an isomorphism in homology).
This would imply thata is stably nullhomotopic, contrary to our initial
assumption.

We remark that ity is chosen to be the nontrivial map: 7+ — S
then an easy calculation shows that), X is not isomorphic taKO..Y'.
Thus in this case we have an example wh€gX) @ K is homotopy
equivalent taCy(Y) ® K over the complex numbers but not over the reals.

We now turn to part (b) of Theorem 4.1. Fix an odd primand an
integerk > 2, and letM be defined by the cofiber sequence

sk 2y gk 5 M.
By [1, Theorem 1.7] and [8], there is a map
A XP2N M
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which induces an isomorphism iK-homology. LetN be defined by the
cofiber sequence

222 Ao N

Let f : N — X2?P~1 )M be the next map in this cofiber sequence, and let
g : X2~ )M — S?PFF pe the next map in the cofiber sequence defidifg
Finally, leth = g o f, let X be the cofiber of,, and letY = YN v S2ptk
(i.e.,Y is the cofiber of the trivial map fronV to S2P+F).

(Itis not difficult to show thatX is homotopic to a 3-cell complex, but
we shall not need to know this).

In order to verify the first assertion of part (b) we begin by noting that
buii,M is Z/p if n is a nonnegative even integer and 0 otherwise. The
long exact sequence fan, N now shows thabuy,,, (V) is Z/p if n is
a nonnegative even integer less ti2an— 2, and zero otherwise. Hende
induces the zero map dfa-homology, and we conclude that

bu, X = bu, IN @ bu,S?PTF =~ bu, Y

asbu,-modules.
Before proceeding, we need to introduce some notation. Given any spec-
tra andZ and a mapy : W — bu A Z, let & denote the composite

bu AW 2% buabua Z 2 buA Z,

wherey is the multiplication of the ring spectrubn. Note that®b(«) is the
map of homotopy groups induced by Also, givenamag : W — Z, let
(3 denote the composite
w2 2590z "L bunz,

wheren is the unit map of the ring spectrubu.

The proof of the remaining assertion of part (b) will be by contradiction,
so suppose thaty(X) ® K ~ Cp(Y) ® K. Then thereisamap : X —
bu A'Y for which &(«) is an isomorphism; this implies thatinduces an
isomorphism of homotopy groups. Now consider the following composite,
which we shall denote by

bu A S L hu A X S buAY =2 by A 52k
(herei is the inclusion ofS?P** in X, andj is the projection oft” to its
wedge-summan8?P**). The mapl” induces an isomorphism of homotopy
groups, sincél Ai), and(1 A j), are isomorphisms in all dimensions where
7. (bu A S?P*F) is nonzero. Buf o /' is homotopically trivial, sincé and
i are consecutive maps in a cofiber sequence. It follows/thisttrivial. To
establish a contradiction, we shall show thats nontrivial.
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For this purpose we need to use a product pairing in the spectral sequence
of Theorem4.2.Given : V. — buAW andg : W — buA Z let us define
the “composition” x a € [V, bu A Z] to be the composite

VS bu AW 2% buabun Z M bun .

(Note that this composition operation corresponds to ordinary composition
of homomorphisms af’* algebras). The following resultis due to Robinson
[27] and EImendorf, Kriz, Mandell and May [17, Theorem IV.3.4]; we state
it in a somewhat different form which we shall reconcile with their version
in Sect. 6.

Theorem 4.4 There is a pairing of spectral sequences
E.(VVW)®E.(W,Z)— E.(V,Z)

which is the Yoneda product ([22, Sect. 3.5]) whea 2 and is induced by
the x operation when = oc.

Notice thath' = ¢’ * f’. To complete the proof that is nontrivial, we
shall need the following facts.

Proposition 4.5 (a) Ey (N, 22010,  Ey (£ M, S20tk)
and E5*(N, S2P**) are each isomorphic té/p.

(b) " andg’ are represented by nontrivial elementss )~ ' (N, 52!
M), andy € Ey ' (521 M, §20 k),

(c) The Yoneda product af and y is a nontrivial element of2s" *(N,
52p+k)_

We shall prove parts (a) and (c) in Sect. 5, and part (b) in Sect. 6. As-
suming these for the moment, we see thiat ¢’ * f’ is represented by a
nontrivial element of2; 2. If h’ were trivial then this element @, would
have to be hit by a differential. But such a differential would have to orig-
inate inHomy,,, (bu, N, bu,S?P**), and thisHom group is zero because
there are no nontrivial homomorphisms frdyip to Z.

5 Algebraic calculations in the E5-term.

In this section we prove parts (a) and (c) of Proposition 4.5. The following
result will allow us to calculate the relevakikt groups.

Theorem 5.1 Let A and B be any twdu,-modules. Let, denote the gen-
erator ofmobu, and letu; : A — A andus : B — B denote multiplication
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by u. Then there is a long exact sequence

Ul — U2+

0 — Homj, (A, B) — Hom{(A, B) Homl, (A, B) —

Ul — U2+

Ext,! (A, B) — Exty'(A, B)
Ethu* (A,B) =0

Exty' (A, B) —

andExt{, (A, B) = 0fors > 2.

From now on we will abbreviatbu, by 7.

Proof of Theorem 5.1Let uz : T — T be multiplication byu, and let
u:T®A — Abethe action of on A. Itis easy to check that the sequence

0 T@A2uudlope 4 4 0

is an exact sequence Bfmodules in which the first map raises degrees by
2. It therefore induces a long exact sequencBExafgroups:

(1®u1)* —(us®1)*

0 — Hom%4 (A, B) — Hom/(A, B)

)
(12) Hom*(T ® A, B)
B) (1®u1)* —(us®1)*

ExtT (A,B) — ExtT (T'® A, B)

Exti 3T ® A, B) 2 Ext2! (A, B) —

But a standard change of rings theorem [6, Proposition VI.4.1.3] says that
the composite

Ext7(T ® A, B) — Exty (T ® A, B) — Exty(A, B)

is an isomorphism (here the first map is the evident forgetful map and the
second is induced by thH&-module map which takes: to 1 ® m). Using

this isomorphism, and the fact thBkt?, = 0 for s > 2, it is easy to see

that in the long exact sequence we have just given all terms are zero after
Ext%t(A, B) and that the initial part of the sequence is isomorphic to that
given in the theorem. QED

We can now prove part (a) of Proposition 4.5. First we consider
Exty " (bu, N, bu, X1 M).

Let A denote the graded groupi, N and letB denotebu, X2~ 1. We
have seen in the previous section tHat,,, iSZ/pif nis even with) < n <

2p — 2 and 0 otherwise, whilé,,_; 1, IS Z/p whenn is a nonnegative
even integer and 0 otherwise. This is described in the following table, the
last row of which will be used in the second part of the proof.
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n 01 234 2042932220 —12p2p+12p+2---
Ar4n Z/p0Z/pO0Z/p--- Z/p 0 0 0 0 o0 0 .
Bgyn 00 0 00O --- 0 0 0 Z/p 0 ZJp 0
Cktn 0 0 0O OO --- O 0 0 0 Z 0 Z

By definition, Hom}, (A, B) is

o0
H HomZ(Ai,Bi,t),
1=—00
so in our casélom;, ' (A, B) is zero, whileHom;,*(A, B) is Z/p, so the
cokernel ofu} — us. is Z/p. SinceExt) " (A, B) is zero we conclude that
Exty~'(A, B) isZ/p as required.
Next we consideExty: " (bu. 2~ 1M, bu,S%**). Let B be as above

and letC denotebu,.S**%. ThenCy, k+n is Z if n is an even integer 0

and 0 otherwise. It follows thaom;*(B, C) = 0, soExty ' (B,C) is
the kernel of

Ul —u2+

Exty '(B,C) Exty (B, C).

Now an element of eithext, ' (B, C) or Ext; *(B, C) is a sequence

Lop+k—15 L2p+k+15 L2p+k+3, - - -

of elements ofZ/p, and

(Ul — u2e) (T2p k=1, T2ptht1, L2pth+3, - - -)
= (Top+ht1 — T2pth—15 T2p+h+3 — T2pth+1, - - -)-
Therefore the kernel af] — u2, is a copy ofZ/p generated byl, 1,1, .. .).
Finally, considerExt> >(4,C). We haveExt; *(A,C) = 0 and
Exty~*(A,C) = Z/p, so we conclude thdtxts (A, C) = Z/p. QED
We conclude this section by proving part (c¢) of Proposition 4.5. We

continue with the notation of the previous proof. From what has been shown
we know that the boundary map

Hom;*(T ® A, B) 2 Exti ™' (4, B)

is an isomorphism, so there is an elemehbf Hom,*(T ® A, B) with

d(z") = z. By [22, Theorem I11.9.1] we see that the boundary operatsr

(up to sign) the Yoneda product with a certain element, and in particular we
havery = (92')y = d(z'y). Since

Exth (T A,C) % Exti72(4,C)
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is also an isomorphism, it suffices to show that + 0.
Next consider the diagram

Hom;*(T' ® A, B) ® Exty:™ (B, C) — EBExtp Y (T®A,0)
1 1p lr
Hom, *(A, B) ® Ext, (B, C) —  Exty %A, C)
Irm®rs Irs

Homz (Ap+2p—4, Brt2p—1) ® Extz(Bryap—1, Chr2p) — Extz(Art2p—a, Crrap)

Here the horizontal arrows are Yoneda products (which in this case are
simply composition operations),is the evident restriction map, addle-
notes the isomorphism used inthe proof of Theorem 5.1; from the description
of I given there, itis easy to see that the upper square commutes. The lower
square clearly commutes, and the bottom horizontal map is an isomorphism.
Also, the restriction maps; andrs, and the composite; o p, have been
shown to be isomorphisms in the proof just given. The result follows.

QED

6 Detection of elements in filtration 1.

In this section we shall prove part (b) of Theorem 4.5.
Let W and Z be any spaces, and I8t: W — Z be any map. As in
Sect. 1, we write

B € [W,bun Z]

for the composite

w2z -850z L bunz,

and we recall tha (') is the homomorphisminduced yin bu-homology.
Now we assume that induces the zero homomorphismtin, homol-
ogy. (for example, this is true for the mapsindg in Proposition 4.5). Then
&(3') = 0, so by part (b) of Theorem 4.2 determines an element (which
may be zero) in
BN (W, 2)

and by parts (b) and (d) of Theorem 4.2 this group is equal to
Ext;l_l (bu, W, bu,2),

whereT denotesr,.bu. Now by [22, Theorem 111.6.4] an element of this
Ext-groupisidentified with an equivalence class of extensiofiswfodules

0— bu,Z - A— bu,W — 0,
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(where the mapl — bu, W raises degrees by 1) so in particular the map
is represented by a class of such extensions. Our aim is to describe explicitly
an extension which represerts

To do this, we let

w Lz o) = sw

be the cofiber sequence determinedbypplying bu,, and using the fact
that g, = 0, we get a short exact sequencélbmodules

(13) 0 — bu.Z — bu,.C(8) = bu,W — 0
where the mapu,.C(5) — bu, W raises degrees by 1.

Theorem 6.1 The extension (13) represents the elemefisot; ™' (bu, 1V,
bu, Z) determined bys. In particular, this element dixt is zero if and only
if (13) is split as a short exact sequencelomodules.

Before proving this, we use it to complete the proof of Proposition 4.5(b).
From the definition off, we see that the cofiber sequence determinefi by
has the form

N L -1y M DN
The short exact sequence induced by this is

0 — bu, XM — bu, XM — bu, N — 0,

and this is certainly not split since there is no nontriialnodule homomor-
phism frombu, NV tobu, X’ M (note that the generatarof 7" acts nilpotently
on the former but not on the latter). The argumentf similar and is left
to the reader.

In the remainder of the section we give the proof of Theorem 6.1. It is
necessary first to put this result in a broader context by relating it to the work
of ElImendorf, Kriz, Mandell and May.

Let R be anA., ring spectrum (for our purposes it is not necessary
to know what this means, we only need to know thatis one; in fact it
has the stronger structure of &Ry, ring spectrum, by [23, VIII.2.1]). Then
Elmendorf, Kriz, Mandell and May, following earlier work of Robinson [24—
27], show how to define a category&fmodule spectra in which one can do
homotopy theory (technically, these ate, R-modules, which is a stricter
notion than theR-module spectra used in [2], for instance). The homotopy
category is denote® . For example, wheR is the sphere spectruf Dr
is the usual stable category. Aymodule is a spectrum with extra structure,
so there is a forgetful functor which takes & module to its underlying
spectrum (technically, the underlying spectrum functéfiss, —); see [17,
Section lll.1]), there is also a “freB-module” functorF which is left adjoint
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to the forgetful functor. Thus if we writ4, B|r for the set of homotopy
classes irDr whenA and B are twoR-modules, then we have

[F(X)ﬂB]R - [Xv B]

wheneverB is an R-module. In particular, we can lé8 = F(Y); the
underlying spectrum oB is thenR A Y, by [17, Proposition 111.1.4], and
so we have

[F(X),F(Y)|r = [X,RAY].
As a first application of these ideas we give a different description of
the category3 mentioned in Theorem 3.5. Recall that the object8 afre
finite connected CW-complexes, and the set of morphisms ffota Y is
[X, bu A Y], with the composition operation defined in Sect. 3. NowSet
be the category whose objects aremodules of the forni' (X)), with X a
finite connected CW-complex, and whose morphisms are homotopy classes
of bu-module maps.

Proposition 6.2 B is equivalent td3’.

Proof. The result follows immediately from [17, Theorem 111.1.4] and its
proof. QED

Next we observe that there is a spectral sequence
Ext® p(m A, m.B) = [27°"'A, B]p,

(see [25], [17, Theorem IV.3.1]), and lettin@ = bu, A = F(X) and
B = F(Y) gives the spectral sequence of Theorem 4.2. Properties (a) and
(b) of Theorem 4.2 are immediate from the corresponding properties in [25]
and [17, Theorem IV.3.1].

Similarly, Theorem 6.1 is immediate from the following more general
result:

Theorem 6.3 Let
AL BSC— YA

be a cofiber sequence Btmodules, withr,y = 0. Theny isin F[A, B]g,
and the image of under the composite

F'[A, Blp/F?[A, Blr = ELX (A, B) < Ext  (m.A, m.B)
is the element represented by the short exact sequence

0— mB— m.C — m.2A—0.
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If f: M — N is a map of graded modules, thérf : YM — XN
is defined by( X' f); = fi—1 whereXM is the modulg X’ M); = M;_4. In
order to prove Theorem 6.3 we have to recall how the spectral sequence is
defined; we use the constructionin [17, Sect. 1V.4] and the reader is referred
to that source for further information. First pick a resolutionrpfi by free
7 R-modules:

d2 d1 d() d—l

(14) ‘-'<—M2—>M1—>M0—>M_1:7T*A—)O.
For eachi > 0 let X; be a wedge of spheres indexed by a basisMr
Define R-module spectra; for i > 0, with Ag = A, inductively by the
cofiber sequences

ElFXZ £> Al — Ai+1 % EZJrlFXw
with the following properties:
(i) k; induces an epimorphism, >'FX; — 7, A; fori > 0.
(i) mA; = Ei(ker dzfl) fori > 0
(iii) k; realizesXd; : X*M; — Z’(ker d;—1) on m, fori > 0.
(iv) jiy1 realizes the inclusio*! (ker d;) — X' M; on, fori > 0.
Observe that (ii) together with (i) implies (i). Then the groups

D} = (2774, Blg

and
Ef’q = [Z_qIFXi, B]R

form an exact couple, which in the usual way induces the required spectral
sequence. To prove that ti#&-term has the desired form, one uses the fact
that

[FXZ', B]R = [XZ‘, B] = HommR(Mi, F*B).

It is shown in [17, Sect. 1V.4] that the spectral sequence is independent,
from E5 on, of the choices made in this construction.

Now lety : A — B be a map ofR-modules which induces the zero
homomorphism of homotopy groups. Sin&g is a wedge of spheres, the
composite

Xo— AL B

is nullhomotopic, and sinc® is left adjoint to the forgetful functor the
composite

FXo— A-5 B
is also nullhomotopic; thus it is possible to extentb a map

F:A1—>B.
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The composite
SFEX) 25 4, D B
induces a map of homotopy groups
y: M =nmnFXy - m.B

which raises degrees by 1 and is.aR-homomorphism. Using (ii)-(iv) we
see that
j1xk1sds = d1de = 0. Sincejy, is injective, this implies that

ydo = ['ik1.ds = 0.

Since (14) is a projective resolution, afids = 0, 7 represents an element
of Exty; ' (.4, 7. B), and by the definition of the spectral sequence this
is the element corresponding4o

It remains to show that corresponds to the extension

0— mB — mC — 1, XYA— 0.
Since the sequence
mJF Xy — mFXg — mA—0

is a partial projective resolution, Theorem I11.6.4 of [22] tells us that it
suffices to show that there is a commutative diagram

nFX, 2 m.B

4 4
(15) mFXy — mC
{ {

A — mA.
To construct such a diagram, we first observe that the composite
FX, 2% A 2 B

is nullhomotopic, and hende lifts to X ~1C, whereC is the cofiber ofy.
Thus we have a homotopy-commutative diagram

FX, — X 'C
4 ko 4
A = A

Now itis a well-known fact of homotopy theory (see forinstance [31, Lemma
8.31]) that any homotopy-commutative diagram of the form

X5 X

Loy

vy 2y
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extends to a homotopy commutative diagram

X &5 X/
1 1
y 2 v
1 {
cf — Cf
{ {
UX =9 yxt
lzf Ly
sy 2Py

where the columns are the cofiber sequences afid f'. In our case, we
obtain a homotopy-commutative diagram

FX, — X 1C

1 ko {
A = A
A 3
(16) A - B
A 2
JFXy - C
A 2
YA = YA.

Themapd; — Binthisdiagramis a candidate for the m&pnentioned
above, and so the composite
(kl)*
W*FXl E— 7T*A1 — W*B
representg. Now applyingr, to the bottom half of diagram (17) and pre-
composing with k1), gives the diagram (16), and this concludes the proof.

RemarkThe filtration off ¥* A, B] inthe above spectral sequence is defined
by letting F*[X* A, B]r to be the image of the map

[E*Ai, B]R — [E*A, B]R

induced by the evident iteraté — A;. If R = bu, sincebu, = Z[u] has
homological projective dimension equal to 2, one can find a free resolution
(14) such thatif; = 0 for ¢ > 3. Itfollows from (ii) thatm,A; = Ofori > 4

so that the filtration vanishes in all the degrees greater than three. For the
spectral sequence from Theorem 4.2 we seeffigl* X, bu A Y] = 0 for

s > 2sinceE% = 0fors > 2.
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Remarklf A is a fixedbu-module, Wolbert [33] has adapted the method
introduced by Bousfield in [3] to classify thien-modulesB for which
™. B = 7, A; he shows that the set of sughis in one to one correspondence
with the set

Sa = BExt} ' (m A, mA)/Aut(m, A).

Our Theorem 4.1(b) can be restated as follows: there exist finite CW-
complexesX andY so thatifA = bu A X andB = bu AY thenB
represents a nontrivial element in the $&t. For this example it is not
difficult to show directly that the sef 4 is nontrivial, but our result does
not follow from this because Wolbert’s theory gives no way of recognizing
which (if any)bu modules in the sef 4 have the special forrhu A Z for a
finite CW complexZ.
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