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1 Introduction

The purpose of this paper is to investigate the homotopy theory of C*-
algebras of the formC0(X)⊗K, whereX is a finite connectedCWcomplex
withbasepoint; hereC0(X) is theC*-algebraof continuouscomplex-valued
functions which vanish at the base point,K is the C*-algebra of compact
operators on a separable infinite dimensional complex Hilbert space, and a
homotopybetween twoC*-algebramaps is a path in the space of suchmaps.

It is customary in the theory ofC*-algebras to refer to tensoringwithK as
“stabilization,” because it gives the same result as tensoring with the matrix
algebraMn(C) and then lettingn go to∞. (Note that sinceK ⊗ K ∼= K,
A⊗K ∼= A wheneverA is already stabilized.) We can therefore restate our
goal as investigating the “stable” homotopy theory of C*-algebras of the
formC0(X).

Of course, this meaning of the word “stable” is very different from the
way topologists use theword.Our firstmain result, Theorem3.5, and its sup-
plement Proposition 6.2 show that there is, nevertheless, a close connection
with the theory of module spectra (as defined in [17]) over the connec-
tiveK-theory spectrumbu: if C is the category of C*-algebras of the form
C0(X)⊗K and homotopy classes of∗-homomorphisms between them and
B is the category ofbu-modules of the formbu ∧ X (see [17, Theorem
III.1.1(i)]) and homotopy classes ofbu-module maps between them thenC
is equivalent to the opposite category ofB. Our proof of this relies on work
of Segal [30]. The analogous result (and everything else in the first three
sections) holds for real C*-algebras andbo-modules.

� The authors were partially supported by NSF grants.
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One consequence of Theorem 3.5 is that the homotopy classes of maps
fromC0(X)⊗K toC0(Y )⊗K canbecalculatedbyusingaspectral sequence
originally introduced by Robinson and perfected by the authors of [17]. In
Sects. 4–6 we develop tools for calculating with this spectral sequence, and
we apply them to the question of whenC0(X)⊗K is homotopy equivalent
to C0(Y ) ⊗ K. As background for this question, we remark that there is
a variant of the notion of homotopy equivalence for C*-algebras, called
asymptotic homotopy equivalence, and thatC0(X) ⊗ K is asymptotically
homotopy equivalent toC0(Y ) ⊗ K if and only ifK∗(X) ∼= K∗(Y ) (see
[13],[7], [21]); thus it is natural to askwhether there is a similar phenomenon
for ordinary homotopy equivalence. In the positive direction, we show that
if bu∗(X) ∼= bu∗(Y ) andbu∗(X) has projective dimension 0 or 1 as a
module over the coefficient ringbu∗ (which has global dimension2,) then
C0(X)⊗K is homotopy equivalent toC0(Y )⊗K. On the other hand, we
give in Theorem 4.1 an example of two finite based CW complexesX and
Y for which bu∗(X) ∼= bu∗(Y ) asbu∗-modules butC0(X) ⊗ K is not
homotopy equivalent toC0(Y )⊗K. (We should mention here that Wolbert
[33] has defined an invariant which detectsbu-modules that have the same
homotopygroupsbut are not equivalent;wewill discuss the relationbetween
Wolbert’s theory and our example at the end of Sect. 6).

Theorem 4.1 also contains an example of two spacesX andY which are
not stably homotopy equivalent as spaces but for whichC0(X) andC0(Y )
are “stably” homotopy equivalent as C*-algebras.

A number of related results were announced in [10]. That announcement
is now superseded by the present paper. For other applications of connective
K-theory to C*-algebras we refer the reader to [28], [14], [12],[16], [9], [15]
and [11].

The first named author thanks E. Effros for valuable discussions and A.
Robinson for some very helpful electronic correspondence.

2 The groupskk(X, Y )

For a compact spaceX with a base-pointx0, let C0(X) denote the C*-
algebra of continuous complex-valued functions onX which vanish atx0.
If X andY are spaces with base-point, letMap(X,Y ) denote the set of
continuous functions fromX to Y which preserve the base-point. The ho-
motopy classes of these functions are denoted by[X,Y ].

If A andB are C*-algebras letHom(A,B) denote the space of∗-
homomorphisms fromA to B with the topology of pointwise-norm con-
vergence. Its base point is the null homomorphism. The homotopy classes
[A,B] correspond to the path components ofHom(A,B). The tensor prod-
uct C0(X) ⊗ B is isomorphic to the C*-algebra of continuous functions
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fromX toB which vanish atx0. One hasC0(X)⊗ C0(Y ) ∼= C0(X ∧ Y ).
The suspension of a C*-algebraA is defined byΣA = C0(S1) ⊗ A. If
ϕ ∈ Hom(A,B) then its suspension is defined byΣϕ = idC0(S1) ⊗ ϕ ∈
Hom(ΣA,ΣB). This induces a map[A,B]→ [ΣA,ΣB].

For compact spacesX,Y with base points we define the semigroup

kk(X,Y ) = [C0(Y ), C0(X)⊗K]
whereK stands for the compact operators acting on a infinite dimensional
separable (complex) Hilbert space. The addition is defined by taking di-
rect sum of∗-homomorphisms and identifyingM2(K) with K. Using the
suspension map we define the groups

skkq(X,Y ) = lim
n→∞ kk(Σq+nX,ΣnY ), q ∈ Z.

Proposition 2.1 Leti : A ↪→ X be a pair of finite connectedCWcomplexes
and letp : X → X/A denote the quotient map. Then for any finite CW
complexY there are long exact sequences:

. . . → skkn(Y,A)
i∗−→ skkn(Y,X)

p∗−−→ skkn(Y,X/A)
→ skkn−1(Y,A)→ . . .

. . . → skkn(X/A, Y )
p∗
−−→ skkn(X,Y ) i∗−→ skkn(A, Y )

→ skkn+1(X/A, Y )→ . . .

Since we are dealing with finite CW complexes, the mapping cone of
C0(X)→ C0(A) is homotopic toC0(X/A). The two sequences correspond
to the Puppe sequences for stable homotopy classes of∗-homomorphisms
of [28].

There is a natural identification

χ : Map(X,Hom(A,B))→ Hom(A,C0(X)⊗B)(1)

χ(f)(a)(x) = f(x)(a), f : X → Hom(A,B), x ∈ X anda ∈ A. This
induces a bijection

[X,Hom(A,B)]→ [A,C0(X)⊗B].

LetF (X) denote the spaceHom(C0(X),K). In particular
kk(Y,X) = [C0(X), C0(Y )⊗K] ∼= [Y,Hom(C0(X),K)] ∼= [Y, F (X)].

Throughout the paper we identifyf with χ(f). Let Mn denote the C*-
algebra ofn × n complex matrices and letF0(X) = ∪∞

n=1Hom(C0(X),
Mn)with union taken by embeddingMn inMn+1 bya �→ a⊕0. The natural
inclusionF0(X) → F (X) is a homotopy equivalence by [30, Proposition
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1.2], hencekk(Y,X) ∼= [Y, F0(X)]. G. Segal [30, Proposition 1.5] showed
that ifA ⊂ X is a pair of finite connected CW-complexes, then the natural
mapF0(X) → F0(X/A) is a quasifibration with all the fibers homeomor-
phic toF0(A). This is a key result which leads to the following (see [14]).

Theorem 2.2 LetX,Y be finite connected CW complexes. Then the sus-
pension map induces an isomorphismkk(X,Y )→ kk(ΣX,ΣY ).

A complete proof in given in [14, Corollary 3.1.8]. Here we just sketch
the argument. LetCX denote the cone overX andΩZ the loop space of
a based space Z. One checks that the inverse of the boundary mapδ in the
homotopy exact sequence

→ [Y,ΩF0(CX)]→ [Y,ΩF0(ΣX)] δ−→ [Y, F0(X)]→ [Y, F0(CX)]→
associated with the quasifibrationF0(CX)→ F0(ΣX)with fiberF0(X) is
given by the suspension map. SinceF0(CX) is contractible the conclusion
follows by exactness. QED

The above theorem shows that ifX,Y are finite connected CW com-
plexes, thenkk(X,Y ) is a group isomorphic toskk(X,Y ). Letting

kkq(X,Y ) =
{
kk(ΣqX,Y ), for q ≥ 0
kk(X,Σ−qY ), for q ≤ 0,

we have thatkkq(X,Y ) is isomorphic toskkq(X,Y ). An important con-
sequence of this isomorphism is that the exact sequences of Proposition
2.1 become available for the groupskkq(X,Y ). The groupskkq(X,Y )
were introduced in [14] as a connective version of the Kasparov group
KK(C0(Y ), C0(X)). They represent a very convenient framework for deal-
ing with the multiplicative structure of connective K-theory. The relation to
connective K-theory will be explained in the next section.

The groupskk∗ have a rich multiplicative structure. We begin by de-
scribing the multiplication onkk.
Givenϕ0 ∈ Hom(C0(X), C0(Y )⊗K) andψ0 ∈ Hom(C0(Y ), C0(Z)⊗
K), we define the “composition”ψ0 � ϕ0 ∈ Hom(C0(X), C0(Z)⊗K) to
be the∗-homomorphismidC0(Z) ⊗ λ(ψ0 ⊗ idK)ϕ0.

C0(X)
ϕ0−−→ C0(Y )⊗K ψ0⊗idK−−−−−→ C0(Z)⊗K⊗K

idC0(Z)⊗λ−−−−−−−→ C0(Z)⊗K.
The mapλ is a fixed∗-isomorphism whose specific choice is irrelevant as
the automorphism group ofK is path-connected. This composition induces
a bilinear product

kk(Y,X)⊗ kk(Z, Y )→ kk(Z,X)
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[ϕ0]⊗ [ψ0] �→ [ψ0 � ϕ0].

The bilinearity is a general fact [28], [19]. One checks thatΣnψ0�Σnϕ0 =
Σn(ψ0 � ϕ0). Thus the diagram

kk(Y,X)⊗ kk(Z, Y ) → kk(Z,X)
↓ Σn⊗Σn ↓ Σn

kk(ΣnY,ΣnX)⊗ kk(ΣnZ,ΣnY )→ kk(ΣnZ,ΣnX)
(2)

is commutative. Using the operation“�′′ and the suspension functor we
define a product

kk(ΣpY,ΣmX)⊗ kk(ΣqZ,ΣnY )→ kk(Σp+qZ,Σm+nX),

[ϕ] ⊗ [ψ] �→ [ϕ][ψ] = [Σpψ � Σnϕ]. The various maps involved in this
definition are illustrated in the diagram

kk(ΣpY,ΣmX)⊗ kk(ΣqZ,ΣnY )
↓ Σn⊗Σp

kk(Σp+nY,Σm+nX)⊗ kk(Σp+qZ,Σp+nY )
�−→ kk(Σp+qZ,Σm+nX) .

Sincekkr(X,Y ) = limm kk(Σr+mX,ΣmY ), by using the commutativity
of the diagram 2, one checks that we obtain a well defined product

kkr(Y,X)⊗ kks(Z, Y )→ kkr+s(Z,X).

In particular,T = kk∗(S1, S1) is a ring which is seen to be isomorphic
to Z[u] [14]. Hereu has degree2 and corresponds to the Bott element
β ∈ Hom(C0(S1), C0(S3) ⊗ K) which is a generator ofπ3(U(∞)) ∼=
[S3, F (S1)] ∼= [C0(S1), C0(S3) ⊗ K] ∼= Z. Moreoverk∗(X) := ⊕q∈Zkq
(X), wherekq(X) = limr kk(Sq+r, ΣqX), is a T-module and we have a
map

Γ : kk(Y,X)→ HomT (k∗(Y ), k∗(X)).

In Sect. 3 we need the following description of the product structure of
kk∗. If we identifyϕ andψ with ∗-homomorphisms
ϕ ∈ Hom(C0(Sm ∧ X), C0(Sp ∧ Y ) ⊗ K) andψ ∈ Hom(C0(Sn ∧
Y ), C0(Sq∧Z)⊗K), (usinghomeomorphismsof the typeΣmX ∼= Sm∧X,
etc.) thenΣpψ � Σnϕ will correspond to the “composition”ψ � ϕ ∈
Hom(C0(Sm ∧ Sn ∧X), C0(Sp ∧ Sq ∧ Z)⊗K) given by

C0(Sm ∧ Sn ∧X)
γ−→ C0(Sn ∧ Sm ∧X)

1C0(Sn)⊗ϕ−−−−−−−→ C0(Sn ∧ Sp ∧ Y )⊗K γ⊗idK−−−−→(3)
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C0(Sp ∧ Sn ∧ Y )⊗K
1C0(Sp)⊗ψ⊗idK−−−−−−−−−−→ C0(Sp ∧ Sq ∧ Z)⊗K ⊗K
id⊗λ−−−→ C0(Sp ∧ Sq ∧ Z)⊗K .

The mapsγ are induced by flip homeomorphismsSa ∧ Sb ∼= Sb ∧ Sa.
Let e ∈ K be a one dimensional orthogonal projection. IfA is a C*-

algebra, letιA : A → A ⊗ K be the mapιA(a) = a ⊗ e. The unit of the
ring kk∗(X,X), denoted by1, is given by the class ofιC0(X).

Proposition 2.3 Suppose thatX, Y are finite, connected CW complexes.
ThenC0(X)⊗K is homotopy equivalent toC0(Y )⊗K if and only if there
areα ∈ kk(X,Y ) andβ ∈ kk(Y,X) such thatαβ = 1 andβα = 1.

Proof.For C*-algebrasA,B let θ : Hom(A,B⊗K)→ Hom(A⊗K, B⊗
K) denote the mapθ(ϕ0) = (idB ⊗ λ) ◦ (ϕ0 ⊗ idK). It was shown in [32]
thatθ induces a bijection[A,B⊗K]→ [A⊗K, B⊗K] and thatθ(ψ0 �ϕ0)
is homotopic toθ(ψ0) ◦ θ(ϕ0) for anyϕ0 ∈ Hom(A,B ⊗ K) andψ0 ∈
Hom(B,C ⊗K). Moreoverθ(ιA) is homotopic toidA⊗K. The statement
is obtained by applying these facts forA = C0(X) andB = C0(Y ). QED

Theorem 2.4 Suppose thatX,Y are finite, connectedCWcomplexes. Then
C0(X) ⊗ K is homotopy equivalent toC0(Y ) ⊗ K if and only if there is
α ∈ kk(X,Y ) such thatΓ (α) : k∗(X) → k∗(Y ) is an isomorphism of
groups.

Proof.Suppose thatC0(X)⊗K is homotopy equivalent toC0(Y )⊗K and
letα andβ be given by Proposition 2.3. ThenΓ (α) is an isomorphism with
inverseΓ (β). Conversely, suppose thatΓ (α) is an isomorphism. From the
very definition ofkk(X,Y ) there isϕ ∈ Hom(C0(Y ), C0(X) ⊗ K) with
[ϕ] = α. Thenϕ induces amapf : Hom(C0(X),K)→ Hom(C0(Y ),K),
f(ψ) = ψ � ϕ. At the level of homotopy groups this gives a map

f∗ : π∗Hom(C0(X),K)→ π∗Hom(C0(Y ),K).
Since we can make the identificationΓ (α) = f∗, f∗ is an isomorphism,
hencef is a weak homotopy equivalence. Consequently, for any finite,
connected CW complexZ, the map

(fZ)∗ : [Z,Hom(C0(X),K)]→ [Z,Hom(C0(Y ),K)]
induced byf is an isomorphism. Since(fZ)∗ can be identified with the map

kk(Z,X) ×α−−→ kk(Z,X),

by abstract nonsense, we obtain that there isβ ∈ kk(Y,X) such thatαβ = 1
andβα = 1. We conclude the proof by applying Proposition 2.3. QED
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3 The isomorphism[Σ∗X, bu ∧ Y ] → kk∗(X, Y )

The reader is referred to [2] for the basic theory of spectra. LetBU de-
note the spectrum of (reduced) complex K-theory. The spectrum of (re-
duced) complex connective K-theory will be denoted bybu. There is a
map of spectrabu → BU such thatπr(bu) → π(BU) is an isomor-
phism forr ≥ 0 andπr(bu) = 0 for r < 0. These conditions determine
bu uniquely up to a weak equivalence. LetX,Y be finite connected CW
complexes. The Kasparov groupsKK∗(C0(Y ), C0(X)) are isomorphic to
[Σ∗X,BU∧Y ] [20]. It is then natural to consider the connective version of
KK∗(C0(Y ), C0(X)) which is [Σ∗X, bu ∧ Y ]. Remarkably, one can give
these groups a very nice realization in terms of C*-algebras and homotopy
classes of∗-homomorphisms. To be specific, one shows that

[X, bu ∧ Y ] ∼= kk(X,Y ) ∼= [C0(Y ), C0(X)⊗K].
This isomorphism follows from a remarkable result of Segal [30] who
identifiedbun with F (Sn) = Hom(C0(Sn),K). The structure mapS1 ∧
F (Sn)→ F (Sn+1) takest ∧ ϕ to

δt ⊗ ϕ : C0(Sn+1) ∼= C0(S1)⊗ C0(Sn)→ C⊗K ∼= K
whereδt : C0(S1) → C is the evaluation mapδt(a) = a(t). This result
gives a nice realization ofbu the (Ω-)spectrum of complex connective K-
theory in terms of homotopy classes of homomorphisms of C*-algebras. Let
bu∗(X) denote the reduced connective K-homology andbu∗(X) denote the
reduced connective K-theory. IfX is a finite connected CW-complex then
we have isomorphismsk∗(X) ∼= bu∗(X) andk∗(X) ∼= bu∗(X). Recall that
we denoted byβ ∈ Hom(C0(S1), C0(S3)⊗K) amorphism representing a
generator ofπ3(U(∞)) ∼= [S3, F (S1)] ∼= [C0(S1), C0(S3)⊗K] ∼= Z. The
Bott operationbun+2 → bun is given by the mapHom(C0(Sn+2),K)→
Hom(C0(Sn),K) which sendsϕ to the composite

C0(Sn)
Sn−1β−−−−→ C0(Sn+2)⊗K ϕ⊗idK−−−−→ K⊗K λ−→ K.

As before the mapλ is a fixed∗-isomorphism whose specific choice is
irrelevant as the automorphism group ofK is arcwise connected. Letu :
kn(X) → kn+2(X) denote the Bott operation. The ring structure ofbu is
induced by the multiplicationµ : F (Sm)×F (Sn)→ F (Sm+n), ϕ∧ψ �→
λ ◦ (ϕ ⊗ ψ) as this is easily seen to be compatible with the multiplicative
structure ofBU.

Recall that for a fixedY , kkq(−, Y ) is a generalized cohomology theory.
Thespectrumof this theorydenotedbyFY is givenby thesequenceof spaces
F (ΣnY ) = Hom(C0(ΣnY ),K). The structure mapS ∧ F (ΣnY ) →
F (Σn+1Y ) is given byt ∧ ϕ �→ δt ⊗ ϕ. The dual of this mapF (ΣnY )→
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ΩF (Σn+1Y ) takes a∗-homomorphismϕ to its suspensionΣϕ. Recall that
the suspension mapkk(X,Y ) → kk(ΣX,ΣY ) is an isomorphism. Thus
FY is anΩ spectrum. We want to show thatbu ∧ Y is equivalent toFY .
To this purpose we define mapstn : F (Sn) ∧ Y → F (Sn ∧ Y ), given by
tn(ϕ ∧ y) = ϕ⊗ δy, whereδy : C(Y )→ C is the evaluation map aty.

Proposition 3.1 The maps(tn) induce a weak equivalence of spectraτ :
bu ∧ Y → FY . Thus there is an isomorphismτ∗ : [Σ∗X, bu ∧ Y ] →
kk∗(X,Y ).

Proof.The diagram

S1 ∧ F (Sn) ∧ Y 1S∧tn−−−−→ S1 ∧ F (Sn ∧ Y )
↓ ↓

F (Sn+1) ∧ Y tn+1−−−→ F (Sn+1 ∧ Y )

is commutative. The vertical arrows are given by the structure maps. There-
fore τ is a map of spectra. We need to show thatτ induces isomorphisms
on the homotopy groups:πq(bu ∧ Y ) → πq(FY ) The above map can be
identified with a mapkq(Y )→ kkq−1(S1, Y ). Since these are reduced ho-
mology theories it is enough to check the isomorphism forY = S1. But this
is certainly clear since forY = S1, the maptn : F (Sn) ∧ S1 → F (Sn+1)
coincides up to a flip with the structure map ofbu. QED

Next observe that the ring structure ofbu gives a multiplication

[ΣsY,bu ∧X]⊗ [ΣrZ,bu ∧ Y ]→ [Σs+rZ,bu ∧X].

On the other hand we have seen in the second section that the composition
of ∗-homomorphisms gives rise to a multiplication

kks(Y,X)⊗ kkr(Z, Y )→ kks+r(Z,X)

Wearegoing to show that the isomorphismτ∗ fromProposition3.1preserves
the multiplicative structure.

If we identify bun with F (Sn), then the productbum× bun → bum+n
is given by(α, β) �→ λ◦ (α⊗β)whereα⊗β ∈ Hom(C0(Sm+n),K⊗K)
andλ : K ⊗K ∼= K.

The product

[ΣsY,bu ∧X]⊗ [ΣrZ,bu ∧ Y ]→ [Σs+rZ,bu ∧X].

ω ⊗ η �→ ωη is defined as follows. Ifω andη are represented by

f ∈ Map(Sp ∧ Y, F (Sm) ∧X), g ∈ Map(Sq ∧ Z,F (Sn) ∧ Y )
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with r = p −m ands = q − n, thenωη is represented by the composite
g ∗ f :

Sp ∧ Sq ∧ Z 1Sp∧g−−−−→ Sp ∧ F (Sn) ∧ Y γ−→ F (Sn) ∧ Sp ∧ Y 1F (Sn)∧f−−−−−−→
F (Sn) ∧ F (Sm) ∧X µ∧1X−−−−→ F (Sn ∧ Sm) ∧X γ−→ F (Sm ∧ Sn) ∧X

(4)

The mapsγ correspond to various flip homeomorphisms.

Proposition 3.2 Withf andg as above,tm+n◦(g∗f) = (tn◦g)�(tm◦f).

Proof.Recall thattm : F (Sm)∧X → F (Sm ∧X)maps an elementα∧ x
toα⊗ δx ∈ Hom(C0(Sm ∧X),K) andtm ◦ f : Sp ∧Y → F (Sm ∧X) is
identified viaχwith a∗-homomorphismϕ ∈ Hom(C0(Sm∧X), C0(Sp∧
Y ) ⊗ K). Similarly we identify tn ◦ g with someψ ∈ Hom(C0(Sn ∧
Y ), C0(Sq ∧ Z)⊗K) andtm+n ◦ (g ∗ f) with someπ ∈ Hom(C0(Sm ∧
Sn∧X), C0(Sp∧Sq∧Z)⊗K). Leta⊗b⊗c ∈ C0(Sm)⊗C0(Sn)⊗C0(X) ∼=
C0(Sm ∧ Sn ∧X) be an elementary tensor. It suffices to show that

π(a⊗ b⊗ c) = (ψ � ϕ)(a⊗ b⊗ c)(5)

whenboth sides are evaluatedat any pointt∧zwheret ∈ Sp andz ∈ Sq∧Z.
In order to fix the notation let’s say that

g(z) = β ∧ y ∈ F (Sn) ∧ Y, (1F (Sn) ∧ f)(β ∧ t ∧ y)
= β ∧ α ∧ x ∈ F (Sn) ∧ F (Sm) ∧X(6)

Then using (4) we compute(g ∗ f)(t ∧ z):

t∧z �→ t∧β∧y �→ β∧t∧y �→ β∧α∧x �→ (λ◦(β⊗α)∧x)◦γ = (g∗f)(t∧z)
(7)
Therefore

π(a⊗ b⊗ c)(t ∧ z) = (λ ◦ (β ⊗ α)⊗ δx)(b⊗ a⊗ c)
= λ(β(b)⊗ α(a))c(x)(8)

In order to compute the right-hand side of (5) we show first that, with the
notation as in (6)

(1C0(Sp) ⊗ ψ ⊗ idK)γ(b⊗ w)(t ∧ z) = β(b)⊗ w(t ∧ y) ∈ K ⊗K(9)

for all b ∈ C0(Sn) andw ∈ C0(Sp∧Y )⊗K. Themapγ is as in (1.3). Since
the both sides of (8) depend linearly and continuously onw, wemay assume
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thatw is an elementary tensorw = u⊗ v⊗κ ∈ C0(Sp)⊗C0(Y )⊗K. We
haveγ(b⊗ u⊗ v ⊗ κ) = u⊗ b⊗ v ⊗ κ, and using (6)
(1C0(Sp) ⊗ ψ ⊗ idK)(u⊗ b⊗ v ⊗ κ)(t ∧ z) = u(t)⊗ ψ(b⊗ v)(z)⊗ κ

= u(t)⊗ β(b)⊗ v(y)⊗ κ = β(b)⊗ u(t)v(y)κ = β(b)⊗ w(t ∧ y)
We have identifiedC⊗K ∼= K⊗C ∼= K. After this preparation we are able
to compute(ψ � ϕ)(a⊗ b⊗ c)(t ∧ z) using (2) and (6). We have

a⊗ b⊗ c �→ b⊗ a⊗ c �→ b⊗ ϕ(a⊗ c) (1C0(Sp)⊗ψ⊗idK)t∧z−−−−−−−−−−−−−→
β(b)⊗ ϕ(a⊗ c)(t ∧ y) (by (8) withw = ϕ(a⊗ c))

= β(b)⊗ α(a)⊗ c(x) �→ λ(β(b)⊗ α(a))c(x) .
Combining (8) and (10) we see that (5) holds true and this concludes the
proof of the Proposition. QED

As a consequence of Proposition 3.2 we obtain the following.

Corollary 3.3 The mapτ∗ : [Σ∗X, bu ∧ Y ] → kk∗(X,Y ) preserves the
products.

Corollary 3.4 LetX,Y be finite connected CW complexes. ThenC0(X)⊗
K is homotopy equivalent toC0(Y ) ⊗ K if and only if the image of the
natural map

Φ : [X, bu ∧ Y ]→ Hombu∗(bu∗X, bu∗Y )

contains an isomorphism.

Proof.ByProposition 3.1 andCorollary 3.3, there is a commutative diagram

kk(X,Y ) τ∗−−→ [X, bu ∧ Y ]
↓ Γ ↓ Φ

HomT (k∗(X), k∗(Y )) τ∗−−→ Hombu∗(bu∗X, bu∗Y )

with both horizontal arrows being bijections. We conclude the proof by
applying Theorem 2.4. QED

Our next result gives a categorical interpretation of the results of this
section. LetC be the category whose objects are C*-algebras of the form
C0(X) ⊗ K, with homotopy classes of maps between them. LetB be the
category whose objects are finite connectedCW -complexesX, with the
maps fromX to Y defined to be[X, bu ∧ Y ]. The composition inB is the
multiplication

[X, bu ∧ Y ]⊗ [Y,bu ∧ Z]→ [X, bu ∧ Z]
which has already been defined.
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Theorem 3.5 The categoryC is equivalent to the opposite of the category
B.

Proof.We have seen in the proof of Proposition 2.3 that there is a natural
isomorphism

[C0(Y )⊗K, C0(X)⊗K] ∼= kk(X,Y )

which takes composition on the left to themultiplication on the right. Propo-
sition 3.1 and Corollary 3.3 give a natural isomorphism

kk(X,Y ) ∼= [X, bu ∧ Y ]

which preserves multiplication. The result follows immediately. QED

In Sect. 6 we will see that the categoryB can also be described as a
certain full subcategory of the homotopy category ofbu-modules as defined
in [17].

4 A spectral sequence and some examples.

Recall that we are using� to denote homotopy equivalence of C*-algebras.
Let bu∗ denoteπ∗bu ∼= Z[u], whereu is the Bott operation and has

degree 2. SinceZ[u] has global dimension two, the homological projective
dimension of thebu∗ modulebu∗(X) is at most two. In this section we will
begin the proof of the following:

Theorem 4.1 (a) LetX andY be finite connectedCWcomplexes. Suppose
that the homological projective dimension of thebu∗ modulebu∗(X) is
at most one. ThenC0(X) ⊗ K � C0(Y ) ⊗ K if and only ifbu∗(X) is
isomorphic tobu∗(Y ) asbu∗ modules.

(b) There exists a pair of finite connected CW-complexesX andY such
thatbu∗X ∼= bu∗Y asbu∗-modules butC0(X)⊗K �� C0(Y )⊗K.

(c) There exists a pair of finite connected CW-complexesX andY (each
having two cells) such thatC0(X)⊗K � C0(Y )⊗K butX andY are
not stably homotopy equivalent.

It has been shown in previous sections thatC0(X) ⊗ K � C0(Y ) ⊗ K
if and only if the image of the natural map

Φ : [X, bu ∧ Y ]→ Hombu∗(bu∗X, bu∗Y )

contains an isomorphism. Thus to prove part (a) we will show thatΦ is
surjective, to prove part (b) we will show that whileHombu∗(bu∗X, bu∗Y )
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contains isomorphisms, no isomorphism is in the image ofΦ, and to prove
part (c) we will show that there is an isomorphism in the image ofΦ.

Our main tool for doing this will be the following spectral sequence,
which was discovered by Robinson [25] and improved by Elmendorf, Kriz,
Mandell and May [17, Theorem IV.3.1].

Theorem 4.2 (a) There is a spectral sequenceEr(X,Y ) which converges
to [Σ−s−tX, bu ∧ Y ] and is natural inX andY .

(b)

E2(X,Y ) = Exts,tbu∗(bu∗X, bu∗Y ),

and the edge homomorphism

[X, bu ∧ Y ]→ E0,0
∞ ↪→ E0,0

2 = Hombu∗(bu∗X, bu∗Y )

is equal toΦ.
(c) Es,t

2 = 0 for s > 2.
(d) The only possible nonzero differential is

d2 : Homt
bu∗(bu∗X, bu∗Y )→ Ext2,t−1

bu∗ (bu∗X, bu∗Y )

HereExts,t means the part ofExts which has internal degreet; for
exampleExt0,t = Homt denotes the homomorphisms of graded groups
which lower degree byt. The filtration of[Σ∗X, bu ∧ Y ] is described in
Sect. 6. We have exact sequences:

0→ F s+1[Σ−s−tX, bu ∧ Y ]
→ F s[Σ−s−tX, bu ∧ Y ]→ Es,t

∞ → 0(10)

andF s[Σ−s−tX, bu ∧ Y ] = 0 for s > 2.

Corollary 4.3 LetX andY be finite connected CW complexes. Suppose
that the homological projective dimension of thebu∗ modulebu∗(X) is at
most one. Then there is an exact sequence

0 → Ext1,−1
bu∗ (bu∗X, bu∗Y )→ [X, bu ∧ Y ]

Φ−→ Hombu∗(bu∗X, bu∗Y )→ 0(11)

Proof.The assumption on the homological projective dimension ofbu∗X
implies thatExts,t(bu∗X, bu∗Y ) = 0 for s > 1. Thusall thed2 differentials
are zero and the edge homomorphismΦ is surjective. The statement follows
now from (10). QED

RemarkNotice that if we letX andY be the spaces described in part (b) of
4.1 thend2 /= 0 in the spectral sequenceEr(X,Y ). It will become apparent
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from our arguments below that ifX, Y are finite connected CW complexes,
thenC0(X) ⊗ K � C0(Y ) ⊗ K if and only if there is an isomorphism
α ∈ E0,0

2 = Hombu∗(bu∗X, bu∗Y ) with d2(α) = 0.
The statement of Theorem 4.2 does not agree precisely with the corre-

sponding statements in [25] and [17]; we shall explain how to deduce it
from the work of those authors in Sect. 6, except that we will show part (c)
in Sect. 5.

It is now easy to complete the proofs of part (a) and (c) of Theorem 4.1.
Part (a) is a straightforward consequence of Corollary 4.3 andCorollary 3.4.

Next we deal with part (c). Letα : Sm → Sn be any map which is
not stably trivial. LetX be the cofiber ofα and letY = Sm+1 ∨ Sn (i.e.,
Y is the cofiber of the trivial map fromSm to Sn). The stable maps from
Sm to Sn form a finite group, butbu∗Sn is either zero or torsion free, so
αmust induce the zero map ofbu-homology. Now the long exact sequence
for bu∗X shows at once that

bu∗X ∼= bu∗Sm+1 ⊕ bu∗Sn ∼= bu∗Y.

In particular,bu∗X is a freebu∗-module, and so we have thatExts,t(bu∗X,
bu∗Y ) = 0 for s > 0. Thus the spectral sequence collapses andΦ is an
isomorphism, implyingC0(X) ⊗ K � C0(Y ) ⊗ K. On the other hand, if
X were stably homotopic toY then the composite of stable maps

Sm
α−→ Sn ↪→ X

�−→ Y → Sn

(where the last map is the projection ofY on its wedge-summandSn) would
be nullhomotopic (since the first two of these maps are consecutive maps
in a cofiber sequence), while the composite of the last three would be a
stable equivalence ofSn (since it is clearly an isomorphism in homology).
This would imply thatα is stably nullhomotopic, contrary to our initial
assumption.

We remark that ifα is chosen to be the nontrivial mapη : Sn+1 → Sn

then an easy calculation shows thatKO∗X is not isomorphic toKO∗Y .
Thus in this case we have an example whereC0(X) ⊗ K is homotopy
equivalent toC0(Y )⊗K over the complex numbers but not over the reals.

We now turn to part (b) of Theorem 4.1. Fix an odd primep and an
integerk ≥ 2, and letM be defined by the cofiber sequence

Sk
p−→ Sk →M.

By [1, Theorem 1.7] and [8], there is a map

A : Σ2p−2M →M
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which induces an isomorphism inK-homology. LetN be defined by the
cofiber sequence

Σ2p−2M
A−→M → N.

Let f : N → Σ2p−1M be the next map in this cofiber sequence, and let
g : Σ2p−1M → S2p+k be the next map in the cofiber sequence definingM .
Finally, leth = g ◦ f , letX be the cofiber ofh, and letY = ΣN ∨ S2p+k

(i.e.,Y is the cofiber of the trivial map fromN to S2p+k).
(It is not difficult to show thatX is homotopic to a 3-cell complex, but

we shall not need to know this).
In order to verify the first assertion of part (b) we begin by noting that

buk+nM is Z/p if n is a nonnegative even integer and 0 otherwise. The
long exact sequence forbu∗N now shows thatbuk+n(N) is Z/p if n is
a nonnegative even integer less than2p − 2, and zero otherwise. Henceh
induces the zero map ofbu-homology, and we conclude that

bu∗X ∼= bu∗ΣN ⊕ bu∗S2p+k ∼= bu∗Y

asbu∗-modules.
Before proceeding, we need to introduce some notation. Given any spec-

traW andZ and a mapα :W → bu ∧ Z, let α̃ denote the composite

bu ∧W 1∧α−−−→ bu ∧ bu ∧ Z µ−→ bu ∧ Z,
whereµ is the multiplication of the ring spectrumbu. Note thatΦ(α) is the
map of homotopy groups induced byα̃. Also, given a mapβ :W → Z, let
β′ denote the composite

W
β−→ Z = S0 ∧ Z η∧1−−−→ bu ∧ Z,

whereη is the unit map of the ring spectrumbu.
The proof of the remaining assertion of part (b) will be by contradiction,

so suppose thatC0(X)⊗ K � C0(Y )⊗ K. Then there is a mapα : X →
bu ∧ Y for whichΦ(α) is an isomorphism; this implies that̃α induces an
isomorphism of homotopy groups. Now consider the following composite,
which we shall denote byΓ :

bu ∧ S2p+k 1∧i−−→ bu ∧X α̃−→ bu ∧ Y 1∧j−−−→ bu ∧ S2p+k

(herei is the inclusion ofS2p+k in X, andj is the projection ofY to its
wedge-summandS2p+k). ThemapΓ induces an isomorphism of homotopy
groups, since(1∧i)∗ and(1∧j)∗ are isomorphisms in all dimensions where
π∗(bu∧S2p+k) is nonzero. ButΓ ◦ h′ is homotopically trivial, sinceh and
i are consecutive maps in a cofiber sequence. It follows thath′ is trivial. To
establish a contradiction, we shall show thath′ is nontrivial.
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For this purposeweneed to use a product pairing in the spectral sequence
of Theorem 4.2. Givenα : V → bu∧W andβ :W → bu∧Z let us define
the “composition”β ∗ α ∈ [V,bu ∧ Z] to be the composite

V
α−→ bu ∧W 1∧β−−−→ bu ∧ bu ∧ Z µ∧1−−−→ bu ∧ Z.

(Note that this composition operation corresponds to ordinary composition
of homomorphismsofC∗ algebras). The following result is due toRobinson
[27] and Elmendorf, Kriz, Mandell and May [17, Theorem IV.3.4]; we state
it in a somewhat different form which we shall reconcile with their version
in Sect. 6.

Theorem 4.4 There is a pairing of spectral sequences

Er(V,W )⊗ Er(W,Z)→ Er(V,Z)

which is the Yoneda product ([22, Sect. 3.5]) whenr = 2 and is induced by
the∗ operation whenr =∞.

Notice thath′ = g′ ∗ f ′. To complete the proof thath′ is nontrivial, we
shall need the following facts.

Proposition 4.5 (a) E1,−1
2 (N,Σ2p−1M), E1,−1

2 (Σ2p−1M,S2p+k)
andE2,−2

2 (N,S2p+k) are each isomorphic toZ/p.
(b) f ′ andg′ are represented by nontrivial elementsx ∈ E1,−1

2 (N,Σ2p−1

M), andy ∈ E1,−1
2 (Σ2p−1M,S2p+k).

(c) The Yoneda product ofx and y is a nontrivial element ofE2,−2
2 (N,

S2p+k).

We shall prove parts (a) and (c) in Sect. 5, and part (b) in Sect. 6. As-
suming these for the moment, we see thath′ = g′ ∗ f ′ is represented by a
nontrivial element ofE2,−2

2 . If h′ were trivial then this element ofE2 would
have to be hit by a differential. But such a differential would have to orig-
inate inHombu∗(bu∗N, bu∗S2p+k), and thisHom group is zero because
there are no nontrivial homomorphisms fromZ/p toZ.

5 Algebraic calculations in theE2-term.

In this section we prove parts (a) and (c) of Proposition 4.5. The following
result will allow us to calculate the relevantExt groups.

Theorem 5.1 LetA andB be any twobu∗-modules. Letu denote the gen-
erator ofπ2bu, and letu1 : A→ A andu2 : B → B denote multiplication
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byu. Then there is a long exact sequence

0→ Homt
bu∗(A,B)→ Homt

Z
(A,B)

u∗
1−u2∗−−−−−→ Homt−2

Z
(A,B)→

Ext1,tbu∗(A,B) → Ext1,t
Z
(A,B)

u∗
1−u2∗−−−−−→ Ext1,t−2

Z
(A,B)→

Ext2,tbu∗(A,B) → 0

andExtsbu∗(A,B) = 0 for s > 2.

From now on we will abbreviatebu∗ by T .

Proof of Theorem 5.1.Let u3 : T → T be multiplication byu, and let
µ : T ⊗A→ A be the action ofT onA. It is easy to check that the sequence

0→ T ⊗A 1⊗u1−u3⊗1−−−−−−−−→ T ⊗A µ−→ A→ 0

is an exact sequence ofT -modules in which the first map raises degrees by
2. It therefore induces a long exact sequence ofExt-groups:

0→ Homt
T (A,B) → Homt

T (A,B)
(1⊗u1)∗−(u3⊗1)∗
−−−−−−−−−−−→

Homt−2
T (T ⊗A,B) ∂−→(12)

Ext1,tT (A,B) → Ext1,tT (T ⊗A,B)
(1⊗u1)∗−(u3⊗1)∗
−−−−−−−−−−−→

Ext1,t−2
T (T ⊗A,B) ∂−→ Ext2,tT (A,B)→ · · ·

But a standard change of rings theorem [6, Proposition VI.4.1.3] says that
the composite

Ext∗T (T ⊗A,B)→ Ext∗
Z
(T ⊗A,B)→ Ext∗

Z
(A,B)

is an isomorphism (here the first map is the evident forgetful map and the
second is induced by theZ-module map which takesm to 1 ⊗m). Using
this isomorphism, and the fact thatExtsZ = 0 for s > 2, it is easy to see
that in the long exact sequence we have just given all terms are zero after
Ext2,tT (A,B) and that the initial part of the sequence is isomorphic to that
given in the theorem. QED

We can now prove part (a) of Proposition 4.5. First we consider

Ext1,−1
T (bu∗N, bu∗Σ2p−1M).

Let A denote the graded groupbu∗N and letB denotebu∗Σ2p−1M . We
have seen in the previous section thatAk+n isZ/p if n is even with0 ≤ n <
2p− 2 and 0 otherwise, whileB2p−1+k+n is Z/p whenn is a nonnegative
even integer and 0 otherwise. This is described in the following table, the
last row of which will be used in the second part of the proof.
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n 0 1 2 3 4 · · · 2p − 4 2p − 3 2p − 2 2p − 1 2p 2p + 1 2p + 2 · · ·
Ak+n Z/p 0 Z/p 0 Z/p · · · Z/p 0 0 0 0 0 0 · · ·
Bk+n 0 0 0 0 0 · · · 0 0 0 Z/p 0 Z/p 0 · · ·
Ck+n 0 0 0 0 0 · · · 0 0 0 0 Z 0 Z · · ·

By definition,Homt
Z
(A,B) is

∞∏
i=−∞

HomZ(Ai, Bi−t),

so in our caseHom−1
Z

(A,B) is zero, whileHom−3
Z

(A,B) is Z/p, so the
cokernel ofu∗

1− u2∗ isZ/p. SinceExt1,−1
Z

(A,B) is zero we conclude that
Ext1,−1

T (A,B) isZ/p as required.
Next we considerExt1,−1

T (bu∗Σ2p−1M,bu∗S2p+k). LetB be as above
and letC denotebu∗S2p+k. ThenC2p+k+n isZ if n is an even integer≥ 0
and 0 otherwise. It follows thatHom−3

Z
(B,C) = 0, soExt1,−1

T (B,C) is
the kernel of

Ext1,−1
Z

(B,C)
u∗
1−u2∗−−−−−→ Ext1,−3

Z
(B,C).

Now an element of eitherExt1,−1
Z

(B,C) orExt1,−3
Z

(B,C) is a sequence

x2p+k−1, x2p+k+1, x2p+k+3, . . .

of elements ofZ/p, and

(u∗
1 − u2∗)(x2p+k−1, x2p+k+1, x2p+k+3, . . .)
= (x2p+k+1 − x2p+k−1, x2p+k+3 − x2p+k+1, . . .).

Therefore the kernel ofu∗
1−u2∗ is a copy ofZ/p generated by(1, 1, 1, . . .).

Finally, considerExt2,−2
T (A,C). We haveExt1,−2

Z
(A,C) = 0 and

Ext1,−4
Z

(A,C) = Z/p, so we conclude thatExt2,−2
T (A,C) = Z/p. QED

We conclude this section by proving part (c) of Proposition 4.5. We
continue with the notation of the previous proof. Fromwhat has been shown
we know that the boundary map

Hom−3
T (T ⊗A,B) ∂−→ Ext1,−1

T (A,B)

is an isomorphism, so there is an elementx′ of Hom−3
T (T ⊗ A,B) with

∂(x′) = x. By [22, Theorem III.9.1] we see that the boundary operator∂ is
(up to sign) the Yoneda product with a certain element, and in particular we
havexy = (∂x′)y = ∂(x′y). Since

Ext1,−4
T (T ⊗A,C) ∂−→ Ext2,−2

T (A,C)
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is also an isomorphism, it suffices to show thatx′y /= 0.
Next consider the diagram

Hom−3
T (T ⊗ A, B) ⊗ Ext1,−1

T (B, C) → Ext1,−4
T (T ⊗ A, C)

↓ I⊗ρ ↓ I

Hom−3
Z

(A, B) ⊗ Ext1,−1
Z

(B, C) → Ext1,−4
Z

(A, C)
↓ r1 ⊗ r2 ↓ r3

HomZ(Ak+2p−4, Bk+2p−1) ⊗ ExtZ(Bk+2p−1, Ck+2p) → ExtZ(Ak+2p−4, Ck+2p)

Here the horizontal arrows are Yoneda products (which in this case are
simply composition operations),ρ is the evident restriction map, andI de-
notes the isomorphismused in theproof ofTheorem5.1; from thedescription
of I given there, it is easy to see that the upper square commutes. The lower
square clearly commutes, and the bottom horizontal map is an isomorphism.
Also, the restriction mapsr1 andr3, and the compositer2 ◦ ρ, have been
shown to be isomorphisms in the proof just given. The result follows.

QED

6 Detection of elements in filtration 1.

In this section we shall prove part (b) of Theorem 4.5.
LetW andZ be any spaces, and letβ : W → Z be any map. As in

Sect. 1, we write
β′ ∈ [W,bu ∧ Z]

for the composite

W
β−→ Z = S0 ∧ Z η∧1−−−→ bu ∧ Z,

andwe recall thatΦ(β′) is thehomomorphism inducedbyβ inbu-homology.
Now we assume thatβ induces the zero homomorphism inbu∗ homol-

ogy. (for example, this is true for the mapsf andg in Proposition 4.5). Then
Φ(β′) = 0, so by part (b) of Theorem 4.2,β′ determines an element (which
may be zero) in

E1,−1
∞ (W,Z)

and by parts (b) and (d) of Theorem 4.2 this group is equal to

Ext1,−1
T (bu∗W,bu∗Z),

whereT denotesπ∗bu. Now by [22, Theorem III.6.4] an element of this
Ext-group is identifiedwithanequivalenceclassof extensionsofT -modules

0→ bu∗Z → A→ bu∗W → 0,
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(where the mapA→ bu∗W raises degrees by 1) so in particular the mapβ
is represented by a class of such extensions. Our aim is to describe explicitly
an extension which representsβ.

To do this, we let

W
β−→ Z → C(β)→ ΣW

be the cofiber sequence determined byβ. Applyingbu∗, and using the fact
thatβ∗ = 0, we get a short exact sequence ofT -modules

0→ bu∗Z → bu∗C(β)→ bu∗W → 0(13)

where the mapbu∗C(β)→ bu∗W raises degrees by 1.

Theorem 6.1 The extension (13) represents the element ofExt1,−1
T (bu∗W,

bu∗Z) determined byβ. In particular, this element ofExt is zero if and only
if (13) is split as a short exact sequence ofT -modules.

Before proving this, weuse it to complete the proof of Proposition 4.5(b).
From the definition off , we see that the cofiber sequence determined byf
has the form

N
f−→ Σ2p−1M → ΣM → ΣN .

The short exact sequence induced by this is

0→ bu∗Σ2p−1M → bu∗ΣM → bu∗N → 0,

and this is certainly not split since there is no nontrivialT -module homomor-
phism frombu∗N tobu∗ΣM (note that the generatoru ofT acts nilpotently
on the former but not on the latter). The argument forg is similar and is left
to the reader.

In the remainder of the section we give the proof of Theorem 6.1. It is
necessary first to put this result in a broader context by relating it to the work
of Elmendorf, Kriz, Mandell and May.

Let R be anA∞ ring spectrum (for our purposes it is not necessary
to know what this means, we only need to know thatbu is one; in fact it
has the stronger structure of anE∞ ring spectrum, by [23, VIII.2.1]). Then
Elmendorf, Kriz,Mandell andMay, followingearlierwork ofRobinson [24–
27], show how to define a category ofR-module spectra in which one can do
homotopy theory (technically, these areA∞ R-modules, which is a stricter
notion than theR-module spectra used in [2], for instance). The homotopy
category is denotedDR. For example, whenR is the sphere spectrumS,DR
is the usual stable category. AnR-module is a spectrumwith extra structure,
so there is a forgetful functor which takes anR-module to its underlying
spectrum (technically, the underlying spectrum functor isFL(S,−); see [17,
Section III.1]), there is also a “freeR-module” functorFwhich is left adjoint
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to the forgetful functor. Thus if we write[A,B]R for the set of homotopy
classes inDR whenA andB are twoR-modules, then we have

[F(X), B]R = [X,B]

wheneverB is anR-module. In particular, we can letB = F(Y ); the
underlying spectrum ofB is thenR ∧ Y , by [17, Proposition III.1.4], and
so we have

[F(X),F(Y )]R = [X,R ∧ Y ].

As a first application of these ideas we give a different description of
the categoryB mentioned in Theorem 3.5. Recall that the objects ofB are
finite connected CW-complexes, and the set of morphisms fromX to Y is
[X, bu∧ Y ], with the composition operation defined in Sect. 3. Now letB′
be the category whose objects arebu-modules of the formF(X), withX a
finite connected CW-complex, and whose morphisms are homotopy classes
of bu-module maps.

Proposition 6.2 B is equivalent toB′.

Proof. The result follows immediately from [17, Theorem III.1.4] and its
proof. QED

Next we observe that there is a spectral sequence

Exts,tπ∗R(π∗A, π∗B) =⇒ [Σ−s−tA,B]R,

(see [25], [17, Theorem IV.3.1]), and lettingR = bu, A = F(X) and
B = F(Y ) gives the spectral sequence of Theorem 4.2. Properties (a) and
(b) of Theorem 4.2 are immediate from the corresponding properties in [25]
and [17, Theorem IV.3.1].

Similarly, Theorem 6.1 is immediate from the following more general
result:

Theorem 6.3 Let

A
γ−→ B → C → ΣA→

be a cofiber sequence ofR-modules, withπ∗γ = 0. Thenγ is inF 1[A,B]R,
and the image ofγ under the composite

F 1[A,B]R/F 2[A,B]R = E1,−1
∞ (A,B) ↪→ Ext1,−1

π∗R (π∗A, π∗B)

is the element represented by the short exact sequence

0→ π∗B → π∗C → π∗ΣA→ 0.
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If f : M → N is a map of graded modules, thenΣf : ΣM → ΣN
is defined by(Σf)i = fi−1 whereΣM is the module(ΣM)i = Mi−1. In
order to prove Theorem 6.3 we have to recall how the spectral sequence is
defined; we use the construction in [17, Sect. IV.4] and the reader is referred
to that source for further information. First pick a resolution ofπ∗A by free
π∗R-modules:

· · · ←M2
d2−−→M1

d1−−→M0
d0−−→M−1 = π∗A

d−1−−−→ 0 .(14)

For eachi ≥ 0 let Xi be a wedge of spheres indexed by a basis forMi.
DefineR-module spectraAi for i ≥ 0, with A0 = A, inductively by the
cofiber sequences

Σi
FXi

ki−−→ Ai → Ai+1
ji+1−−−→ Σi+1

FXi,

with the following properties:

(i) ki induces an epimorphismπ∗Σi
FXi → π∗Ai for i ≥ 0.

(ii) π∗Ai ∼= Σi(ker di−1) for i ≥ 0.
(iii) ki realizesΣidi : ΣiMi → Σi(ker di−1) onπ∗ for i ≥ 0.
(iv) ji+1 realizes the inclusionΣi+1(ker di)→ Σi+1Mi onπ∗ for i ≥ 0.

Observe that (ii) together with (iii) implies (i). Then the groups

Dp,q
1 = [Σ−p−qAp, B]R

and
Ep,q

1 = [Σ−q
FXi, B]R

form an exact couple, which in the usual way induces the required spectral
sequence. To prove that theE2-term has the desired form, one uses the fact
that

[FXi, B]R ∼= [Xi, B] ∼= Homπ∗R(Mi, π∗B).

It is shown in [17, Sect. IV.4] that the spectral sequence is independent,
fromE2 on, of the choices made in this construction.

Now let γ : A → B be a map ofR-modules which induces the zero
homomorphism of homotopy groups. SinceX0 is a wedge of spheres, the
composite

X0 → A
γ−→ B

is nullhomotopic, and sinceF is left adjoint to the forgetful functor the
composite

FX0 → A
γ−→ B

is also nullhomotopic; thus it is possible to extendγ to a map

Γ : A1 → B.
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The composite

ΣFX1
k1−−→ A1

Γ−→ B

induces a map of homotopy groups

γ̄ :M1 = π∗FX1 → π∗B

which raises degrees by 1 and is aπ∗R-homomorphism. Using (ii)-(iv) we
see that
j1∗k1∗d2 = d1d2 = 0. Sincej1∗ is injective, this implies that

γ̄d2 = Γ∗k1∗d2 = 0.

Since (14) is a projective resolution, andγ̄d2 = 0, γ̄ represents an element
of Ext1,−1

R (π∗A, π∗B), and by the definition of the spectral sequence this
is the element corresponding toγ.

It remains to show that̄γ corresponds to the extension

0→ π∗B → π∗C → π∗ΣA→ 0.

Since the sequence

π∗FX1 → π∗FX0 → π∗A→ 0

is a partial projective resolution, Theorem III.6.4 of [22] tells us that it
suffices to show that there is a commutative diagram

π∗FX1
γ̄−→ π∗B

↓ ↓
π∗FX0 → π∗C
↓ ↓
π∗A

=−→ π∗A.

(15)

To construct such a diagram, we first observe that the composite

FX0
k0−−→ A

γ−→ B

is nullhomotopic, and hencek0 lifts to Σ−1C, whereC is the cofiber ofγ.
Thus we have a homotopy-commutative diagram

FX0 → Σ−1C
↓ k0 ↓
A

=−→ A

Now it is awell-known fact of homotopy theory (see for instance [31, Lemma
8.31]) that any homotopy-commutative diagram of the form

X
α−→ X ′

↓ f ↓ f ′

Y
β−→ Y ′
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extends to a homotopy commutative diagram

X
α−→ X ′

↓ f ↓ f ′

Y
β−→ Y ′

↓ ↓
Cf → Cf ′
↓ ↓
ΣX

Σα−−→ ΣX ′
↓ Σf ↓ Σf ′

ΣY
Σβ−−→ Y ′

where the columns are the cofiber sequences off andf ′. In our case, we
obtain a homotopy-commutative diagram

FX0 → Σ−1C
↓ k0 ↓
A

=−→ A
↓ ↓
A1 → B
↓ ↓

ΣFX0 → C
↓ ↓
ΣA

=−→ ΣA .

(16)

ThemapA1 → B in this diagram is a candidate for themapΓ mentioned
above, and so the composite

π∗FX1
(k1)∗−−−→ π∗A1 → π∗B

represents̄γ. Now applyingπ∗ to the bottom half of diagram (17) and pre-
composing with(k1)∗ gives the diagram (16), and this concludes the proof.

RemarkThefiltrationof[Σ∗A,B]R in theabovespectral sequence is defined
by lettingF i[Σ∗A,B]R to be the image of the map

[Σ∗Ai, B]R → [Σ∗A,B]R

induced by the evident iterateA → Ai. If R = bu, sincebu∗ = Z[u] has
homological projective dimension equal to 2, one can find a free resolution
(14) such thatMi = 0 for i ≥ 3. It follows from (ii) thatπ∗Ai = 0 for i ≥ 4
so that the filtration vanishes in all the degrees greater than three. For the
spectral sequence from Theorem 4.2 we see thatF s[Σ∗X, bu∧ Y ] = 0 for
s > 2 sinceEs,t∞ = 0 for s > 2.
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RemarkIf A is a fixedbu-module, Wolbert [33] has adapted the method
introduced by Bousfield in [3] to classify thebu-modulesB for which
π∗B ∼= π∗A; he shows that the set of suchB is in one to one correspondence
with the set

SA = Ext2,−1
bu∗ (π∗A, π∗A)/Aut(π∗A).

Our Theorem 4.1(b) can be restated as follows: there exist finite CW-
complexesX andY so that ifA = bu ∧ X andB = bu ∧ Y thenB
represents a nontrivial element in the setSA. For this example it is not
difficult to show directly that the setSA is nontrivial, but our result does
not follow from this because Wolbert’s theory gives no way of recognizing
which (if any)bumodules in the setSA have the special formbu∧Z for a
finite CW complexZ.
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