(4.2.) NART II spaces, Column spaces, Row spaces, and Linear transformations

Let A be a matrix m rows n columns rows are vectors in \mathbb{R}^{n}

The columns of A are vectors in \mathbb{R}^{m}

$$
\text { Ex. } \begin{aligned}
& A \\
& 3 \times 4
\end{aligned}=\left[\begin{array}{cccc}
0 & 1 & -1 & 1 \\
1 & 2 & 5 & 3 \\
1 & 3 & 2 & 10 \\
\bar{a}_{1} & \bar{a}_{2} & \bar{a}_{3} & \vec{a}_{4}
\end{array}\right]
$$

$\bar{a}_{1} \bar{a}_{2} \bar{a}_{3} \vec{a}_{4}$ columns are vectors in \mathbb{R}^{3}

$$
A=\left[\begin{array}{cccc}
0 & 1 & -1 & 1 \\
1 & 2 & 5 & 3 \\
1 & 3 & 2 & 10
\end{array}\right] \begin{aligned}
& \vec{r}_{1} \\
& \vec{r}_{2} \\
& \vec{r}_{3}
\end{aligned}
$$

rows of A ave vectors in \mathbb{R}^{4}

A man matrix
Consider the homogeneous system: m equations
 n unknowns

$$
\begin{array}{ll}
\operatorname{Nul}(A)=\left\{\vec{x} \text { in } \mathbb{R}^{n}:\left(A \bar{x}=\vec{o}_{m}\right\rangle \text { subspace of } \mathbb{R}^{n}\right. \\
\operatorname{Col}(A)=\left\{c_{1} \vec{a}_{1}+c_{2} \vec{a}_{2}+\cdots+c_{n} \vec{a}_{n} \mid \text { cr., } c_{n} \text { anon } \mathbb{R}\right\}
\end{array}
$$

column space is a subspace of \mathbb{R}^{m}.

$$
\frac{x_{1} \bar{a}_{1}+x_{2} \bar{a}_{2}+\cdots+x_{n} \bar{a}_{n}}{A \bar{x}=0}=\overline{0}
$$

- Thus \vec{u} in \mathbb{R}^{u} belongs to $\operatorname{Nul}(A) \Longleftrightarrow$

$$
A \vec{u}=0 \quad(\bar{u} \text { is a sol'n of } A \bar{x}=0)
$$

- A vector \bar{b} in \mathbb{R}^{m} belongs to $\operatorname{col}(A) \Longleftrightarrow$ there exist $c_{1}, c_{n}, \ldots, c_{n}$ in \mathbb{R} sain that

$$
c_{1} \bar{\lambda}_{1}+c_{2} \overline{\lambda_{2}}+\cdots+c_{n} \bar{\lambda}_{n}=\vec{b}=\left[\begin{array}{c}
b_{1} \\
b_{m} \\
b_{m}
\end{array}\right]
$$

$$
\Leftrightarrow \quad\left[\left|\left||\mid]\left[\begin{array}{c}
c_{1} \\
c_{2} \\
c_{n}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots m \\
c_{m}
\end{array}\right]\right.\right.\right.
$$

$\Leftrightarrow \quad \vec{x}=\left[\begin{array}{c}c \\ \vdots \\ n\end{array}\right]$ is a soln of $A \bar{x}=\bar{b}$
$\Leftrightarrow A \bar{x}=\bar{b}$ has solution's (is wosistent)

$$
\Leftrightarrow \quad \operatorname{rank}(A)=\operatorname{rank}[A \vdots \bar{b}]
$$

Note: $\quad \operatorname{dim}(\omega l(A))=\operatorname{rank}(A)$

Remask

$$
\begin{aligned}
& \begin{array}{ll}
2 x_{1}+3 x_{2}=b_{1} \\
-x_{1}+2 x_{2}=b_{2}
\end{array} \quad\left[\begin{array}{cl}
2 & 3 \\
-1 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right] \\
& \text { (x) }\left[\begin{array}{c}
2 \\
-1
\end{array}\right]+x_{2}\left[\begin{array}{l}
3 \\
2
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right] \\
& {\left[\begin{array}{l}
2 \\
-1
\end{array}\right],\left[\begin{array}{l}
3 \\
2
\end{array}\right] \quad l \cdot n \text {. indep. }} \\
& \operatorname{col}(A)=\mathbb{R}^{2} \\
& \text { mbspace of } \mathbb{R}^{2} \quad \underbrace{\left[\begin{array}{ccc}
2 & 3 & \vdots
\end{array}\right.}_{\underset{\operatorname{rank}=2}{2}} \begin{array}{c}
b_{1} \\
b_{2}
\end{array}] \\
& \text { 2symented matrix } 2 \times 3
\end{aligned}
$$

$$
\text { its rank } \leq 2
$$

$$
\begin{align*}
& \text { Ex. } \quad(A)=\left[\begin{array}{l}
0 \\
0 \\
2 \\
2
\end{array}\right]\left[\begin{array}{l}
2 \\
0 \\
2 \\
0
\end{array}\right]\left[\begin{array}{c}
3 \\
2 \\
-5 \\
-6
\end{array} \begin{array}{ccc}
4 & 4 & 4 \\
2 & 4 \\
9 & 7
\end{array}\right] \tag{2*}\\
& \text { Nul(A)? } \\
& \operatorname{rank}(A)=3=\operatorname{dim}(\operatorname{col}(A)) \\
& \operatorname{dim}(\operatorname{Nu|}(A))=5-\operatorname{rank}(A)=5-3=2 \\
& \text { of } \mathbb{R}^{5} \\
& \left.\begin{array}{l}
x_{1} \\
x_{1} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right] \\
& \operatorname{col}(A) \text { subspoc } \\
& \text { of } R 4
\end{align*}
$$

Col (A) is spanned buthe first 3-columns Nul(A) is spanmel by which vectors?

$$
\begin{gathered}
x_{4}=s \quad x_{5}=t \\
x_{1}+\quad 9 x_{4}+\frac{19}{2} x_{5}=0 \\
x_{1}=-9 s-\frac{19}{2} t \\
x_{2}=\frac{17}{4} s+\frac{5}{2}+\quad \text { brsis of } \\
x_{3}=-\frac{3}{2} s-2 t /(A) \\
x_{4}=s \\
x_{5}=t \\
{\left[\begin{array}{c}
N_{1} \\
x_{1} \\
x_{4} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
-9 \\
\frac{17}{4} \\
-\frac{3}{2} \\
1 \\
0
\end{array}\right]+t\left[\begin{array}{c}
-\frac{19}{2} \\
\frac{5}{2} \\
-2 \\
0 \\
1
\end{array}\right]}
\end{gathered}
$$

Ex:

$$
A=\left[\begin{array}{ccccc}
0 & 2 & 3 & -4 & 1 \\
0 & 0 & 2 & 3 & 4 \\
2 & 2 & -5 & 2 & 4 \\
2 & 0 & -6 & 9 & 7
\end{array}\right]
$$

Does the vector $\left[\begin{array}{l}10 \\ 11 \\ 12 \\ 13\end{array}\right] \frac{\text { belong to the column space }}{\text { of } A}$

$$
\begin{aligned}
& \text { what about }\left[\begin{array}{l}
10 \\
11 \\
12 \\
14
\end{array}\right] \text { ? } \\
& \underset{\sim}{A}\left[\begin{array}{c}
10 \\
11 \\
12 \\
13
\end{array}\right] \xrightarrow{\text { pREF }}\left[\begin{array}{ccccc|c}
1 & 0 & 0 & 9 & \frac{19}{2} & 23 \\
0 & 1 & 0 & -\frac{17}{2} & -\frac{5}{2} & -\frac{13}{2} \\
0 & 0 & 1 & \frac{3}{2} & 2 & \frac{11}{2} \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \\
& \operatorname{sank}(A)=3 \\
& \operatorname{rank}(A \mid \bar{b})=3
\end{aligned}
$$

Row (A)
Row space is spanntol by $\bar{r}_{1}, \bar{r}_{2}, \ldots, \bar{r}_{m}$

$$
\operatorname{dim}(\text { Row space })=\operatorname{dim}(\operatorname{Col}(A))
$$

Linear maps V, W vector space
$T: V \rightarrow W$ is anear it

$$
\begin{aligned}
& T(\bar{u}+\bar{v})=T(\bar{u})+T(\bar{v}) \\
& T(c \bar{u})=c T(\bar{u})
\end{aligned}
$$

Fact: If $T=\mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is line or
then there is a unique $m \times n$ matrix A
suck that $T(\vec{x})=A \vec{x}$
Moreover the columns of A are

$$
T\left(\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]\right), T\left(\left[\begin{array}{l}
0 \\
1 \\
0 \\
j
\end{array}\right]\right), . ., T\left(\left[\begin{array}{l}
0 \\
0 \\
\vdots \\
1
\end{array}\right]\right)
$$

More examples. (01 linear maps)

$$
\begin{aligned}
& \text { examples: } 01 \text { linear maps } \\
& V=C[0,1]=\{f:(0,1] \rightarrow \mathbb{R} \text { continuous }\} \\
& W=\mathbb{R} \\
& T_{1}: V \rightarrow W: C(0,1] \rightarrow \mathbb{R}
\end{aligned}
$$

$$
T_{1}(f)=f(0)
$$

$$
T_{2}: C(0,1)-\mathbb{R}, \quad T_{2}(f)=\int_{0}^{1} f(f) d t
$$

Ex: $\quad V=W=\mathbb{P}_{3}$ poly's dug ≤ 3

$$
\begin{gathered}
T: \mathbb{P}_{3}+\mathbb{P}_{3} \quad T(p)=p^{\prime \prime} \\
T\left(a+b++c t^{2}\right)=2 c \\
p^{\prime}=b+2 c+, \quad p^{\prime \prime}=2 c
\end{gathered}
$$

$$
(p+q)^{\prime \prime}=p^{\prime \prime}+q^{\prime \prime}
$$

$$
(c p)^{\prime \prime}=c p^{\prime \prime}
$$

Kernel of T is a subspace of V
coucishng of all rectors \bar{u} such that $T(\vec{u})=0$.
Range of T is a subspace of W
wnsishny of all rectors \bar{w} such that $\bar{w}=T(\bar{u})$ for some \bar{u} in V.

Remark If $T=\mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ linear

$$
T(\bar{x})=A \vec{x}
$$

- Kernel (T) $=\operatorname{Nul}(A)$
- Range $(T)=\operatorname{Col}(A)$

Ex: $T: \mathbb{P}_{3} \rightarrow \mathbb{P}_{3} \quad T(p)=p^{\prime \prime}$
Kernel $(T)=$?
Range $(T)=$?
Kernel (TI

$$
\begin{array}{ll}
T(p)=0 & p(t)=a+b t+c+2 \\
T(p)= & p^{\prime \prime}(t)=2 c=0 \\
c=0
\end{array}
$$

insists of those poly $d \mu(P) \leq 1 \sim P(t)=a+b+$
Range $(t)=$ wustant poly's that is of ouque zero
is $q(t)=1$ in the range of T ? Yes can we hud $p(t) \quad p^{\prime \prime}=1$

$$
T\left(\frac{1}{2} t^{2}\right)=1 \quad P(t)=\frac{1}{2} t^{2}
$$

$$
-E N D
$$

$\operatorname{Nul} A \quad \operatorname{Col} A$

1. Vul A is a subspace of \mathbb{R}^{n}.
2. $\mathrm{Nul} A$ is implicitly defined; that is, you are given only a condition $(A \mathbf{x}=\mathbf{0})$ that vectors in $\mathrm{Nul} A$ must satisfy.
3. It takes time to find vectors in $\operatorname{Nul} A$. Row operations on $\left[\begin{array}{ll}A & 0\end{array}\right]$ are required.
4. There is no obvious relation between $\operatorname{Nul} A$ and the entries in A.
5. A typical vector \mathbf{v} in $\mathrm{Nul} A$ has the property that $A \mathbf{v}=\mathbf{0}$.
6. Given a specific vector \mathbf{v}, it is easy to tell if \mathbf{v} is in $\operatorname{Nul} A$. Just compute $A \mathbf{v}$.
7. $\operatorname{Nul} A=\{0\}$ if and only if the equation $A \mathbf{x}=\mathbf{0}$ has only the trivial solution.
8. $\operatorname{Nul} A=\{0\}$ if and only if the linear transformation $\mathbf{x} \mapsto A \mathbf{x}$ is one-to-one.
9. $\operatorname{Col} A$ is a subspace of \mathbb{R}^{m}.
10. $\operatorname{Col} A$ is explicitly defined; that is, you are told how to build vectors in $\operatorname{Col} A$.
11. It is easy to find vectors in $\operatorname{Col} A$. The columns of A are displayed; others are formed from them.
12. There is an obvious relation between $\operatorname{Col} A$ and the entries in A, since each column of A is in $\operatorname{Col} A$.
13. A typical vector \mathbf{v} in $\operatorname{Col} A$ has the property that the equation $A \mathbf{x}=\mathbf{v}$ is consistent.
14. Given a specific vector \mathbf{v}, it may take time to tell if \mathbf{v} is in $\operatorname{Col} A$. Row operations on $\left[\begin{array}{ll}A & \mathbf{v}\end{array}\right]$ are required.
15. $\operatorname{Col} A=\mathbb{R}^{m}$ if and only if the equation $A \mathbf{x}=\mathbf{b}$ has a solution for every \mathbf{b} in \mathbb{R}^{m}.
16. $\operatorname{Col} A=\mathbb{R}^{m}$ if and only if the linear transformation $\mathbf{x} \mapsto A \mathbf{x}$ maps \mathbb{R}^{n} onto \mathbb{R}^{m}.
