4.3 LINEARLY independent sets ; BASES
V vector space
$\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$ subset of vectors of V
Def'n $\quad v_{1}, v_{2}, \ldots, v_{p}$ are linearly independent
if the vector equation

$$
\begin{aligned}
& \text { actor equation } \quad \text { where } c_{i} \text { are in } \mathbb{R} \\
& c_{1} \bar{v}_{1}+c_{2} \bar{v}_{2}+\cdots+c_{p} \vec{v}_{p}=\overrightarrow{0} \quad \text {, }
\end{aligned}
$$

has only one solution $c_{1}=c_{2}=\cdots=c_{p}=0$

Ex 1

$$
\begin{aligned}
& \left.V=\mathbb{R}^{2} \quad \left\lvert\, \begin{array}{l}
1 \\
0
\end{array}\right.\right],\left[\begin{array}{l}
1 \\
1
\end{array}\right] \text { are linearly independent. } \\
& \bar{v}_{1} \quad \bar{N}_{2} \\
& \left.\frac{c_{1} \bar{v}_{1}+c_{2} \bar{v}_{2}=\overline{0}}{\left[\begin{array}{c}
c_{1}+c_{2} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]} \quad \begin{array}{l}
c_{1} \\
0
\end{array}\right]+c_{2}\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]-c_{2}=0
\end{aligned}
$$

Ex $2 \quad\left[\begin{array}{l}1 \\ 1\end{array}\right]$ in \mathbb{R}^{2}
lin. inolup.

$$
r_{1}=0
$$

Ex \vec{N}_{1} in V is lininolep.

$$
\Longleftrightarrow \vec{v}_{1} \neq \overline{0}
$$

$\underline{E \times 4}\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ in $\mathbb{R}^{3} \quad$ lin.indip-

$$
\left.c_{1}\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+c_{2}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \quad \begin{array}{r}
r_{1}+r_{2}=0 \\
c_{2}=0 \\
c_{2}=0
\end{array}\right\}
$$

$E \times 5 \quad v_{1}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right] \underset{v_{2}}{\text { and }}\left[\begin{array}{l}2 \\ 2 \\ 2\end{array}\right]$ in \mathbb{R}^{3}
are linearly depenolent

$$
\bar{v}_{2}=2 \bar{v}_{1} \quad 2 \cdot \bar{v}_{1}+(-1) \bar{v}_{2}=0
$$

$$
(1) v_{1}+(1) v_{2}+(-1) v_{3}=0
$$

$$
\operatorname{vank}\left[\begin{array}{lll}
1 & 2 & 3 \\
1 & 1 & 2 \\
1 & 1 & 2
\end{array}\right]=2
$$

Ex8 $V=\mathbb{P} \quad$ polynomials

$$
\begin{array}{rlr}
V & =\mathbb{P} & \text { polynomials } \\
P_{1}(t) & =1 & p_{2}(t)=t
\end{array} \quad p_{3}(t)=2-10 t
$$

lin iod or lin. oup ?

$$
p_{3}=2 p_{1}-10 p_{2}
$$

$$
\begin{aligned}
& \text { (l.ind) or R.. deperount? } \\
& \text { Ex6 } \\
& {\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right],\left[\begin{array}{l}
2 \\
1 \\
1
\end{array}\right],\left[\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right]} \\
& c_{1}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]+c_{2}\left[\begin{array}{l}
2 \\
1 \\
1
\end{array}\right]+c_{3}\left[\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ccc}
1 & 2 & 0 \\
1 & 1 & 1 \\
1 & 1 & -1
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
13
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]} \\
& {\left[\begin{array}{ccc}
1 & 2 & 0 \\
0 & -1 & 1 \\
0 & -1 & -1
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & 2 & 0 \\
0 & 1 & -1 \\
0 & 1 & 1
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & 2 & 0 \\
0 & 1 & -1 \\
0 & 0 & -2
\end{array}\right]} \\
& 9 \\
& \text { rink }=3 \\
& \operatorname{det}[] \neq 0 \\
& \Rightarrow \text { uncyue solln } \\
& \because=c_{n}=c_{3}=0 . \\
& E \times 7\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]_{v_{1}}\left[\begin{array}{l}
2 \\
1 \\
1
\end{array}\right]_{v_{1}},\left[\begin{array}{l}
3 \\
2 \\
2 \\
v_{3}
\end{array}\right] \\
& \text { same question } \\
& \text { linearln olpenount }{ }^{v_{3}}
\end{aligned}
$$

E×10 n vectors $\bar{a}_{1}, . ., \bar{a}_{n}$ in \mathbb{R}^{n}
are linearly independent \Leftrightarrow the matrix

$$
A=\left[\vec{a}_{1}, \vec{a}_{2}, . ., \vec{a}_{n}\right]
$$

Indeed

$$
\begin{gathered}
c_{1} \bar{a}_{1}+\cdots+c_{p} \overline{\bar{c}_{p}}=\overline{0} \\
A \\
{\left[\begin{array}{c}
c_{1} \\
\vdots \\
c_{p}
\end{array}\right]=\left[\begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right]}
\end{gathered}
$$

is invertible

$$
\Leftrightarrow \quad \operatorname{art}(A) \neq 0
$$

FACT: v_{1}, \ldots, v_{p} are linearly dependent (suppose $\left.v_{l} \neq 0\right) \Leftrightarrow$ some $\bar{v}_{j} \quad(j>1)$
is a linear combination of $\bar{N}_{1}, \ldots, \bar{v}_{j-1}$.

$$
\overline{v_{j}=} \frac{c_{1} \bar{v}_{1}+\cdots+c_{j-1} \bar{v}_{j-1}}{c_{1} \bar{v}_{1}+\cdots+c_{j-1} \bar{v}_{j-1}+(-1) \bar{v}_{j}}=0
$$

BASiS Let H be a subspace of V A set of vectors B is a basis of H it
(1) B is linearly independent
(2) The subspace of V spanned by β

$$
E \times 11
$$

$$
H=V=\mathbb{R}^{3}
$$

(a) $B=\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]\right\}$ is this a basis of \mathbb{R}^{3} ?
although they are linearly inolppuolnt, they don't span \mathbb{R}^{3}.

$$
\begin{gathered}
\text { an } \mathbb{R}^{3} . \\
c_{1}\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+c_{1}\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] \quad\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] \begin{array}{l}
\text { not in } \\
c_{1}=1
\end{array} \quad c_{2}=2 \quad c_{2}=3
\end{gathered}
$$

(b) $\beta=\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\left|\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right],\right| \begin{array}{l}1 \\ 2 \\ 3\end{array}\right]\right\}$ basis.
independent $\operatorname{rank}\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 1 & 3\end{array}\right]=3$
Why is it that any other vector $\overline{\operatorname{in}} \mathbb{R}^{3}$ is a liver wablination of B ?

$$
\begin{array}{r}
c_{1}\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+c_{2}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+c_{3}\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]=\bar{b} \\
{\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 2 \\
0 & 1 & 3
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]=\bar{b}}
\end{array}
$$

The spanning theorem

$$
\begin{aligned}
& S=\left\{\bar{v}_{L}, \ldots, \bar{v}_{p}\right\} \quad \text { in } V \\
& H=s_{p} \text { an }\left\{\bar{v}_{1}, \ldots, \bar{v}_{p}\right\}
\end{aligned}
$$

Then one car select a basis consisting of elements of S.

Ex: $\quad S=\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right],\left[\begin{array}{c}2 \\ 2\end{array}\right\},\left[\begin{array}{c}-1 \\ 1\end{array}\right]\right\}$ subset of \mathbb{R}^{2}

$$
\begin{aligned}
& \operatorname{span}(S)=\mathbb{R}^{2} \\
& \text { basis } \left.\left.:\left\{\begin{array}{l}
1 \\
1
\end{array}\right], L^{-1} 9\right\}\right\} \\
& \text { or } \left.\left\{\left\{\begin{array}{l}
2 \\
2
\end{array}\right],\left.\right|_{1} ^{-1},\right\}\right\}
\end{aligned}
$$

Basis for
Col A, Row A

A basis of $\operatorname{Col}_{0}(A)$ is given by the pivot columne of A

Row A subspace generated ky tho rows of A
Fact A row equiv to B^{B}
then Row $A=$ Row B
If B is a matrix in echelon form that is row equivalent to A then the nonzero rows of B form a basis of Row $A=R_{0} B$

Ex

$$
A=\left[\begin{array}{ccccc}
1 & -2 & 0 & 3 & -4 \\
3 & 2 & 8 & 1 & 4 \\
2 & 3 & 7 & 2 & 3 \\
-1 & 2 & 0 & -4 & -3
\end{array}\right] \sim B=\left[\begin{array}{ccccc}
1 & 0 & 2 & 0 & 1 \\
0 & 1 & 1 & 0 & -1 \\
0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

A basis of Row $4=$ Row B is given by

$$
\text { Ex: }\left[\begin{array}{ccc}
1 & 1 & 1 \\
-\frac{2}{1} & 2 & 2 \\
-1 & 1 & 1
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & 0 & 0 \\
-1 & 1 & 1
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & 0 & 0 \\
0 & 2 & 2
\end{array}\right] \sim\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 2 & 2 \\
0 & 0 & 0 \\
B
\end{array}\right] b^{2 s s j}
$$

H
(6)

