Review:

o If
$$\overline{v}_{1}, ..., \overline{v}_{p}$$
 are vectors in vector space V, then
span $\{\overline{v}_{1}, ..., \overline{v}_{p}\}$ is a subspace of V
that consists of all linear combinations
 $c_{i}, \overline{v}_{i} + ... + c_{p} \overline{v}_{p}$ with c_{i} in IR-

 \bigcirc

One says that
$$\vec{v}_{\perp},..,\vec{v}_{p}$$
 spans V if
span $\{\vec{v}_{1},..,\vec{v}_{p}\} = V$

$$\frac{Remarks}{\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \begin{pmatrix} -i \\ 2 \\ 100 \end{pmatrix} span IR^{3}$$

$$\begin{pmatrix} 4 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \begin{bmatrix} -i \\ 1 \\ 0 \end{pmatrix} are linearly independent$$

$$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} basis of IR^{3}$$

$$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \begin{pmatrix} -i \\ 1 \\ 1 \end{pmatrix} basis of IR^{3}$$

$$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \begin{pmatrix} -i \\ 1 \\ 1 \end{pmatrix} basis of IR^{3}$$

dim {0} =0

$$dim (\mathbb{R}^{M}) = n \qquad \begin{bmatrix} i \\ 0 \end{bmatrix}_{1} \end{bmatrix}_{1} \begin{bmatrix} i \\ 0 \end{bmatrix}_{1} \begin{bmatrix} i \\ 0 \end{bmatrix}_{1} \begin{bmatrix} i \\ 0 \end{bmatrix}_{1} \end{bmatrix}_{1} \begin{bmatrix} i \\ 0 \end{bmatrix}_{1} \begin{bmatrix} i \\ 0 \end{bmatrix}_{1} \end{bmatrix}_{1} \end{bmatrix}_{1} \end{bmatrix}_{1} \begin{bmatrix} i \\ 0 \end{bmatrix}_{1} \end{bmatrix}_{1} \end{bmatrix}_{1} \end{bmatrix}_{1} \end{bmatrix}_{1} \end{bmatrix}_{1} \begin{bmatrix} i \\ 0 \\ 0 \end{bmatrix}_{1} \\ \begin{bmatrix} i \\ 0 \\ 0 \end{bmatrix}_{1} \end{bmatrix}_{1} \end{bmatrix}_{1} \end{bmatrix}_{1} \\ \begin{bmatrix} i \\ 0 \\ 0 \end{bmatrix}_{1} \end{bmatrix}_{1} \end{bmatrix}_{1} \\ \begin{bmatrix} i \\ 0 \\ 0 \end{bmatrix}_{1} \end{bmatrix}_{1} \\ \begin{bmatrix} i \\ 0 \\ 0 \end{bmatrix}_{1} \end{bmatrix}_{1} \end{bmatrix}_{1} \\ \begin{bmatrix} i \\ 0 \\ 0 \end{bmatrix}_{1} \end{bmatrix}_{1} \\ \begin{bmatrix} i \\ 0 \\ 0 \end{bmatrix}_{1} \end{bmatrix}_{1} \\ \begin{bmatrix} i \\ 0 \\ 0 \end{bmatrix}_{1} \end{bmatrix}_{1} \\ \begin{bmatrix} i \\ 0 \\ 0 \end{bmatrix}_{1} \end{bmatrix}_{1} \\ \begin{bmatrix} i \\ 0 \\ 0 \end{bmatrix}_{1} \end{bmatrix}_{1} \\ \begin{bmatrix} i \\ 0 \\ 0 \end{bmatrix}_{1} \end{bmatrix}_{1} \\ \begin{bmatrix} i \\ 0 \\ 0 \end{bmatrix}_{1} \end{bmatrix}_{1} \\ \begin{bmatrix} i \\ 0 \\ 0 \end{bmatrix}_{1} \end{bmatrix}_{1} \\ \begin{bmatrix} i \\ 0 \\ 0 \end{bmatrix}_{1} \end{bmatrix}_{1} \\ \begin{bmatrix} i \\ 0 \\ 0 \end{bmatrix}_{1} \end{bmatrix}_{1} \\ \begin{bmatrix} i \\ 0 \\ 0 \end{bmatrix}_{1} \end{bmatrix}_{1} \\ \begin{bmatrix} i \\ 0 \\ 0 \end{bmatrix}_{1} \end{bmatrix}_{1} \\ \begin{bmatrix} i \\ 0 \\ 0 \end{bmatrix}_{1} \end{bmatrix}_{1} \\ \begin{bmatrix} i \\ 0 \\ 0 \end{bmatrix}_{1} \end{bmatrix}_{1} \\ \begin{bmatrix} i \\ 0 \\ 0 \end{bmatrix}_{1} \end{bmatrix}_{1} \\ \begin{bmatrix} i \\ 0 \\ 0 \end{bmatrix}_{1} \\ \begin{bmatrix} i \\ 0 \\ 0 \end{bmatrix}_{1} \end{bmatrix}_{1} \\ \begin{bmatrix} i \\ 0 \\ 0 \end{bmatrix}$$

For w wahrix
$$A = \begin{bmatrix} 1 & 1 & 3 & 0 \\ 0 & -1 & -1 & -1 \\ 1 & 2 & 4 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}$$

subspace = Col(A) $PPEF(A) = \begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$
dim (Col(A)) = rank(A) = 3
Musurer basis is $\begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$
 $\begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$
 $\begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$
 $\begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$
 $\begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$
 $\begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$
 $\begin{bmatrix} 1 & 0 & 1 & 0 \\ -9 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$
 $\begin{bmatrix} 1 & 0 & 1 & 0 \\ -9 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$

Ex2 Do the polynomials
1-+, 1++, t²-1, t³+t²
span IP₃? Do they form
a basis?
Solib dim (IP₃) = 4 basis 1, t, t², t³
If we show that the preven poly's are
linearly inder pondent then the form
a basis.

$$(1-t) + (2(1+t) + (3(t-1)) + (4(t^3 t+2)))$$

 $((1-t) + (2(1+t) + (3(t-1)) + (4(t^3 t+2))))$
 $((1-t) + (2(1+t) + (3(t-1)) + (4(t^3 t+2))))$
 $((1-t) + (2(1+t) + (3(t-1)) + (4(t^3 t+2)))))$
 $((1-t) + (2(1+t) + (3(t-1)) + (4(t^3 t+2)))))$
 $((1-t) + (2(1+t) + (3(t-1)) + (4(t^3 t+2))))))))$