5.3 DIAGONALIZATION

Diagonal matrices:

$$
\begin{array}{ccc}
\lambda_{1}, \\
1 \times 1
\end{array} \quad\left[\begin{array}{ccc}
\lambda_{1} & 0 \\
0 & \lambda_{2} \\
2 \times 2
\end{array}\right], \quad\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & 0 \\
0 & \lambda_{2} \\
0 & 0 \\
0 & \lambda_{3}
\end{array}\right], \cdots,\left[\begin{array}{ccc}
\lambda_{1} & & 0 \\
0 & \ddots & \lambda_{n} \\
0 & 3 \times 3
\end{array}\right]
$$

Our goal today:
Given A matrix
find D diagonal and P invertible sit.

$$
=n=P D P^{-1} \leftarrow A \text { similar to } D \text {. }
$$

If such D and P exist, we say A is diagonaliaable

Facts: If this is possible them

$$
\begin{aligned}
& \text { If this is possible them } \\
& D=\left(\begin{array}{ccc}
\lambda_{1} & \ddots \\
0 & \ddots & \lambda_{n}
\end{array}\right) \text { where } \lambda_{i} \text { are ecgenvalues of } A
\end{aligned}
$$

a nod the columns of P are linearly independent eigenvectors of A.
A is diagonalizable $\Longleftrightarrow A$ has n hn.ind. eigenvectors.
Ex 1) On $03 / 19 / 21$ we saw that $A=\left[\begin{array}{cc}1 & 1 \\ -2 & 4\end{array}\right]$
has eigenvalues $\lambda_{1}=2$ and $\lambda_{2}=3$ and corresponoling ecgenxettore $\vec{v}_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right] \quad \vec{v}_{2}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$
A is diagunalizable and we cha ch choose

$$
\begin{array}{rlrl}
D=\left[\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right] & P & =\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right] & P^{-1}=\left[\begin{array}{cc}
2 & -1 \\
-1 & 1
\end{array}\right] \\
A & =P D P^{-1} & <\text { compute }
\end{array}
$$

κ compute from p

$$
\left[\begin{array}{cc}
1 & 1 \tag{2}\\
-2 & 4
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right]\left[\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right]\left[\begin{array}{cc}
2 & -1 \\
-1 & 1
\end{array}\right]
$$

one can also choose

$$
D=\left[\begin{array}{ll}
3 & 0 \\
0 & 2
\end{array}\right] \quad P=\left[\begin{array}{ll}
1 & 1 \\
2 & 1
\end{array}\right] \quad P^{-1}=\left[\begin{array}{cc}
-1 & 1 \\
2 & -1
\end{array}\right]
$$

one car also choose

$$
\begin{aligned}
& D=\left[\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right] \quad P=\left[\begin{array}{ll}
c_{1} & c_{2} \\
c_{1} & 2 c_{2}
\end{array}\right] \quad P^{-1}=[] \\
& c_{1} \neq 0 \\
& c_{1} c_{2} \neq 0 \\
& c_{1}\left[\begin{array}{l}
1 \\
1
\end{array}\right] \quad c_{2}\left[\begin{array}{l}
1 \\
2
\end{array}\right]
\end{aligned}
$$

Ex If $A=\left[\begin{array}{cc}1 & 1 \\ -2 & 4\end{array}\right]$ fol $A^{100} . A^{M}=$?

Sol' n

$$
\begin{array}{ll}
A=P D P^{-1} & A^{2}=A \cdot A=P D \underbrace{P^{-1} P D P^{-1}}_{I} \\
A^{2}=P D^{2} P^{-1} \\
A^{n}=P D^{n} P^{-1} & \text { but } \quad D=\left[\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right] \quad D^{n}=\left[\begin{array}{cc}
2^{n} & 0 \\
0 & 3^{n}
\end{array}\right] \\
A^{n}=P\left[\begin{array}{ll}
2^{n} & 0 \\
0 & 3^{n}
\end{array}\right] P^{-1}=\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right]\left[\begin{array}{cc}
2^{n} & 0 \\
0 & 3^{n}
\end{array}\right]\left[\begin{array}{cc}
2 & -1 \\
-1 & 1
\end{array}\right]
\end{array}
$$

Algorithm for diag. process
(1) Find eigenvalues of A by solving $\operatorname{det}(A-\lambda I)=0$

$$
\Rightarrow \lambda_{1}, \lambda_{2}, . . \lambda_{p} \quad p \leq n
$$

say $m_{i}=$ the algibroce multiplicity of λ_{1}
(2) Find a basis B_{i} of each ecigenspace $\operatorname{Nul}\left(A-\lambda_{i} I\right)$.

$$
\begin{aligned}
& m_{i} \geqslant \underbrace{\operatorname{dim}\left(N u l\left(A-\lambda_{i} I\right)\right)} \geqslant 1 \\
& \begin{array}{l}
\text { umber of elements } \\
\text { of } B i
\end{array}
\end{aligned}
$$

(3) A is diagoralizable precisely when
that is it the set $\beta_{1} \cup \beta_{2} \cup . \cup \beta_{\rho}$ has n-elements.

Thu If A mas n distinct real ecgenxalues then A is diaguralizable

$$
\text { (nullity } \left.\left(A-\lambda_{i} I\right)=1\right)
$$

Ex 3 $A=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0\end{array}\right]$ is $A \quad d$-able?

$$
\begin{aligned}
& 1 \quad A=\left|\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & -1 & 0
\end{array}\right| \text { is } A \quad d-a b l e! \\
& \operatorname{det}(A-\lambda I)=\left|\begin{array}{ccc}
1-\lambda & 0 & 0 \\
0 & -\lambda & 1 \\
0 & -1 & -\lambda
\end{array}\right|=(1-\lambda)\left|\begin{array}{cc}
-\lambda & 1 \\
-1 & -\lambda
\end{array}\right|=(1-\lambda)\left(\lambda^{2}+1\right) \\
& \lambda_{1}=1 \quad \text { no other roots }
\end{aligned}
$$

$$
(1-\lambda)\left(\lambda^{2}+1\right)=0 \quad \Rightarrow \quad \lambda_{1}=1
$$

$m_{1}=1$
there is just 1

$$
\operatorname{dim}(\operatorname{Nul}(A-I))=1
$$ lin. inset- eigenvector

Thus A is not d-able!.
$\lambda^{2}+1=0$ no real roots.
Ex 4 $A=\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1\end{array}\right]$ is $A \quad d$-able?
(1)

$$
\begin{aligned}
& \operatorname{det}(A-\lambda I)=\left|\begin{array}{ccc}
2-\lambda & 0 & 0 \\
0 & 1-\lambda & 1 \\
0 & 1 & 1-\lambda
\end{array}\right|=(2-\lambda)\left|\begin{array}{cc}
1-\lambda & 1 \\
1 & 1-\lambda
\end{array}\right| \\
& =(2-\lambda)\left(1-2 \lambda+\lambda^{2}-1\right)=(2-\lambda) \lambda(\lambda-2) \\
& =-(\lambda-2)^{2} \lambda \\
& \lambda_{1}=2 \text { has multhphectys }=2 \text {. }
\end{aligned}
$$

$x_{2}=0$ was multiphectm $=1$.
(2) $\lambda_{1}=2 \quad \operatorname{Nul}(A-2 I)=$? basis for hus.
hasis of NuR (A-2I)

$$
\beta_{1}=\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]\right\}
$$

$$
\lambda_{2}=0 \quad \operatorname{Nul}(A-0 I)=\operatorname{Nul}(A)
$$

$$
A-0 I=A=\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 1 & 1 \\
0 & 1 & 1
\end{array}\right] \operatorname{RPFRR}^{\operatorname{Nul}}\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{1} \\
x_{3}
\end{array}\right]
$$

$$
x_{3}=5
$$

$$
x_{1}=0
$$

$$
x_{2}+x_{3}=0
$$

$$
x_{2}=-s
$$

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
0 \\
-5 \\
5
\end{array}\right]=s\left[\begin{array}{l}
0 \\
-1 \\
1
\end{array}\right]
$$

basis of $\operatorname{Nul}(A)=\left\{\begin{array}{c}0 \\ -1 \\ 1\end{array}\right]\left\{=\beta_{2}\right.$
A is d-able.

$$
D=\left[\begin{array}{ccc}
2 & 0 & 0 \tag{3}\\
0 & 2 & 0 \\
0 & 0 & 0
\end{array}\right] \quad P=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1, & -1 \\
0 & 1 & 1 \\
0 & 1
\end{array}\right]
$$

$E \times 5 \quad A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$

$$
\begin{aligned}
& \operatorname{det}(A-\lambda I)=\left|\begin{array}{cc}
1-\lambda & 1 \\
0 & 1-\lambda
\end{array}\right| \\
& =(1-\lambda)^{2}=0
\end{aligned}
$$

$$
\lambda_{1}=1 \quad \text { mulbplicity }=2
$$

$$
\begin{aligned}
& A-2 I=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & -1 & 1 \\
0 & 1 & -1
\end{array}\right] \underset{\text { RREF }}{\sim} \quad / \quad\left[\begin{array}{ccc}
0 & 1 & -1 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
s & t \\
\text { solve }
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{1} \\
x_{3}
\end{array}\right](4) \\
& \backslash\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & -1
\end{array}\right] \\
& {\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
s \\
t \\
+
\end{array}\right]=s\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]++\left[\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right]} \\
& x_{1}=s \\
& x_{1}-x_{3}=0 \\
& x_{3}=t
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{Nul}(A-I)=? \quad A-I=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] \\
& {\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{1}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]} \\
& x_{2}=0 \\
& x_{1}=S \\
& B_{1}=\left\{\left[\begin{array}{ll}
1 \\
0 & 1
\end{array}\right\}\right. \\
& \text { uullity } \backslash t-I \mid=1<2 \\
& {\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
s \\
0
\end{array}\right]=s\left[\begin{array}{l}
1 \\
0
\end{array}\right]} \\
& \text { uullity } \backslash 1-I \mid=1<2
\end{aligned}
$$

A is not oliagonalirable.
(6)

