A vector space is a nonempty set V of objects, called vectors, on which are defined two operations, called addition and multiplication by scalars (real numbers), subject to the ten axioms (or rules) listed below.¹ The axioms must hold for all vectors \mathbf{u} , \mathbf{v} , and \mathbf{w} in V and for all scalars c and d.

1. The sum of **u** and **v**, denoted by $\mathbf{u} + \mathbf{v}$, is in V.

2.
$$u + v = v + u$$
.

- 3. (u + v) + w = u + (v + w).
- 4. There is a zero vector 0 in V such that $\mathbf{u} + \mathbf{0} = \mathbf{u}$.
- 5. For each **u** in V, there is a vector $-\mathbf{u}$ in V such that $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$.

6. The scalar multiple of \mathbf{u} by c, denoted by $c\mathbf{u}$, is in V.

- 7. c(u + v) = cu + cv.
- 8. $(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$.
- **9.** $c(d\mathbf{u}) = (cd)\mathbf{u}$.
- 10. $1u = \dot{u}$.

Basic examples of vector spaces

$$E \times I$$
 $IR^{n} = \left\{ \begin{bmatrix} a_{1} \\ a_{2} \\ \vdots \\ a_{n} \end{bmatrix} : a_{i} \text{ are real numbers} \right\}$

Ex4 Fix a set D. Let Y be
all the functions
$$f: D \rightarrow iR$$

V vector space $(f+g)(x) = f(x) + g(x)$
 $(c+)(x) = c f(x)$

Subspaces of vetor space
Suppose V is a vector space with addition +
and scalar multiplication
Let H be a subset of V
H V utility in H
c u in H
By definition say H is a subspace of V if
the following conditing are solvished
(1)
$$\vec{o}_{v}$$
 is in H (\vec{o} is element of V)
(2) If \vec{u} and \vec{v} are in H then $\vec{u} + \vec{v}$ is in H
(2) If \vec{u} is in H and C in IR then \vec{c} is in H.
If \vec{u} is a subspace, then H is a vector space
in itself.
Example of pubspaces
Ex.5 $V = R^{3}$
H = $\left\{ \begin{pmatrix} a \\ b \\ b \end{pmatrix} \right\}$: $a_{1}b$ are in R^{3} subset of R^{2}
H is a subspace. Why? Because it subspace
(1) $\begin{pmatrix} a \\ b \\ b \end{pmatrix}$ belongs to H.
(2) $\begin{pmatrix} a \\ b \\ b \end{pmatrix} = \begin{pmatrix} a^{2} \\ c \\ b \end{pmatrix}$ in H
(3) \vec{u} in R^{2} $\begin{pmatrix} a^{2} \\ b \end{pmatrix} = \begin{pmatrix} c^{2} \\ c \\ b \end{pmatrix}$ in H
(3) \vec{u} in R^{2} $\begin{pmatrix} a \\ b \\ b \end{pmatrix} = \begin{pmatrix} c^{2} \\ c \\ b \end{pmatrix}$ in H
(3) \vec{u} in R^{2} \vec{u} in R^{2} \vec{u} in R^{2} \vec{u} \vec{u} \vec{u} \vec{u}
 \vec{u} \vec{u}

Consisting of all linear combinations

$$C_{1} \overrightarrow{v}_{1} + C_{2} \overrightarrow{v}_{2} + \dots + C_{p} \overrightarrow{v}_{p}$$
where $C_{1}, c_{1}, \dots, c_{p}$ are real numbers
Sqan $\{\overrightarrow{v}_{1}, \dots, \overrightarrow{v}_{n}\} = \{c, \overrightarrow{v}_{1} + \dots + C_{p} \overrightarrow{v}_{n}: c_{1} \text{ are in } \mathbb{R}\}$
 H is a subspace of V .
The subspace of Y generated or spanned
by $\{v_{1}, v_{2}, \dots, v_{p}\}$.
Ex8. Let H be all the xectors in \mathbb{R}^{4}
of two form $\begin{bmatrix} s-t\\ s+t\\ s \end{bmatrix}$ where s, t, r are \mathbb{R}
 $H = \left\{ \begin{bmatrix} s-t\\ s+t\\ s \end{bmatrix} : s, t, r \in \mathbb{R}^{4} \right\}$
Show that H is a subspace of \mathbb{R}^{4} .
Indeed of verticing (1) $(c_{1}, (S_{1}) = we$
realize H as the span d some set of
 v_{1} by $\begin{bmatrix} s-t\\ s+t\\ s \end{bmatrix} = \begin{bmatrix} s\\ s\\ s\\ s \end{bmatrix} + \begin{bmatrix} -t\\ s\\ s \end{bmatrix} + \begin{bmatrix} 0\\ s\\ s \end{bmatrix} + \begin{bmatrix} 0\\ s\\ s \end{bmatrix}$
Thus $H = span \left\{ \begin{bmatrix} 1\\ s\\ s\\ s \end{bmatrix} + \begin{bmatrix} 1\\ s\\ s\\ s \end{bmatrix} + \begin{bmatrix} 0\\ s\\ s\\ s \end{bmatrix}$

5

$$\frac{huswer:}{Becourse} = H = \mathbb{R}^{3}.$$

$$\frac{Becourse}{Becourse} = hor any vector \begin{bmatrix} hi \\ hs \end{bmatrix}$$

$$wr = can - husd = \frac{c_{1} \cdot c_{n}}{c_{1}} \frac{c_{2}}{c_{3}} + c_{5} \begin{bmatrix} 0 \\ 0 \\ -1 \end{bmatrix} = \begin{bmatrix} hi \\ hs \end{bmatrix}$$

$$\frac{hi}{bs} = \begin{bmatrix} hi \\ hs \end{bmatrix}$$

$$\frac{hi}{bs}$$

Moreover O not in H.

$$E_{X|2} H = \left\{ \begin{bmatrix} 2 \\ p \\ e \end{bmatrix} : a_{,b}, c_{,are} in R_{2} \right\}$$

$$and ab = 0$$
is $H = 2$ subspace of R^{3} ?
$$Mswer: \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} in H$$

$$H = 0$$

$$H = \left\{ \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

$$H = \left\{ \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix} : a_{,b}, c_{,are} in R_{2} \\ aud = a+b\tau c = 1 \end{bmatrix}$$

$$K = 2 \text{ subspace} d R^{3}$$
?
$$Mo! in H = 0 \text{ in } R = 1$$

$$K = 2 \text{ subspace} d R^{3}$$
?
$$Mo! in H = \left\{ \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix} : a_{,b}, c_{,are} in R_{2} \\ aud = a+b\tau c = 1 \end{bmatrix}$$

$$K = 2 \text{ subspace} d R^{3}$$
?
$$Mo! in H = \left\{ \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \text{ wort in } H \\ H = \left\{ \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \end{bmatrix} \text{ wort in } H$$

$$K = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$W = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$W = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$W = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$W = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$W = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$W = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$W = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$W = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$W = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$W = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$W = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$W = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$W = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$W = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$W = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$W = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$W = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$W = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$W = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$W = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$W = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$W = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$W = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$W = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$W = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$W = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$W = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$W = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$W = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$W = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$W = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$W = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$W = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$W = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$W = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$W = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$W = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$W = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$W = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$W = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$W = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$W = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$W = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$W = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$W = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$W = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$W = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$W = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$W = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$W = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$W = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$W = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$W = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$W = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$W = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$W = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$W = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$W = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$W = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$W = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$W = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$W = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$W = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$W = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$W = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$W = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$W = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$W = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Say A_1, A_2 are in H Thus $F \cdot A_1 = 0$ $F \cdot A_2 = 0$ $0 = F \cdot A_1 + F \cdot A_2 = F \cdot (A_1 + A_2)$ ALL ALL IN H. M If A IN H. and C I'N IR $F(CA) = C(FA) = C \cdot 0 = 0$ = 0

F)