6.2 |Orthogonal sets

Recall that for \vec{u}, \vec{v} in \mathbb{R}^{n} say that \vec{u} is orthogonal to \bar{v} written $\bar{u} \perp \bar{v}$ if $\vec{u} \cdot \bar{v}=0$

$$
\begin{aligned}
& \bar{u}=\left[\begin{array}{c}
u_{1} \\
\vdots \\
u_{n}
\end{array}\right] \quad \vec{v}=\left[\begin{array}{c}
v \\
\vdots \\
v_{n}
\end{array}\right] \\
& \vec{u} \cdot \vec{v}=u_{1} v_{1}+\cdots+u_{n} v_{n}
\end{aligned}
$$

Remark \vec{o} is orthogonal to any other vector
$S=\left\{\vec{u}_{1}, \ldots, \vec{u}_{p}\right\}$ set of vectors in \mathbb{R}^{n}
S is an orthogonal set if $\bar{u}_{i} \cdot \bar{u}_{j}=0$ for $i \neq j$
Fact S orthogonal and each $\bar{u}_{i} \neq 0$
then S linearly independent. Thus S is a basis for $\operatorname{span}(s)$.
Proof: Verify S lin.indep.
suppose that $c_{1} u_{1}+\ldots+c_{p} u_{p}=0$
for some c_{i} in \mathbb{R}. Must show: all $c_{i}=0$.
Compute $u_{i} \cdot(\overbrace{c_{1} u_{1}+\cdots+c_{i} u_{i}+\cdots+r_{n}}^{0} u_{n})$

$$
=c_{1} \underbrace{u_{i} \cdot u_{i}}_{\text {thus } c_{i} \| u_{i} n^{2}=0} \Rightarrow c_{i}=0
$$

$E_{x} 1$

$$
\begin{aligned}
& S=\left\{\underset{u_{1}}{\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right]}, \underset{u_{2}}{\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]}, \underset{u_{3}}{\left[\begin{array}{c}
1 \\
1 \\
-2
\end{array}\right]}\right\} \sim \underset{\text { ret }}{\substack{\text { ortugonol }}} \\
& u_{1} \cdot u_{2}=0 \quad u_{2} \cdot u_{3}=0 \quad u_{1} \cdot u_{3}=0 \\
& \operatorname{span}(s)=\mathbb{R}^{3} \\
& S=\left\{\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right]_{u_{1}}, \underset{u_{2}}{1}, \underset{u_{3}}{1} \begin{array}{l}
1 \\
1 \\
0
\end{array}\right]<\left[\begin{array}{l}
0 \\
0
\end{array}\right] \text { (orthogoung }
\end{aligned}
$$

Ex 2

Def in An orthogonal basis for a subspace W of \mathbb{R}^{n} is a basis of W that is or thogonal

Fact If $\left\{\bar{u}_{1}, \ldots, \bar{u}_{p}\right\}$ or thogonal basis of W for each y in W

$$
y=c_{1} \bar{u}_{1}+\cdots+c_{p} \bar{u}_{p}
$$

where

$$
c_{i}=\frac{y \cdot u_{i}}{u_{i} \cdot u_{i}} \quad i=1, \ldots, p
$$

Proof:

$$
\begin{aligned}
& y=c_{1} \bar{u}_{1}+\cdots+c_{p} \overline{u_{p}} \Rightarrow \\
& y \cdot u_{i}=\left(c_{1} \vec{u}_{1}+\cdots+c_{i} \cdot \overrightarrow{u_{i}}+\cdots+c_{p} \bar{v}_{p}\right) \cdot \overrightarrow{u_{i}} \\
&=c_{1} \bar{u}_{1} \cdot \bar{u}_{i}+\cdots+\frac{c_{i} \overline{u_{i}} \cdot \bar{u}_{i}}{=0}+\cdots \\
&+c_{p} \frac{u_{p} \cdot \bar{u}_{i}}{=0}
\end{aligned}
$$

Ex Write $\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$ as a linear combination
of the rectors from Ex : $\left[\begin{array}{c}1 \\ -1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 1 \\ n_{1}\end{array}\right],\left[\begin{array}{c}1 \\ 1 \\ -2 \\ u_{3}\end{array}\right]$
Sol'n:

$$
\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=c_{1}\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right]+c_{2}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]+c_{3}\left[\begin{array}{c}
1 \\
1 \\
-2
\end{array}\right]
$$

Find c_{1}, r_{2}, c_{3}

$$
\begin{aligned}
& c_{1}, r_{2}, r_{3} \cdot \\
& \begin{array}{l}
{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \cdot\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right]=c_{1}\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right] \cdot\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right]+c_{2}\left[\begin{array}{c}
1 \\
1 \\
1
\end{array}\right] \cdot\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right]} \\
1=\frac{c_{1} \cdot 2}{c_{3}\left[\begin{array}{c}
1 \\
1 \\
-2
\end{array}\right] \cdot\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right]} \\
=0
\end{array}
\end{aligned}
$$

$$
c_{1}=\frac{y \cdot u_{1}}{u_{1} \cdot u_{1}}
$$

$$
\begin{aligned}
& c_{2}=\frac{Y \cdot u_{2}}{u_{2} \cdot u_{2}} \\
& c_{3}=\frac{1 \cdot u_{3}}{u_{3} \cdot u_{3}}
\end{aligned}
$$

The orthogonal projection of a vector onto- another non-zero vector u in \mathbb{R}^{n}

Ex

Denote this projection by

$$
\begin{aligned}
& \hat{y} \\
& \hat{y}=\frac{y \cdot u}{u \cdot u} u \\
& \text { AiM: Want to write }
\end{aligned}
$$ y as a sum $y=\hat{y}+z$ such that \hat{y} is parallel to u $z \perp u$

$$
y=\left[\begin{array}{l}
2 \\
2
\end{array}\right] \quad \hat{y}=\left[\begin{array}{l}
2 \\
0
\end{array}\right]
$$

$$
y=\hat{y}+z
$$

Proof of seek c in \mathbb{R} such that formula
for \hat{y}

$$
\begin{aligned}
& y-\hat{y} \perp u \\
& y-c u \perp u \\
& (y-c u) \cdot u=0 \\
& y \cdot u-c u \cdot u=0 \\
& c=\frac{y \cdot u}{u \cdot u}
\end{aligned}
$$

Remark: If one replaces u by $\lambda u \quad \lambda$ in \mathbb{R} \hat{y} does not change.

$$
\frac{y \text { not change. }}{u \cdot u} n=\hat{y}=\frac{y \cdot(x u)}{(x u) \cdot(x n)}
$$

$E \times 4$

$$
\begin{gathered}
\left.y=\left[\begin{array}{c}
2 \\
-1 \\
0
\end{array}\right] \quad u=\frac{y \cdot u}{u-u} u \quad \begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \\
\hat{y}=\frac{\left[\begin{array}{c}
2 \\
-1 \\
0
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]}{\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \\
=\frac{2-1}{3}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=\frac{1}{3}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
\end{gathered}
$$

NOTATONS if $L=\frac{\operatorname{span}\{\bar{u}\}=\{\lambda u: \lambda i n \mathbb{R}\}\}}{\hat{\gamma}}$

ORTHONORMAL SETS
$S=\left\{u_{1}, \ldots, u_{p}\right\}$ is orthonomal if
it is orthogonal and each u_{i} is a unit vector

$$
\left\|u_{i}\right\|=1 \quad i=1, \ldots, p
$$

In this case S is an orthonormal basis for

$$
W=\operatorname{spar}(S)
$$

Ex Find 2 different orthonormal bases of \mathbb{R}^{3}.

$$
\begin{aligned}
& \left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right\} \\
& \left\{\left[\begin{array}{l}
1 / \sqrt{2} \\
1 / r_{2} \\
0
\end{array}\right],\left[\begin{array}{c}
1 / \sqrt{2} \\
-1 / \sqrt{2} \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right\}
\end{aligned}
$$

Fact A matrix U has orthonormal columns if and only if $U^{\top} U=I_{n}$.

Proof: The suppose U has ortries of (i, j) of $\cup^{T} V$

$$
\text { The entries of } \quad u_{i}^{\top} u_{j}=u_{i} \cdot u_{j}=\left\{\begin{array}{lll}
1 & \text { if } & i=j \\
0 & \text { iL } & i \neq j
\end{array}\right.
$$

Fact Properties of $m \times n$ matrices with ortogonal columns
(a) $\|U x\|=\|x\| \quad$ for x in \mathbb{R}^{n}
(b) $\quad(u x) \cdot(U y)=x \cdot y \quad x, y$ in \mathbb{R}^{n}
(c) $\quad(u x) \cdot(u y)=0 \quad \Longleftrightarrow \quad x \cdot y=0$

If $m=n$ say U is ORTHOGONAL

ORTHOGONAL MATRICES

An $n \times n$ square matrix is called ORTHOGONAL if it has orthonormal columns.

Moreover if U is $n \times n$ then
U is orthogonal $\Longleftrightarrow U$ is invertible and

$$
U^{-1}=U^{\top}
$$

$$
-E N D-
$$

