6.5 Least-squares Problems
distance between vectors

$$
\|a-b\|=\left(\left(a_{1}-b_{1}\right)^{2}+\left(a_{1}-b_{2}\right)^{2}+\left(a_{3}-b_{3}\right)^{2}\right)^{1 / 2}
$$

Revisit the meaning of linear system

$$
\begin{gathered}
A x=b \\
{\left[\begin{array}{cc}
3 & 4 \\
2 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{1}
\end{array}\right]=\left[\begin{array}{c}
11 \\
12
\end{array}\right] \quad \begin{array}{l}
3 x_{1}+4 x_{2}=11 \\
2 x_{1}-x_{2}=12
\end{array}} \\
x_{1}\left[\begin{array}{l}
3 \\
2
\end{array}\right]+x_{2}\left[\begin{array}{c}
4 \\
-2
\end{array}\right]=\left[\begin{array}{c}
11 \\
12
\end{array}\right]
\end{gathered}
$$

Note: we seek to write b as linear combination of the columns of A.
Thus $A x=b$ is consistent (it has solutions) $\Leftrightarrow b$ belongs $\operatorname{col}(A)=\operatorname{span}\left\{a_{1}, \ldots, a_{n}\right\}$

$$
A=\left[a_{1}, \ldots, a_{n}\right]
$$

What to do when $A x=b$ is not consistent?
The next best thine is to search for x such that $\|b-A x\|$ is as small as possible.

b is not in col (A)
This is solved as follows

$$
\hat{b}=\operatorname{proj}_{w}^{b}
$$

What about me system

$$
A \hat{x}=\hat{b}
$$

This is consistent (has sol's) since \hat{b} belongs $\hbar \operatorname{col}(A)$

If \hat{x} salsifies $A \hat{x}=\hat{b}$ then

$$
\text { since } \quad b-\hat{b} \perp \quad \operatorname{col}(1-1)=W
$$

$$
\begin{aligned}
& u, v \text { in } \mathbb{R}^{2} \\
& u=\left[\begin{array}{c}
1 \\
2
\end{array}\right] \quad v=\left[\begin{array}{c}
-2 \\
1
\end{array}\right] \\
& u \cdot v=0 \\
& (1,2)\left[\begin{array}{c}
-2 \\
1 \\
1
\end{array}\right)=0 \\
& 1 \times 1 \times 1 \\
& u^{\top} v=0
\end{aligned}
$$

Thus: I

$$
b-\hat{b} \perp \operatorname{col}(1-)=W
$$

$$
b-A \hat{x} \frac{1}{\mathbb{\pi}} \operatorname{col}(A)
$$

$$
A=([\rceil \cdots[\rceil)
$$

$$
A^{T}(b-A \hat{x})=0
$$

$$
\begin{array}{r}
A^{\top}=\left[\begin{array}{ll}
1 & 3
\end{array}\right] \\
\binom{\text { each row }}{\text { of } A^{\top}}(b-A \hat{x})=0
\end{array}
$$

\hat{x} is a solution of

$$
A^{\top} A \hat{x}=A^{\top} b
$$

normal system
associated

$$
\text { to } A x=b \text { - }
$$

\hat{x} is called a least-spuares
solution

$$
\|b-A \hat{x}\|
$$

Thm The least-squares solutions of

$$
A x=b
$$

coincioles wifl the set of solutions of the morwal system $\quad A^{\top} A \hat{x}=A^{\top} b$.

Any such \hat{x} has the properth that

$$
\|b-A \hat{x}\| \leq\|b-A \times\| \quad \text { for } 2 n y
$$

$$
x \text { in } \mathbb{R}^{n}
$$

Moreover the orthogovid projection

$$
\begin{aligned}
\operatorname{proj}(b)=\hat{b}= & A \hat{x} \text { whore } \\
\operatorname{col}(A) & \hat{x} \text { is auy } \\
& \text { least-squares sol'n. }
\end{aligned}
$$

Ex1 Find least-squares sol's of

$$
\left[\begin{array}{cc}
1 & -1 \\
1 & 0 \\
1 & 1 \\
1 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
-2 \\
1 \\
2 \\
1
\end{array}\right]
$$

Normal system:

$$
\begin{aligned}
& \begin{array}{l}
{\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
-1 & 0 & 1 & 2
\end{array}\right]\left[\begin{array}{cc}
1 & -1 \\
1 & 0 \\
1 & 1 \\
1 & 2
\end{array}\right]\left[\begin{array}{llll}
\hat{x}_{1} \\
\hat{x}_{1}
\end{array}\right]=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
-1 & 0 & 1 & 2
\end{array}\right]\left[\begin{array}{c}
-2 \\
1 \\
2 \\
1
\end{array}\right]}
\end{array} \\
& {\left[\begin{array}{ll}
4 & 2 \\
2 & 6
\end{array}\right]\left[\begin{array}{l}
\hat{x}_{1} \\
\hat{x}_{1}
\end{array}\right]=\left[\begin{array}{c}
8 \\
18
\end{array}\right] \quad\left[\begin{array}{c}
\hat{x}_{1} \\
\hat{x}_{1} \\
\text { sdve }
\end{array}\right]=\left[\begin{array}{c}
\frac{3}{5} \\
\frac{14}{5}
\end{array}\right]} \\
& \text { solve } \\
& \text { unique } \\
& \text { erast-rse sol'n. }
\end{aligned}
$$

$A x=b \quad$ inconsistent
Search for $*$ s.t. $\|b-A \times\|$ is as small as possible. There is precisely one such x since $A T A$ is invertible

$$
\hat{x}=\left[\begin{array}{l}
\frac{3}{5} \\
\frac{14}{5}
\end{array}\right]
$$

$\operatorname{Col}(A)$ is 2 -dimensional

Error from on exact solution is

$$
\begin{aligned}
& \text { from on exact solution is } \\
& \|b-A \hat{x}\|=\|b-\hat{b}\|=\left\|\left[\begin{array}{c}
\frac{1}{5} \\
-\frac{2}{5} \\
\frac{7}{5} \\
-\frac{4}{5}
\end{array}\right]\right\|=\frac{\sqrt{70}}{5} \\
&
\end{aligned}
$$

Remark Find a line which/interpolates
seek $\quad f(t)=x_{1}+x_{2}+$ s.t

$$
\begin{aligned}
& f=x_{1}+x_{2}+ \\
& f(-1)=-2 \\
& f(01=1 \\
& f(1)=2
\end{aligned} \quad \begin{aligned}
& x_{1}-x_{2}=-2 \\
& x_{1}=1 \\
& x_{1}+x_{2}=2 \\
& x_{1}+2 x_{2}=7
\end{aligned}
$$

Alternate method if the columns of A are orthogonal

$$
A=\left[a_{1}, a_{2}, . ., a_{n}\right]
$$

$$
\hat{b}=\operatorname{proj}_{\operatorname{Col}(A)}=\frac{b \cdot a_{1}}{a_{1} \cdot a_{1}} \lambda_{1}+\cdots+\frac{b \cdot \lambda_{n}}{a_{n} \cdot \lambda_{n}} a_{n}
$$

How to solve $A \hat{x}=\hat{b}$?

$$
\hat{x}=\left[\begin{array}{c}
\frac{b \cdot \lambda_{1}}{\partial_{1} \cdot \lambda_{1}} \\
\vdots \\
\frac{b \cdot \lambda_{n}}{\lambda_{n} \cdot \lambda_{n}}
\end{array}\right]
$$

-END -
Remarks concerning Problem 13 on HW.
Recall what a least-squares solution \hat{x} for $A x=b$ does: It satisties the equation $A \hat{x}=\hat{b}$ where $\hat{b}=\operatorname{Proj}_{\mathrm{Col}_{\mathrm{O}}(A)}(b)=$ orthogonal projection of b onto the subspace $\mathrm{Col}(\mathbb{A})$
Giver A and b, the orthogonal
 pripotion \hat{b} is unique.
It has the property
that $\|b-\hat{b}\|<\|b-w\|$ for any w in $\operatorname{col}(A)$

Thus if $b_{1} \neq b_{2}$ are in $\operatorname{col}(A)$ and $\left\|b-b_{1}\right\|=\left\|b-b_{2}\right\|$ then neither b_{1} nor b_{2} can be equal to \hat{b}.
Now suppose that u, v are distuct vectors such that $A u \neq A v$ and $\|b-A n\|=\|b-A v\|$
Is it possible that at least one of u or v could be a least-squaressolution of $A x=b$?

