6.7

Inner product spaces

Inner products are generalizations of the dot product.
Def'n An inner product on a vector space V is a function which associates to each pair of vectors u, v in V a real number

$$
\langle u, v\rangle
$$

Must satisfy the following axioms for all u, v, w in V and c in \mathbb{R}
(1) $\langle u, v\rangle=\langle v, u\rangle$
(2) $\langle u+v, w\rangle=\langle u, w\rangle+\langle v, w\rangle$
$(3 \mid\langle c u, v\rangle=c\langle u, v\rangle$
$(4 \mid\langle u, u\rangle \geqslant 0$ and $\langle u, u\rangle=0 \Longleftrightarrow u=0$.
A vector space endowed with an inner prooluet is called an inner product space.
$\overline{E_{x .1}} \quad V=\mathbb{R}^{n}\langle u, v\rangle=u \cdot v$

Ex.2 fix an $n \times n$ invertible matrix A
$\langle u, v\rangle=(A u) \cdot(A v)$ is an inner product

Note $\langle u, u\rangle=(A u) \cdot(A u)=\|A u\|^{2} \geqslant 0$
and $(u, u\rangle=0 \quad \Leftrightarrow \quad A u=0 \Leftrightarrow u=0$
A invertible.
$E \times 3 \quad V=\mathbb{R}^{2}\langle u, v\rangle=4 u_{1} r_{1}+6 u_{2} v_{2}$
corresponds to $A=\left[\begin{array}{ll}2 & 0 \\ 0 & \sqrt{6}\end{array}\right]$

$$
\begin{aligned}
& \left.(A u) \cdot(A v)=\left[\begin{array}{ll}
2 & 0 \\
0 & \sqrt{6}
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]\right) \cdot\left(\left[\begin{array}{cc}
\sqrt{2} & 0 \\
0 & \sqrt{6}
\end{array}\right]\left[\begin{array}{c}
v_{1} \\
v_{2}
\end{array}\right]\right) \\
& {\left[\begin{array}{lll}
2 & u_{1} & \\
\sqrt{6} & v_{2}
\end{array}\right] \cdot\left[\begin{array}{cc}
2 & v_{1} \\
\sqrt{6} & v_{2}
\end{array}\right]=4 u_{1} v_{1}+6 u_{2} v_{2}} \\
& \overline{E \times 4} \quad V=\mathbb{R}^{2} \quad(u, v)=(A \cup) \cdot(A v) \\
& A=\left[\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right] \quad A\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]=\left[\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]=\left[\begin{array}{c}
2 u_{1}+u_{2} \\
u_{1}+u_{2}
\end{array}\right] \\
& (u, v)=\left(2 u_{1}+u_{2}\right)\left(2 v_{1}+v_{2}\right)+\left(u_{1}+u_{2}\right)\left(v_{1}+v_{2}\right) \\
& \langle u, v\rangle=5 u_{1} v_{1}+3 u_{1} v_{2}+3 u_{2} v_{1}+2 u_{2} v_{2}
\end{aligned}
$$

$\overline{E \times 5} \quad V=P_{n}=$ polynomials of degree $\leq n$ $t_{0}, t_{1}, \ldots, t_{n}$ dishuct real numbers

$$
\langle p, q\rangle=p\left(t_{0}\right) q\left(t_{0}\right)+\cdots+p\left(t_{n}\right) q\left(t_{n}\right)
$$

$\overline{\underline{E \times 6}} \quad V=C[a, b]=\{$ continuous functions $f:\{a, b\rangle \rightarrow \mathbb{R}\}$

$$
\langle f, g\rangle=\int_{a}^{b} f(t \mid g(t) d t
$$

One can define length, distance, orthogonality with respect an inner product
by del

$$
\begin{aligned}
\|u\| & =\sqrt{\langle u, u\rangle} \\
\operatorname{dist}(u, v) & =\|u-v\|
\end{aligned}
$$

definition of orthogonality
$u \perp v<\langle u, v\rangle=0$
Ext Let \mathbb{R}^{2} have the inner product from Ex.2:

$$
\begin{aligned}
& \langle u, v\rangle=5 u_{1} v_{1}+3 u_{1} v_{2}+3 u_{2} v_{1}+2 u_{2} v_{2} \\
& \text { If } u=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \quad\|u\|^{2}=\left\langle\left[\begin{array}{l}
1 \\
0
\end{array}\left|,\left|\begin{array}{l}
1 \\
0
\end{array}\right|\right\rangle=5 \quad \| u v=\sqrt{5}\right.\right. \\
& \quad v=[01 \text { then they are NoT }
\end{aligned}
$$

If $u=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $v=\left[\begin{array}{l}0 \\ 1\end{array}\right]$ then they are Not orthogonal
$\sin u \quad\langle u, v\rangle=5 \cdot 0.0+3.1 \cdot 1+3 \cdot 0.1+20.1=3$
$3 u_{1} v_{2}$

$$
\begin{aligned}
& \text { Ex } \quad V=C[0, \pi] \quad\langle f, g\rangle=\int_{0}^{\pi} f(t) g(t) d t \\
& \|f\|=\left(\int_{0}^{\pi}(f(t))^{2} d t\right)^{1 / 2}=\sqrt{\langle f, f\rangle}=\sqrt{\int_{0}^{2 \pi} f(t / f(t / d t}
\end{aligned}
$$

$$
f(t)=\sin t \quad s(t)=\cos t \quad f \perp g
$$

since $\int_{0}^{\pi} \sin t \cos t d t=\left[\frac{\sin ^{2} t}{2}\right]_{0}^{\pi}=0-0=0$

One can compute orthogonal projections proj ${ }_{w} \times$

$$
\operatorname{proj}_{w} x=\frac{\left(x, v_{1}\right\rangle}{\left\langle v_{1}, v_{1}\right\rangle} v_{1}+\cdots+\frac{\left\langle x, v_{p}\right\rangle}{\left\langle v_{p}, v_{p}\right\rangle} v_{p}
$$

if v_{1}, \ldots, v_{p} orthogonal basis of W with respect $t<u, v z$ one can apply the 6 ram-Schmidt proces in any inner space. Just use $\langle u, v\rangle$ in place of usual dot product $u \cdot v$

Ex 8 Let P_{2} have the inner prooluet

$$
\text { Let } v 2 \text { have the } p(-1) q(-1)+p(0) q(0)+p(1) q(1)
$$

Find the orthogonal projection of $p(t)=t^{2}$ onto the subspace W of ρ_{2} spanned by $p_{0}(t)=1$ and $p_{1}(t)=t$.
Sol observe that $\langle p, q\rangle=\left[\begin{array}{l}p(-1) \\ p(0) \\ p(1)\end{array}\right] \cdot\left[\begin{array}{l}q(-1) \\ q(0) \\ q(1)\end{array}\right]$. observe that $p_{0} \perp p_{1}$ since $\left\langle p_{0}, p_{1}\right\rangle=0 \quad\left\langle p_{0}, p_{1}\right\rangle=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right] \cdot\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right]=0$.
Thus $\operatorname{proj}_{W}(p)=\frac{\left\langle p_{j} p_{0}\right\rangle}{\left\langle p_{0}, p_{0}\right\rangle} p_{0}+\frac{\left\langle p_{1} p_{1}\right\rangle}{\left\langle p_{1} p_{1}\right\rangle} p_{1}$

$$
\left\langle p_{0}, p_{0}\right\rangle=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=3
$$

$p_{0} \rightarrow\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right] \quad p_{1} \rightarrow\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right] \quad p_{2} \rightarrow\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$

$$
\left\langle P, P_{0}\right\rangle=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right] \cdot\left[\begin{array}{c}
1 \\
1 \\
1
\end{array}\right]=2
$$

$$
\begin{aligned}
& \left.\left\langle p, p_{0}\right\rangle=\left|\begin{array}{ll}
1 \\
0 \\
1
\end{array}\right| \begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]=0 \\
& \left\langle p, p_{1}\right\rangle=0
\end{aligned}
$$

$$
\operatorname{proj}_{w}(p)=\frac{2}{3} p_{0}=\frac{2}{3} \quad \operatorname{Proj}{ }_{w}\left(t^{2}\right)=\frac{2}{3} p_{0}=\frac{2}{3}
$$

Want $\|N-w\|$ as small ac possible if v in V its best approximation

$$
\text { is } \hat{v}=\text { proj }^{w}
$$ projection

Indeed if w in w

$$
\begin{aligned}
& \text { Indued if w in w } \\
& \begin{array}{l}
v-w \\
\|v-w\|^{2} \\
\| v-\hat{v})+(\hat{v}-w) \\
\Rightarrow\|v-\hat{v}\|^{2}+\|\hat{v}-w\|^{2}
\end{array}
\end{aligned}
$$

Note $\langle a, b\rangle=0 \Rightarrow n a \pm b\left\|^{2}=\right\| a\left\|^{2}+\right\| b \|^{2}$

$$
\begin{aligned}
\Rightarrow & |I V-a\rangle \\
\langle a+b, a+b\rangle= & \langle a, a\rangle \\
& +\langle b, b\rangle
\end{aligned}
$$

$$
+\langle b, b\rangle
$$

Best approximation in Inner product spaces
\checkmark vector spaces consisting typically of functions endowed with an inner product

The best approximation of an element A by elements in a subspace w is proj f.

Ex Let $V=C[-1,1]$ with $\langle f, g\rangle=\int_{-1}^{1} f(t) f(t / d t$
Find the best approximation of f by a polynomial p of duple ≤ 2.

Sol'n seek $p(t)$ such that
$\left.\|f-p\|^{2}=\int_{-1}^{t} \mid f(t)-p(t)\right)^{2} d t$ is as small as possible.
$p=\operatorname{proj}_{\rho_{2}}(f)$. Need orthogonal basis of $\rho_{2}=\operatorname{span}\left\{1, t, t^{2}\right\}$

$$
\begin{aligned}
& p=P_{2} \quad \text { Need or } \\
& \langle 1,1\rangle=\int_{-1}^{1} 1 d t=2 \quad\langle t, t\rangle=\int_{-1}^{1} t^{2} d t=\left.\frac{t^{3}}{3}\right|_{-1} ^{1}=\frac{2}{3} \\
& \langle 1, t\rangle=\int_{-1}^{1}+d t=\left.\frac{t^{2}}{2}\right|_{-1} ^{1}=0 \quad 1 \quad t \quad\left\langle t^{2}, 1\right\rangle \neq 0
\end{aligned}
$$

Apply Gram-Schmidt to $\left\{1, t, t^{2}\right\}$

$$
\begin{aligned}
& \text { Apply Gram-schmidt to }\left\{1, t, t^{2}\right\} \\
& 1, t, t^{2} \text { - Proj } \operatorname{span}^{21, t h}\left(t^{2} \left\lvert\,=t^{2}-\frac{\left\langle t^{2}, 1\right\rangle}{\langle 1,1\rangle}-\frac{\left\langle t^{2}, t\right\rangle}{\langle t, t\rangle} t\right.\right. \\
& \left\langle t^{2}, 1\right\rangle=\int_{-1}^{1} t^{2} d t=\left.\frac{t^{3}}{3}\right|_{-1} ^{1}=\frac{2}{3} \quad\left\langle t^{2}, t\right\rangle=\int_{-1}^{1} t^{3} 1 t=\left.\frac{t^{4}}{4}\right|_{-1} ^{1}=0
\end{aligned}
$$

or thegonal basis of ρ_{2} is $\left\{1, t, t^{2}-\frac{1}{3}\right\}$

$$
\operatorname{proj}_{\rho_{2}}(f)=\frac{\langle f, 1\rangle}{\langle 1,1\rangle} 1+\frac{\langle(t, t\rangle\rangle}{\langle t, t\rangle}+\frac{\left\langle t, t^{2}-\frac{1}{3}\right\rangle}{\left\langle t^{2}-\frac{1}{3}, t^{2}-\frac{1}{3}\right\rangle}\left(t^{2}-\frac{1}{3}\right)
$$

Concretely: find best approx of $f(t)=e^{t}$ by a degree 2 polynomial.

$$
\begin{aligned}
& \quad \int_{-1}^{1}\left(e^{t}-p(t)\right)^{2} d t \text { as shall as possible } \\
& p(t) \text { is }=\text { prop }(f) \\
& -E N D-
\end{aligned}
$$

