Review questions

1. The matrix below represents the augmented matrix of a system of linear equations. Assume that the variables in this system are $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$, and $x_{6}$, and let $A$ be the coefficient matrix:

$$
\left(\begin{array}{llllll|l}
1 & 0 & 1 & 2 & 0 & 0 & 1 \\
0 & 1 & 0 & 4 & 0 & 0 & 2 \\
0 & 0 & 0 & 0 & 1 & 0 & c \\
0 & 0 & 0 & 0 & 0 & 1 & d
\end{array}\right)
$$

Which of the following statements are true?
(i) For any given $c$ and $d$, the system above is consistent.
(ii) The coefficient matrix $A$ is in reduced echelon form.
(iii) The right hand side vector is in the column space of matrix $A$.
(iv) The system has no solution.
(v) The system has infinitely many solutions. afore variables
A. (i), (ii) only
B. (i), (ii), (iii) only
C. (ii), (iii), (iv) only

$$
\begin{gathered}
\text { nullity }(A)=2 \\
=6-4
\end{gathered}
$$

D. (i), (iii), (v) only
E. all of the above
m-equations $n$ unknown

$$
\begin{aligned}
& A x=b \underset{(\text { chat solutions })}{ } \Leftrightarrow b \text { in } \operatorname{Span}\left\langle\bar{a} \perp, \ldots \bar{a}_{n}^{h}\right. \\
& \Leftrightarrow b \operatorname{in} \operatorname{col}(A) \Longleftrightarrow \operatorname{col}(A)=\operatorname{Col}(A \mid b) \\
& \operatorname{span}\left\{a_{1}, \ldots a_{n}\right\}=\operatorname{spar}\left\{a_{1}, \ldots, a_{n}, b\right\} \\
& \Leftrightarrow \operatorname{rank}(A)=\operatorname{rank}(A \mid b)
\end{aligned}
$$

$$
\operatorname{rank}(A)=\operatorname{dim}(\cos (A))
$$

$\vec{a}_{1}, \ldots, \vec{a}_{n}$ are linearly indue pendent $\binom{t_{h}$ t is }{$x_{1}, \bar{\lambda}_{1}+\cdots+x_{n} \bar{a}_{n}=\overline{0} \Leftrightarrow x_{1}=\cdots=x_{n}=0}$

$$
\begin{aligned}
& \Leftrightarrow A^{A}=0 \text { has } \begin{array}{c}
\text { uncume solon } \bar{x}=\operatorname{Nu}(A)=\{0 b
\end{array} \Leftrightarrow \operatorname{Rank}(A)=n \\
& \text { unique sown } \bar{x}=0
\end{aligned}
$$

$$
\operatorname{Rauk}(A)+N u l l i \neq M(A)=n=\begin{array}{rr}
n r o f \\
& \text { column }
\end{array}
$$ columns.

Key remark: Suppose $A x=b$ has a solution $x_{0}$
Let $\quad v \operatorname{in} \operatorname{Null}(A) \quad A r=0 \quad A\left(x_{0}+r\right)=A x_{0}+A r=$ $b+0=b$.
If $x_{0}$ solute of $A x=b$ that all vectors in

$$
\begin{aligned}
& \text { ectors in } \\
& x_{0}+\text { Nul(A) are solutions }
\end{aligned}
$$

3. Which of the following statements is false?

False A. If $\left\{v_{1}, v_{2}, v_{3}\right\}$ is linearly dependent, then $v_{3}$ is a linear combination of $v_{1}$ and $v_{2}$.
B. Suppose that the columns of $A$ are $v_{1}, v_{2}$, and $v_{3}$. Then the matrix equation $A\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=b$ is equivalent to the vector equation $x_{1} v_{1}+x_{2} v_{2}+x_{3} v_{3}=b$.
C. Suppose that $X_{0}$ is a solution to the linear system $A X=b$. Then $\{X \mid A X=b\}=$ $X_{0}+(\{X \mid A X=0\}-$ Null (H)
D. The columns of $A$ are linearly independent if and only if $A$ has a pivot position in every column.
E. A homogeneous linear system has a non-trivial solution if and only if it has at least one free variable.

Ex: $\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right]\left[\begin{array}{l}2 \\ 2\end{array}\right],\left[\begin{array}{l}4 \\ 3\end{array}\right)\right\}$
8. Let $A$ be an $m \times n$ matrix. Which of the following statement is necessarily true?
A. The nullity of $A$ is the same as the nullity of $A^{T}$.
B. The rank of $A$ is the same as the rank of $A^{T}$.
C. The column space of $A$ is the same as the null space of $A^{T}$.
D. The columns of $A$ form a basis of the column space of $A$.
E. The columns of $A^{T}$ form a basis of the null space of $A$.

18. Which of the following subsets of the vector space $\mathbb{R}^{3}$ are subspaces of $\mathbb{R}^{3}$ ?
(i) The set of all vectors $v=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ with the property $2 x y z=0 . \quad(2) /-\partial i k \quad\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]+\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$

(iv) The set of all the solutions of the equation $x+3 y=2 z+1$.
A. (ii) and (iii) only
B. (ii) and (iv) only
C. (iii) and (iv) only
D. (ii), (iii) and (iv) only

$$
\begin{aligned}
& {\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]} \\
& \text { in } w \quad \text { in } w
\end{aligned}
$$

E. (i), (ii), (iii) and (iv)
$W$ subset of $\mathbb{R}^{n}$ when is $W$ subspace?

$$
\text { if (l) } 0 \text { in } W
$$

(2) closed unoler abolition
(3) closed usiour scalar wultrplicatirn

Remark

If $b \neq 0$ sol set of The soluhon set of any homogeneous system

$$
A x=0 \text { is a subspace of } \mathbb{R}^{n}
$$

$$
A x=b
$$

in not a subspace called $\quad \operatorname{Nal}(A)$.

$$
A x=0 \quad A y=0 \quad A(x+y)=0
$$

$$
\begin{array}{r}
A(c x)=A x=0 \\
A 0=0
\end{array}
$$

$$
\begin{array}{ll}
x-5 y+27=0 & \left(x+x^{\prime}\right)-5\left(y+y^{\prime}\right) \\
x^{\prime}-5 y^{\prime}+27^{\prime}=0 & +2(7+x)=0
\end{array}
$$

23. Let $A$ be an $n \times n$ matrix. Which of the following statements is/ar NOT equivalent to that $A$ is invertible?
(i) Columns of $A$ are linearly independent.
(ii) $A$ is diagonalizable.

$$
\Leftrightarrow \text { A invertible }
$$

(ii) no ex $A=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$
((iii) Columns of $A$ is an orthonormal set.
$\Rightarrow$ A invertible
(iv) The dimension of the null space of $A$ is 0 .
(v) The linear system $A X=b$ always has solution for any $b \in \mathbb{R}^{n}$.

$$
\operatorname{Rank}(x)=n
$$

-nuliling (t)
A. (i), (ii) and (iii) only.
B. (i) and (ii) only.

$$
=n-0=n
$$

C. (ii) and (iii) only.
D. (i) and (iv) only.

$$
\begin{aligned}
& \# \\
& \operatorname{col}(A)=\mathbb{R}^{y}
\end{aligned}
$$

E. (ii), (iv), (v) only.

Recall $A \quad n \times n$
A invertible $\Leftrightarrow \operatorname{RREF}(A)=I_{n}$


$$
\begin{gathered}
\operatorname{dim}(\operatorname{col}(A))=n \quad \begin{aligned}
& \sim \operatorname{Rauk}(H)=n \\
&-E N D \text { OF CLASS - }
\end{aligned} .
\end{gathered}
$$

