6.1 Inner product, Length, Or thogonali.ty

The inner product of two vectors in \mathbb{R}^{n} is a number.

$$
\begin{aligned}
& \bar{u}=\left[\begin{array}{c}
u_{1} \\
\vdots \\
u_{n}
\end{array}\right] \quad \bar{v}=\left[\begin{array}{c}
v_{1} \\
\vdots \\
v_{n}
\end{array}\right] \\
& \bar{u} \cdot \bar{v}=u_{1} v_{1}+\cdots+u_{n} v_{n}=\left[\begin{array}{ccc}
u_{1} & \ldots & u_{n} \\
1 \times n
\end{array}\right]\left[\begin{array}{c}
v_{1} \\
\vdots \\
n_{n} \\
n \times 1
\end{array}\right] \\
& =u^{\top} v \\
& \overline{E_{+1}} \quad \bar{u}=\left[\begin{array}{l}
1 \\
2 \\
3 \\
1
\end{array}\right] \bar{N}=\left[\begin{array}{c}
-1 \\
0 \\
1 \\
1
\end{array}\right] \\
& \begin{aligned}
\vec{u} \cdot \bar{v} & =-1+0+3+1 \\
& =3
\end{aligned}
\end{aligned}
$$

Properties

$$
\begin{aligned}
& \bar{u} \cdot \bar{v}=\bar{v} \cdot \vec{u} \\
& (\bar{u}+\bar{v}) \cdot \vec{w}=\vec{u} \cdot \bar{w}+\bar{v} \cdot \bar{w} \\
& (c \vec{u}) \cdot \bar{v}=c \bar{u} \cdot \bar{v} \quad c \text { in } \nless 2
\end{aligned}
$$

$\bar{u} \cdot \bar{u} \geqslant 0$ and $\bar{u} \cdot \bar{u}=0 \Longleftrightarrow \bar{u}=0$

$$
\bar{u} \cdot \bar{u}=u_{1}^{2}+\cdots+u_{n}^{2} \geqslant 0
$$

Def'n Length of \bar{v} in \mathbb{R} (or norm of \bar{v})

$$
\begin{aligned}
& \text { Length of } v \\
& \|v\|=\sqrt{\bar{v} \cdot \bar{v}}=\sqrt{v_{1}^{2}+\cdots+v_{n}^{2}} \\
& \|v\|^{2}=\bar{v} \cdot \bar{v} \\
& \text { Note }\|c \bar{v}\|=\sqrt{\|}\| \| \bar{v} \| \text { in } \|^{2}
\end{aligned}
$$

$$
\begin{aligned}
& c \vec{v} \|=|c|\|\vec{v}\| \\
&\|c \vec{v}\|=\sqrt{\left(c v_{1}\right)^{2}+\cdots+\left(c v_{n}\right)^{2}}=\sqrt{c^{2}\left(v_{1}^{2}+\cdots+v_{n}^{2}\right)} \\
&|c| \sqrt{v_{1}^{2}+\cdots+v_{n}^{2}}
\end{aligned}
$$

Say that \bar{v} is a unit vector it

$$
\begin{array}{cc}
\|\bar{v}\|=1 . \\
\vec{v}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right] & \begin{array}{l}
\|\bar{v}\|=\sqrt{5} \\
\vec{v}=\frac{1}{\sqrt{5}} \vec{v}=\frac{\vec{v}}{\|\bar{v}\|} \\
\text { is a unit vector }
\end{array}
\end{array}
$$

 pointing in the direction of v

$$
\begin{aligned}
\|\vec{u}\| & =\left\|\frac{1}{\sqrt{5}} \bar{v}\right\| \\
& =\frac{1}{\sqrt{5}}\|\bar{v}\|=\frac{1}{\sqrt{5}} \cdot \sqrt{5}=1
\end{aligned}
$$

In general if $\vec{v} \neq 0$ then $\|\vec{v}\| \neq 0$
and $\bar{u}=\frac{1}{\|\bar{v}\|} \vec{v}$ is a unit vector poinhny
Distance between 2 vectors

$$
d \operatorname{cst}(\bar{u}, \bar{v})=\|\bar{u}-\bar{v}\|
$$

ORTHOGONAL VECTORS
Let \bar{u}, \bar{v} be vectors in \mathbb{R}^{n} \vec{u} is orthogonal to \bar{v} if

$$
\bar{u} \cdot \bar{v}=0
$$

Notation $\bar{u} \perp \bar{v}$.

Pythagorian theorem
If $\vec{u} \perp \vec{v}$ then

$$
\perp \bar{v}+\vec{v}\left\|^{2}=\right\| \bar{u}\left\|^{2}+\right\| \bar{v} \|^{2}
$$

$$
\begin{aligned}
&\|u+v\|^{2}=(u+v) \cdot(u+v)=u \cdot(u+v)+v \cdot(u+v) \\
&=u \cdot u+\frac{u \cdot v}{=0}+\sqrt{v}=u+v \cdot v \\
& u \perp v
\end{aligned}
$$

$u \perp v$

$$
=\frac{\pi u\left\|^{2}+\right\| v u^{2}}{}
$$

angle between \bar{u} and \bar{v}

$$
\operatorname{\omega s} \theta=\frac{u \cdot v}{\|u\| \|^{v}}
$$

Remark if $\begin{array}{lll}u \perp & v_{1} \\ u \perp & v_{2}\end{array} \Longrightarrow u \perp\left(v_{1}+v_{2}\right)$ (4)

$$
u \cdot\left(v_{1}+v_{2}\right)=\frac{u \cdot v_{1}}{0}+\frac{u \cdot v_{2}}{0}=0
$$

Moreover $u \perp\left(c_{1} v_{1}+c_{2} v_{2}\right)$

$$
\begin{aligned}
& \bar{u} \cdot\left(-\bar{v}_{2}\right) \\
= & \bar{u} \cdot\left((-1) \bar{v}_{2}\right) \\
= & (-1) \bar{u} \cdot \bar{v}_{2}=0
\end{aligned}
$$

The orthogonal complement
of a subspace W of \mathbb{R}^{n} denoted W^{\perp}
is $\quad W^{\perp}=\left\{\bar{x}\right.$ in $\mathbb{R}^{n}: \vec{x} \cdot \vec{w}=0$ for all \bar{w} in $\left.W\right\}$
Ex 3 $\quad \mathbb{R}^{2} \quad W=\left\{\begin{array}{l}a \\ 0\end{array}\right]:$ a in $\left.\mathbb{R}\right\}$

$$
\left[\begin{array}{l}
a \\
0
\end{array} \left\lvert\,=a\left[\begin{array}{l}
1 \\
0
\end{array}\right]=a \vec{\imath}\right.\right.
$$

$$
\begin{aligned}
& t \\
& w^{+}=\left\{\binom{0}{b}: \sin \mathbb{R}\right\}=\operatorname{span}\left\{\left[\begin{array}{ll}
0 \\
1
\end{array}\right\}\right\} \\
& x=\left.\right|^{x} 1
\end{aligned}
$$

Reasouche search for $x=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$ st

$$
\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \cdot\left[\begin{array}{l}
a \\
0
\end{array}\right]=0 \quad \text { for all a. }
$$

$\bar{x} \cdot \bar{w}=0$ for all w in W
$x_{1} 2=0$ for all a. Thus $x_{1}=0$
Thus $x=\left[\begin{array}{l}0 \\ x_{2}\end{array}\right]=x_{2}\left[\begin{array}{l}0 \\ 1\end{array}\right] \quad x_{1}$ free.

$$
\left.E+4 \left\lvert\, \quad \mathbb{R}^{2} \quad W=\operatorname{span}\left\{\begin{array}{l}
1 \\
1
\end{array}\right\}\right.\right\}
$$

$$
w^{\perp}=s p \lambda r
$$

$$
\left[\begin{array}{c}
-1 \\
1
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
1
\end{array}\right]=0
$$

$$
\left.\left.\left.\begin{array}{rl}
E \times 5 & \mathbb{R}^{3} \\
w & =\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\right\} \\
w \perp=\operatorname{span}
\end{array} \right\rvert\, \begin{array}{l}
0 \\
0
\end{array}\right]\right\}
$$

Fact
W subspace $\Rightarrow w^{1}$ subspace of \mathbb{R}^{n}
$E \times 6$

$$
\begin{aligned}
& \left.w=4^{0}\right\} \text { in } \mathbb{R}^{2} \\
& w^{1}=\mathbb{R}^{2} \\
& w=\mathbb{R}^{2} \quad w^{1}=\{0\}
\end{aligned}
$$

Revisit linear systems with or toogonality in minol

$$
\begin{array}{r}
r_{2}\left[\begin{array}{ccc}
r_{1} & a_{1} & a_{3} \\
r_{1} & b_{2} & b_{3} \\
r_{1} & r_{1} & c_{3}
\end{array}\right]\left[\begin{array}{l}
\bar{x} \\
x \\
y \\
7
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
r_{1} x+a_{1} y+a_{3} 7=0
\end{array} \begin{aligned}
& \bar{r}_{1} \cdot \bar{x}=0 \\
& r_{2} \cdot \bar{x}=0 \\
& r_{3} \cdot x=0
\end{aligned}
$$

Solving $A \bar{x}=\overline{0}$ amounts to holing all Vectors $\bar{x} \perp$ all rows of A

Thus

$$
\frac{(\text { Row } A)^{\frac{1}{2}}=\operatorname{Nul}(A)}{(\operatorname{Col}(A))^{2}} \operatorname{Nul}(A T) \text { to } A T .
$$

