MA265 Linear Algebra — Practice Exam 1

Date: Spring 2021 Duration: 60 min

Name:

PUID:

- All answers must be justified and you must show all your work in order to get credit.
- The exam is open book. Each students should work independently, Academic integrity is strictly observed.

Problem	Points	Score
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
7	10	
8	10	
9	10	
10	10	
Total:	100	

1. Consider the matrices $A = \begin{bmatrix} 2 & 2 & 1 \\ 2 & 1 & 2 \\ 1 & 1 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 1 \end{bmatrix}$. Let *S* be the subspace [10pt]

of \mathbb{R}^3 consisting of those vectors **x** such that $A\mathbf{x} = B\mathbf{x}$. Find a basis of S.

$$A = B \times = (A - B) \times = 0 \qquad A - B = \begin{bmatrix} 1 & 1 & 0 \\ 1 & -1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}^{-1} \sim \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & -2 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}^{-1} \sim \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & -1 & \frac{1}{2} & 0 \\ 0 & 0 & 0 \end{bmatrix}^{-1} \sim \begin{bmatrix} 1 & 0 & \frac{1}{2} & 0 \\ 0 & 0 & 0 \end{bmatrix}^{-1} \sim \begin{bmatrix} 1 & 0 & \frac{1}{2} & 0 \\ 0 & 0 & 0 \end{bmatrix}^{-1} \sim \begin{bmatrix} 1 & 0 & \frac{1}{2} & 0 \\ 0 & 0 & 0 \end{bmatrix}^{-1} \sim \begin{bmatrix} 1 & 0 & \frac{1}{2} & 0 \\ 0 & 0 & 0 \end{bmatrix}^{-1} \sim \begin{bmatrix} 1 & 0 & \frac{1}{2} & 0 \\ 0 & 0 & 0 \end{bmatrix}^{-1} \sim \begin{bmatrix} 1 & 0 & \frac{1}{2} & 0 \\ 0 & 0 & 0 \end{bmatrix}^{-1} \sim \begin{bmatrix} 1 & 0 & \frac{1}{2} & 0 \\ 0 & 0 & 0 \end{bmatrix}^{-1} \sim \begin{bmatrix} 1 & 0 & \frac{1}{2} & 0 \\ 0 & 0 & 0 \end{bmatrix}^{-1} \sim \begin{bmatrix} 1 & 0 & \frac{1}{2} & \frac{1}{2} \\ 0 & 0 & 0 \end{bmatrix}^{-1} \sim \begin{bmatrix} 1 & 0 & \frac{1}{2} & \frac{1}{2} \\ 1 & 1 & 0 \end{bmatrix}^{-1} \rightarrow \begin{bmatrix} 1 & 0 & \frac{1}{2} & \frac{1}{2} \\ 1 & 1 & 0 \end{bmatrix}^{-1} \rightarrow \begin{bmatrix} 1 & 0 & \frac{1}{2} & \frac{1}{2} \\ 1 & 1 & 0 \end{bmatrix}^{-1} \rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}^{-1} \rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}^{-1} \rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}^{-1} \rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}^{-1} \rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}^{-1} \rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}^{-1} \rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}^{-1} \rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}^{-1} \rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}^{-1} \rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}^{-1} \rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}^{-1} \rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}^{-1} \rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}^{-1} \rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}^{-1} \rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}^{-1} \rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}^{-1} \rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}^{-1} \rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}^{-1} \rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}^{-1} \rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}^{-1} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}^{-1} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}^{-1} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}^{-1} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}^{-1} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}^{-1} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}^{-1} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}^{-1} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}^{-1} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}^{-1} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}^{-1} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}^{-1} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}^{-1} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}^{-1} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}^{-1} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}^{-1} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 & 0$$

2. Consider the vectors

$$\mathbf{u} = \begin{bmatrix} 1\\ -1\\ 1 \end{bmatrix} \quad \mathbf{v} = \begin{bmatrix} 1\\ 2\\ 1 \end{bmatrix} \quad \mathbf{w} = \begin{bmatrix} 0\\ 0\\ 1 \end{bmatrix} \quad \mathbf{0} = \begin{bmatrix} 0\\ 0\\ 0 \end{bmatrix}$$

Let A be a 3×3 matrix such that $A\mathbf{u} = \mathbf{0}$, $A\mathbf{v} = \mathbf{0}$ and $A\mathbf{w} = \mathbf{w}$. What is the rank of A?

Use the rank theorem
$$(p.165)$$

 $rank(A) + dim (Nul(A)) = 3$
Nul (Al is a subspace of IR^3 so that $dim (Nul(A)) \leq 3$
 \vec{u} and \vec{v} are linearly independent and
 $A \vec{u} = \vec{o}$ $A \vec{v} = \vec{o} \Rightarrow \vec{u}, \vec{v}$ belong to $Nul(A)$
Thus $dim (Nul(A)) = 2$. Since $A \vec{w} = \vec{w} \neq a$
 \vec{w} does not belong to $Nul(A) = 1$
Nul (Al $\neq IR^3$ so that $dim (Nul(A)) = 2$
Then $rank(A) = 3 - dim (Nul(A)) = 3 - 2 = 1$
Answer: $rank(A) = 1$

- 4. Let A be a 3×5 matrix. Which of the following statements are true? Indicate clearly [10pt] <u>all</u> correct answers.
- \checkmark A. The rank of A is 3.
- **T** B. The null space of A has dimension at least 2.
- $\mathbf{\mathcal{C}}$. $A\mathbf{x} = \mathbf{0}$ has only one solution, the trivial solution.
- **T** D. There exists two linearly independent vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^5 such that $A\mathbf{u} = A\mathbf{v} = \mathbf{0}$.
- **T** E. The columns of A are linearly dependent.

5. Suppose that A and B are 2×2 matrices satisfying det(B) = 8 and $A^3 = B^2$. Determine [10pt] the value of det $(3 A^T B A^{-1} B^{-1} A)$.

It X is a 2x2 matrix
det
$$(c X) = c^2 det(X)$$
 for any c in 12
Mro det $[X Y] = det(X) det(Y)$ det $[X^T] = det(X)$
det $(x^{-1}) = \frac{1}{det(X)}$ if X is invertible
det $(3 A^T B A^T B^{-1} A) =$
det $(3 A^T) det(B) det(A^{-1}) det(B^{-1}) det(A)$
 $= 3^2 det(A^T) det(B)$ $det(A^{-1}) det(B^{-1}) det(A)$
 $= 3 det(A^T) det(B)$ $det(A)$ $det(A)$
 $= 3 det(A)$ $det(B)$ $det(A)$ $det(A)$
 $= 3 det(A)$ $det(B)$ $det(A)$ $det(A)$ $det(A)$
 $= 3 det(A)$ $det(B)$ $det(B)^2 = 8^2 = 64$
 $det(A)^3 = 64 = 3 det(A) = 4$
Thus $3 det(A) = 9 \cdot 4 = 36$
Answer: 36

6. Consider the matrix $A = \begin{pmatrix} 1 & 1 & 4 & 2 \\ 2 & 2 & 10 & 0 \\ 0 & 3 & 1 & 0 \\ 1 & 0 & 0 & 5 \end{pmatrix}$. Compute the (3, 2) entry of the adjugate [10pt] matrix $\operatorname{adj}(A)$.

The (3,21 entry of adj(A) is the color
$$C_{23}$$

of A which we now compute
 $\begin{pmatrix} 1 & 1 & \frac{4}{7} & 2 \\ \frac{2}{2} & \frac{2}{10} & 0 \\ 0 & 3 & 1 & 0 \\ 1 & 0 & \frac{1}{5} & 5 \end{pmatrix}$
 $C_{23} = - \begin{vmatrix} 1 & 1 & 2 \\ 0 & 3 & 0 \\ 1 & 0 & 5 \\ \end{vmatrix} = -3 \begin{vmatrix} 1 & 2 \\ - + - + \\ - + - + \end{vmatrix}$
 $C_{23} = - \begin{vmatrix} 1 & 1 & 2 \\ 0 & 3 & 0 \\ 1 & 0 & 5 \\ \end{vmatrix} = -3 \begin{vmatrix} 1 & 2 \\ 1 & 5 \\ \end{vmatrix} = -3 (5-2) = -9$
Aruswer: $\begin{bmatrix} 3dj(A) & 3z & = -9 \\ 1 & 3z & = -9 \\ 1 & 5 & = -3 \\ \end{vmatrix}$

7. Consider the matrices

$$A = \begin{bmatrix} a & b & c & d \\ x & y & z & 0 \\ -3 & 7 & 2 & 11 \\ -1 & 1 & 2 & 10 \end{bmatrix}, \quad B = \begin{bmatrix} x & y & z & 0 \\ -3 + bx & 7 + by & 2 + bz & 11 \\ a & b & c & d \\ -1 & 1 & 2 & 10 \end{bmatrix}.$$

Suppose that det(A) = 3. Find det(2B).

B is
$$4\times4$$
 det $(2B) = 2^{4} det(B) = 16 det(B)$
Pow replacement (replace 2nd row) in B with (itee(L)+
det $(B) = \begin{vmatrix} x & y & z & 0 \\ -3 & 7 & 2 & 11 \\ 2 & 5 & c & d \\ -1 & 1 & 2 & 10 \end{vmatrix} = \begin{vmatrix} 2 & 5 & c & d \\ x & y & z & 0 \\ -3 & 7 & 2 & 11 \\ -1 & 1 & 2 & 10 \end{vmatrix} = det(A) = 3$
2 row interchanges: $(-1)(-1) = 1$
Thus $det(2B) = 16 det(B) = 16 \cdot det(A) = 16 \cdot 3 = 48$.
Answer: $det(2B) = 4P$

7

8. Consider a linear system whose augmented matrix is of the form

$$[A|\vec{b}] = \begin{bmatrix} 1 & 0 & -2 & | & a \\ 0 & 1 & a & | & a-3 \\ 0 & 0 & a-4 & | & a-3 \end{bmatrix}$$

(i) For what values of a will the system have no solution?

(ii) For what values of a will the system have a unique solution?

(iii) For what values of a will the system have infinitely many solutions?

$$A = \begin{pmatrix} 1 & 0 & -2 \\ 0 & 1 & 3 \\ 0 & 0 & 3 - 4 \end{pmatrix} \quad det (A) = 3 - 4$$
If $det(A) \neq 0$ then A is invertible and hence
the system will have a unique solution.
 $det A = 3 - 4 \neq 0 \quad \text{eff} \quad 3 \neq 4$.
Thus if $3 \neq 4$ we have a unique solution
What happens if $3 = 4$
$$\begin{pmatrix} 1 & 0 & -2 \\ 0 & 1 & 4 \\ 0 & 0 & 0 \end{pmatrix} \quad the system is$$
in consistent
have one equation
 $0 \cdot x_3 = 1$

9. Consider the system:

$$x + y + z = 5$$
$$x + 2y + z = 9$$
$$x + y + (a2 - 5)z = a$$

For which value of a does the system have infinitely many solutions?

The matrix of the system is
$$A = \begin{bmatrix} i & i & i \\ i & 2 & i \\ i & 1 & 2^2 - 5 \end{bmatrix}$$

det $(k) = \begin{bmatrix} i & i & i \\ 0 & 1 & 0 \\ 0 & 0 & 2^2 - 6 \end{bmatrix} = 2^2 - 6$
Ff dit $(k) \neq 0 \implies$ unique solution.
If dit $(k) = 0 \implies 2^2 = 6 \implies 3 = \pm \sqrt{6}$
The system becomes
in consistent $\begin{array}{c} x + y + 2 = 5 \\ x + 2y + 2 = 9 \\ x + 4y + 2 = \pm \sqrt{6} \end{array}$ (or $-\sqrt{6}$)
Thus the system has either a unique solution
or it is inconsistent.
Mere is no 2 such that the system
has in hnitely many solutions

9