MA265 Linear Algebra - Practice Exam 1

Date: Spring 2021 Duration: 60 min

Name:

PUID:

- All answers must be justified and you must show all your work in order to get credit.
- The exam is open book. Each students should work independently, Academic integrity is strictly observed.

Problem	Points	Score
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
7	10	
8	10	
9	10	
10	10	
Total:	100	

1. Consider the matrices $A=\left[\begin{array}{lll}2 & 2 & 1 \\ 2 & 1 & 2 \\ 1 & 1 & 1\end{array}\right]$ and $B=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 1\end{array}\right]$. Let S be the subspace of \mathbb{R}^{3} consisting of those vectors \mathbf{x} such that $A \mathbf{x}=B \mathbf{x}$. Find a basis of S.

$$
A x=B x \Rightarrow(A-B) x=0 \quad A-B=\left[\begin{array}{ccc}
1 & 1 & 0 \\
1 & -1 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

S consists is the null space of $C=A-B$

$$
\left.\begin{array}{l}
{\left[\begin{array}{cccc}
1 & 1 & 0 & 0 \\
1 & -1 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 1 & 0 \\
0 & -2 & 1
\end{array}\right)} \\
0 \\
0
\end{array} 0 \begin{array}{cc}
0 \\
0 & 0
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 1 & 0 \\
0 & -1 & \frac{1}{2} \\
0 & 0 & 0
\end{array}\right]
$$

$$
\operatorname{rank}(C)=2 \quad(2 \text { pivots })
$$

T introduce parameter corresponding to this column

$$
\operatorname{dim}(\operatorname{Nul}(C))=3-2=1
$$

$$
x_{3}=s
$$

Answer:
any non-zero multiple of this vector will form a basis as well

$$
\left\{\left[\begin{array}{c}
-1 \\
1 \\
2
\end{array}\right]\right\} \in \operatorname{also} \text { correct. }
$$

2. Consider the vectors

$$
\mathbf{u}=\left[\begin{array}{r}
1 \\
-1 \\
1
\end{array}\right] \quad \mathbf{v}=\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right] \quad \mathbf{w}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \quad \mathbf{0}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Let A be a 3×3 matrix such that $A \mathbf{u}=\mathbf{0}, A \mathbf{v}=\mathbf{0}$ and $A \mathbf{w}=\mathbf{w}$. What is the rank of A ?
Use the rank theorem $(p-165)$

$$
\operatorname{rank}(A)+\operatorname{dim}(\operatorname{Nul}(A))=3
$$

Nus (Al is a subspace of \mathbb{R}^{3} so that $\operatorname{dim}(\operatorname{Nul}(A)) \leq 3$ \vec{u} and \vec{v} are linearly independent and
$A \bar{u}=\overline{0} \quad A \bar{v}=\overline{0} \Rightarrow \vec{u}, \bar{v}$ belong to Vul (A)
Thus $\operatorname{dim} \operatorname{Nul}(A) \geqslant 2$. since $A \bar{w}=\bar{w} \neq 0$
\vec{W} does not belong to Nul (A)- Thus
$\operatorname{Nul}(A) \neq \mathbb{R}^{3}$ so that $\operatorname{dim}(N u l(A))=2$
Then $\quad \operatorname{rank}(A)=3-\operatorname{dim}(\operatorname{Nul}(A))=3-2=1$
Answer: $\operatorname{rank}(A)=1$
3. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be a linear map such that T

$$
\begin{aligned}
& \left(T\left(\left[\begin{array}{l}
1 \\
2
\end{array}\right]\right)=\left[\begin{array}{r}
1 \\
-1 \\
0
\end{array}\right] \cdot\right)^{(2)} \operatorname{Compute} T\left(\left[\begin{array}{l}
3 \\
4
\end{array}\right]\right) . \\
& {\left[\begin{array}{l}
3 \\
4
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right]+2\left[\begin{array}{l}
1 \\
2
\end{array}\right] \text {. Since } T \text { is linear }} \\
& T\left(\left[\begin{array}{l}
3 \\
4
\end{array}\right]\right)=T\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)+2 T\left(\left[\begin{array}{l}
1 \\
2
\end{array}\right]\right) \\
& =\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]+2\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right]=\left[\begin{array}{c}
1+2 \\
2-2 \\
3
\end{array}\right]=\left[\begin{array}{l}
3 \\
0 \\
3
\end{array}\right]
\end{aligned}
$$

Answer: $T\left(\left[\begin{array}{l}3 \\ 4\end{array}\right]\right)=\left[\begin{array}{l}3 \\ 0 \\ 3\end{array}\right]$
Another method is to find the matrix A with The property tho $T(\bar{x})=A \bar{x}$ for all \bar{x} in \mathbb{R}^{2}

$$
\begin{aligned}
& T=\mathbb{R}^{2} \rightarrow \mathbb{R}^{3} \Rightarrow A \text { is } 3 \times^{2} \text { matrix } \\
& A=\left[\begin{array}{cc}
a_{1} & a_{2} \\
b_{1} & b_{2} \\
c_{1} & c_{2}
\end{array}\right] \quad \text { Find } A \text { using } \quad T\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{cc}
a_{1} & a_{2} \\
b_{1} & b_{2} \\
c_{1} & c_{2}
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
a_{1} \\
b_{1} \\
c_{1}
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] \\
& T\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2} \\
c_{1} & c_{2}
\end{array}\right]\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{l}
a_{1}+2 a_{2} \\
b_{1}+2 b_{2} \\
c_{1}+2 c_{2}
\end{array}\right]=\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right] \\
& \begin{array}{l}
a_{2}=0 \\
b_{2}=-\frac{3}{2}
\end{array} \\
& 2+2 b_{2}=-1 \\
& 3+2 c_{2}=0 \\
& c_{2}=-\frac{3}{2} \\
& A=\left[\begin{array}{cc}
1 & 0 \\
2 & -3 / 2 \\
3 & -3 / 2
\end{array}\right] \Rightarrow\left[\begin{array}{cc}
1 & 0 \\
2 & -3 / 2 \\
3 & -3 / 2
\end{array}\right]\left[\begin{array}{l}
3 \\
4
\end{array}\right]=\left[\begin{array}{l}
3 \\
0 \\
3
\end{array}\right]
\end{aligned}
$$

using this matrix can compute $₹$ (any vector).
4. Let A be a 3×5 matrix. Which of the following statements are true? Indicate clearly all correct answers.
F A. The rank of A is 3 .
TB. The null space of A has dimension at least 2 .
F C. $A \mathrm{x}=\mathbf{0}$ has only one solution, the trivial solution.
T D. There exists two linearly independent vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^{5} such that $A \mathbf{u}=A \mathbf{v}=\mathbf{0}$.
TE. The columns of A are linearly dependent.
A. FALSE take for example $A=\left[\begin{array}{lllll}1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right] \operatorname{rank}(A){ }_{1}$
B. $\operatorname{rank}(A) \leq 3$ (since it has 3 -rows)

$$
\begin{aligned}
& \Rightarrow \quad \operatorname{rank}(A)+\operatorname{dim}(N u \mid(A))=5 \\
& \quad \operatorname{dim}|\operatorname{Nu}|(A))=5-\operatorname{rark}(A) \geq 5-3=2
\end{aligned}
$$

Thus B is correct
C. False, Indeed if

Then $A \bar{x}=h$ as infinitely many solutions any vector in \mathbb{R}^{3} is a solution.
D. Correct: Indeed, we have seen that $\operatorname{dim}(\operatorname{Nul}(A)) \geqslant 2$ and so any basis's of Nul(A) has at least 2 en nearly indupenolut vectors \bar{u} and \bar{v}.
E. Correct Any 5 vectors in \mathbb{R}^{3} are linearly depenount.
Fumed since $\operatorname{dim}\left(\mathbb{R}^{3}\right)=3$,
one can have at most 3 linearly independent vectors in \mathbb{R}^{3}.
5. Suppose that A and B are 2×2 matrices satisfying $\operatorname{det}(B)=8$ and $A^{3}=B^{2}$. Determine $\quad[10 \mathrm{pt}]$ the value of $\operatorname{det}\left(3 A^{T} B A^{-1} B^{-1} A\right)$.

If X is a 2×2 matrix
$\operatorname{det}(c X)=c^{2} \operatorname{det}(X)$ for any c in \mathbb{R}
Miso $\operatorname{det}(X Y)=\operatorname{det}(X) \operatorname{det}(Y) \quad \operatorname{det}\left(X^{T}\right)=\operatorname{det}(X)$ $\operatorname{det}\left(x^{-1}\right)=\frac{1}{\operatorname{det}(X)}$ if X is invertible
$\operatorname{det}\left(3 A^{\top} B A^{-1} B^{-1} A\right)=$
$\operatorname{det}\left(3 A^{\top}\right) \operatorname{det}(B) \operatorname{det}\left(A^{-1}\right) \operatorname{det}\left(B^{-1}\right) \operatorname{det}(A)$

$$
\begin{aligned}
& \operatorname{det}\left(3 A^{T}\right) \operatorname{det}(B) \operatorname{det}\left(A^{-1}\right) \operatorname{det}\left(B^{-1}\right) \operatorname{det}(A) \\
& =3^{2} \operatorname{det}\left(A^{T}\right) \operatorname{det}(B) \frac{1}{\operatorname{det}(A)} \operatorname{det}\left(A^{\prime}\right)=9 \operatorname{det}\left(A^{T}\right)
\end{aligned}
$$

$$
=9 \operatorname{det}(A)
$$

on the other hand $A^{3}=B^{2}$

$$
\begin{aligned}
& \text { the other hand } \quad \operatorname{det}(A)^{3}=\operatorname{det}(B)^{2}=8^{2}=64 \\
& \Rightarrow \operatorname{det}(A)=4
\end{aligned}
$$

$\operatorname{det}(A)^{3}=64 \Rightarrow \operatorname{det}(A)=4$
Thus $\quad 9 \operatorname{det}(A)=9 \cdot 4=36$
Answer: 36
6. Consider the matrix $A=\left(\begin{array}{cccc}1 & 1 & 4 & 2 \\ 2 & 2 & 10 & 0 \\ 0 & 3 & 1 & 0 \\ 1 & 0 & 0 & 5\end{array}\right)$. Compute the $(3,2)$ entry of the adjugate [10pt] matrix $\operatorname{adj}(A)$.

The $\left(3,21\right.$ entry of $\operatorname{adj}(A)$ is the cofactor C_{23} of A which we now compute

$$
\left(\begin{array}{cc|c|c}
1 & 1 & 4 & 2 \\
\hline 2 & 2 & 10 & 0 \\
\hline 0 & 3 & 1 & 0 \\
1 & 0 & 0 & 5
\end{array}\right)
$$

$$
c_{23}=-\left|\begin{array}{lll}
1 & 1 & 2 \\
0 & 3 & 0 \\
1 & 0 & 5
\end{array}\right|=-3\left|\begin{array}{ll}
1 & 2 \\
1 & 5
\end{array}\right|=-3(5-2)=-9
$$

Answer: $\quad \operatorname{adj}_{3,2}=-9$

$$
\begin{aligned}
& +-+- \\
& \begin{array}{l}
-+\quad+ \\
+-+-1
\end{array} \\
& -+-+ \\
& \begin{array}{l}
+-+ \\
-+5
\end{array} \\
& t-t
\end{aligned}
$$

7. Consider the matrices

$$
A=\left[\begin{array}{rrrr}
a & b & c & d \\
x & y & z & 0 \\
-3 & 7 & 2 & 11 \\
-1 & 1 & 2 & 10
\end{array}\right], \quad B=\left[\begin{array}{rrrr}
x & y & z & 0 \\
-3+b x & 7+b y & 2+b z & 11 \\
a & b & c & d \\
-1 & 1 & 2 & 10
\end{array}\right] .
$$

Suppose that $\operatorname{det}(A)=3$. Find $\operatorname{det}(2 B)$.
B is $4 \times 4 \quad \operatorname{det}(2 B)=2^{4} \operatorname{det}(B)=16 \operatorname{det}(B)$
Row replacement (replace $2^{\text {nd }}$ row) in B with (itself $A+$

$$
\begin{aligned}
& \text { Row replacement } \\
& \operatorname{det}(B)=\left|\begin{array}{cccc}
x & y & z & 0 \\
-3 & 7 & 2 & 11 \\
a & b & c & d \\
-1 & 1 & 2 & 10
\end{array}\right|=\left|\begin{array}{cccc}
a & b & c & d \\
x & y & z & 0 \\
-3 & 7 & 2 & 11 \\
-1 & 1 & 2 & 10
\end{array}\right|=\operatorname{det}(A)=3 \\
& 2 \text { row interchanges: }(-1)(-1)=1
\end{aligned}
$$

Thus $\operatorname{det}(2 B)=16 \operatorname{det}(B)=16 \operatorname{det}(A)=16,3=48$.
Answer: $\operatorname{det}(2 B)=48$
8. Consider a linear system whose augmented matrix is of the form

$$
[A \mid \vec{b}]=\left[\begin{array}{ccc:c}
1 & 0 & -2 & a \\
0 & 1 & a & a-3 \\
0 & 0 & a-4 & a-3
\end{array}\right]
$$

(i) For what values of a will the system have no solution?
(ii) For what values of a will the system have a unique solution?
(iii) For what values of a will the system have infinitely many solutions?

$$
A=\left[\begin{array}{ccc}
1 & 0 & -2 \\
0 & 1 & a \\
0 & 0 & a-4
\end{array}\right] \quad \operatorname{det}(A)=a-4
$$

If $\operatorname{det}(A) \neq 0$ then A is invertible and hence the system will have a unique solution.

$$
\operatorname{det} A=a-4 \neq 0 \quad 0 \neq 4
$$

Thus if a $\neq 4$ we have a uniegue solution What happens if $a=4$

$$
\begin{aligned}
& \text { appens if } a=4 \\
& \left.\left[\begin{array}{ccc|c}
1 & 0 & -2 & 0 \\
0 & 1 & 4 & 1 \\
0 & 0 & 0 & 1
\end{array}\right] \quad \begin{array}{c}
\text { the system is } \\
\text { inconsistent } \\
{\left[\begin{array}{c}
\text { have one equation } \\
0 . x_{3}=1
\end{array}\right.}
\end{array}\right) .
\end{aligned}
$$

In conclusion: Answer:

$$
\begin{array}{ll}
\text { (i) } & a=4 \\
\text { (ii) } & a \neq 4
\end{array}
$$

(iii) There is no such a.
9. Consider the system:

$$
\begin{aligned}
x+y+z & =5 \\
x+2 y+z & =9 \\
x+y+\left(a^{2}-5\right) z & =a
\end{aligned}
$$

For which value of a does the system have infinitely many solutions?
The matrix of the system is $A=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & a^{2}-5\end{array}\right]$

$$
\operatorname{det}(A)=\left|\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 0 \\
0 & 0 & a^{2}-6
\end{array}\right|=a^{2}-6
$$

$F(\operatorname{det}(A) \neq 0 \Rightarrow$ unique solution.

$$
\text { If } \operatorname{def}(A) \neq 0 \quad \Rightarrow \quad \operatorname{det}(A)=0 \quad a^{2}=6 \quad a= \pm \sqrt{6}
$$

The system becomes

$$
\begin{aligned}
& x+y+7=5 \\
& x+2 y+7=9 \\
& x+y+7=+\sqrt{6} \quad(\text { or }-\sqrt{6})
\end{aligned}
$$

Thus the system k as either a unique solution or it is inconsistent.
Answer: There is no a such that the system has infinitely many solutions
10. Find a subset T of the set $S=\left\{\left(\begin{array}{l}1 \\ 2 \\ 1\end{array}\right),\left(\begin{array}{l}3 \\ 2 \\ 1\end{array}\right),\left(\begin{array}{l}2 \\ 2 \\ 1\end{array}\right),\left(\begin{array}{c}1 \\ 2 \\ -1\end{array}\right)\right\}$ such that T is a basis for the subspace of \mathbf{R}^{3} spanned by S. " $\bar{u} \quad "_{v} \quad "_{w} \quad \vec{e}$ S is a subspace of \mathbb{R}^{3} and so $\operatorname{dim}(S) \leq 3$ The first two vectors $v=\left(\begin{array}{l}1 \\ 2 \\ 1\end{array}\right)$ and $\bar{v}=\left(\begin{array}{l}3 \\ 2 \\ 1\end{array}\right)$ are lineady inospendert

Thus dims $=2$ or dims $=3$
$\left|\begin{array}{lll}1 & 3 & 2 \\ 2 & 2 & 2 \\ 1 & 1 & 1\end{array}\right|=2\left|\begin{array}{lll}1 & 3 & 2 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right|=0$. Thus $\bar{w}=\left(\begin{array}{l}2 \\ 2 \\ 1\end{array}\right)$ is a linear combination of \bar{u} and \bar{v} (in fact $\bar{w}=\frac{1}{2} \bar{u}+\frac{1}{2} \bar{v}$) Consoler now $\{\bar{u}, \bar{N}, \vec{e}\}$

$$
\left|\begin{array}{ccc}
1 & 2 & 1 \\
2 & 2 & 2 \\
1 & 1 & -1
\end{array}\right|=2\left|\begin{array}{ccc}
1 & 2 & 1 \\
1 & 1 & 1 \\
1 & 1 & -1
\end{array}\right|=2\left|\begin{array}{ccc}
1 & 2 & 1 \\
0 & -1 & 0 \\
0 & 0 & -2
\end{array}\right|=2\left|\begin{array}{cc}
-1 & 0 \\
0 & -2
\end{array}\right|
$$

Thus $\bar{u}, \bar{v}, \vec{e}$ are linearly independent

Remark: This is not the only choice for T

$$
\begin{aligned}
& \text { This is not the only choice for } 1 \\
& \text { For example } \left.\left\{\begin{array}{l}
3 \\
2 \\
1
\end{array}\right),\left(\begin{array}{l}
2 \\
2 \\
1
\end{array}\right),\binom{2}{-1}\right\}
\end{aligned}
$$

is also a correct answer since

$$
\left|\begin{array}{ccc}
3 & 2 & 1 \\
2 & 2 & 2 \\
1 & 1 & -1
\end{array}\right| \neq 0
$$

