MA265 Linear Algebra - Exam 1

Date: March 3, Spring 2021 Duration: 60 min

Name:

PUID:

- All answers must be justified and you must show all your work in order to get credit.
- The exam is open book. Each students should work independently, Academic integrity is strictly observed.

Problem	Points	Score
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
7	10	
8	10	
9	10	
10	10	
Total:	100	

1. Find all the numbers x for which the vector $\left[\begin{array}{c}-3 \\ x \\ 13\end{array}\right]$ belongs to the subspace of \mathbb{R}^{3} generated by the vectors $\left[\begin{array}{c}1 \\ 3 \\ -5\end{array}\right]$ and $\left[\begin{array}{c}-2 \\ -4 \\ 9\end{array}\right]$. \vec{b} $\vec{u} \quad \bar{v}$
\bar{b} belongs to $\operatorname{span}\{\vec{u}, \bar{v}\} \Longleftrightarrow \operatorname{rark}[\bar{u}, \vec{v}, \bar{b}]=\operatorname{rank}[\bar{u}, \bar{v}]$ Since $\operatorname{rank}[\bar{u}, \bar{v}]=2$ as \bar{u}, \vec{v} are linearly independent we must have $\operatorname{rank}[\bar{n}, \bar{v}, \bar{b}]=2$

$$
\begin{aligned}
& \operatorname{rank}\left[\begin{array}{ccc}
1 & -2 & -3 \\
3 & -4 & x \\
-5 & 9 & 13
\end{array}\right]=3 \quad\left|\begin{array}{ccc}
1 & -2 & -3 \\
3 & -4 & x \\
-5 & 9 & 13
\end{array}\right|=0 \\
& x+5=0 \Rightarrow \frac{x=-5}{\text { answer }} \\
& \left|\begin{array}{ccc}
1 & -2 & -3 \\
3 & -4 & x \\
-5 & 9 & 13
\end{array}\right|=\left|\begin{array}{ccc}
1 & -2 & 3 \\
0 & 2 & x+9 \\
0 & -1 & -2
\end{array}\right|=\left|\begin{array}{ccc}
1 & -2 & 3 \\
0 & 0 & x+5 \\
0 & -1 & -2
\end{array}\right| \\
& =\left|\begin{array}{ccc}
1 & -2 & 3 \\
0 & 1 & 2 \\
0 & 0 & x+5
\end{array}\right|=x+5
\end{aligned}
$$

2. Consider the matrix $A=\left[\begin{array}{ccc}0 & 2 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & 0\end{array}\right]$. Let S be the subspace of \mathbb{R}^{3} consisting of those vectors \mathbf{x} such that $A^{2} \mathbf{x}=\mathbf{0}$. Find a basis of S.

$$
\begin{aligned}
& A^{2}=\left[\begin{array}{ccc}
0 & 2 & 0 \\
0 & 0 & -1 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{lll}
0 & 2 & 0 \\
0 & 0 & -1 \\
0 & 0 & 0
\end{array}\right]=\left[\begin{array}{lll}
0 & 0 & -2 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \\
& A^{2}\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=0 \quad\left[\begin{array}{llc}
0 & 0 & -2 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
& \left.S=\left\{\begin{array}{l}
x_{2} \\
x_{2} \\
0
\end{array}\right]: \begin{array}{lll}
x_{1}, & x_{2} & \text { in } \\
10
\end{array}\right\} \\
& \operatorname{rank}\left(A^{2}\right)=1 \\
& \operatorname{dim}(S)=2 \\
& \text { basis }\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\right\} ;\left[\begin{array}{l}
x_{1} \\
x_{2} \\
0
\end{array}\right]=x_{1}\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+x_{2}\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]
\end{aligned}
$$

3. If two matrices B and C have inverses $B^{-1}=\left[\begin{array}{cc}1 & 1 \\ -3 & 1\end{array}\right]$ and $C^{-1}=\left[\begin{array}{ll}1 & 3 \\ 1 & 1\end{array}\right]$, and $A=B C$, compute A^{-1}.

$$
\begin{aligned}
& A^{-1}=(B C)^{-1}=C^{-1} B^{-1}=\left[\begin{array}{ll}
1 & 3 \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 1 \\
-3 & 1
\end{array}\right]=\left[\begin{array}{cc}
-8 & 4 \\
-2 & 2
\end{array}\right] \\
& B^{-1} C^{-1}=\left[\begin{array}{cc}
1 & 1 \\
-3 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 3 \\
1 & 1
\end{array}\right]=\left[\begin{array}{cc}
2 & 4 \\
2 & -8
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& L\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)=\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right], \quad L\left(\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right)=\left[\begin{array}{l}
2 \\
3 \\
2
\end{array}\right] . \text { Compute } L\left(\left[\begin{array}{l}
1 \\
2
\end{array}\right]\right) . \\
& {\left[\begin{array}{l}
1 \\
2
\end{array}\right]=2\left[\begin{array}{l}
1 \\
1
\end{array}\right]-\left[\begin{array}{l}
1 \\
0
\end{array}\right] \quad L\left[\begin{array}{l}
1 \\
2
\end{array}\right]=2 L\left[\begin{array}{l}
1 \\
1
\end{array}\right]-L\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right) } \\
&=2\left[\begin{array}{l}
2 \\
3 \\
2
\end{array}\right]-\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right]=\left[\begin{array}{l}
4 \\
6 \\
4
\end{array}\right]-\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right]=\left[\begin{array}{l}
3 \\
5 \\
2
\end{array}\right]
\end{aligned}
$$

(or) $\left[\begin{array}{l}0 \\ 1\end{array}\right]=\left[\begin{array}{l}1 \\ 1\end{array}\right]-\left[\begin{array}{l}1 \\ 0\end{array}\right] \quad L\left[\begin{array}{l}0 \\ 1\end{array}\right]=\left[\begin{array}{l}2 \\ 3 \\ 2\end{array}\right]-\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right]=\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right]$
$L \bar{x}=A \bar{x}$ The columns of A are $L\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $L\left[\begin{array}{l}0 \\ 1\end{array}\right]$

$$
\begin{aligned}
& A=\left[\begin{array}{ll}
1 & 1 \\
1 & 2 \\
2 & 0
\end{array}\right] \\
& L\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
1 & 2 \\
2 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{l}
23 \\
5 \\
2
\end{array}\right]
\end{aligned}
$$

5. Let A be a 4×5 matrix. Which of the following statements are true and which are false? Indicate clearly your answers. For this question you do not need to include explanations for your answers.
A. It is possible that the rank of A is 3 .
B. It is possible that the null space of A has dimension 1 .
C. It is possible that $A \mathbf{x}=\mathbf{0}$ has only one solution, the trivial solution.
D. It is possible that there exists two linearly independent vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^{5} such that $A \mathbf{u}=A \mathbf{v}=\mathbf{0}$.
E. It is possible that the columns of A are linearly independent.
$A, T R U E \quad \longrightarrow \quad E X . \quad A=\left[\begin{array}{llllll}1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0\end{array}\right]$

The columns of A are vectors in \mathbb{R}^{4}
There are at most 4 enearly inolpenolent vectors in \mathbb{R}^{4} since dim $\operatorname{RR}^{4} \mid=4$.
Thus any 5 vectors in \mathbb{R}^{4} are linearly dependent.
6. Let

$$
A=\left[\begin{array}{ccccc}
x^{2} & 1 & 13 & 3 & 4 \\
3 & 1 & x & 4 & 2 \\
2 & 2 & 2 & 2 & x^{3} \\
1 & 3 x^{4} & 4 & 3 & 11 \\
2 & 2 & 4 & 8 & 1
\end{array}\right]
$$

The determinant of A is a polynomial in x. What is the coefficient of x^{10} in this polynomial? No use of computer software is allowed for computing this determinant. Hint: you don't need to compute all the terms of $\operatorname{det}(A)$ in order to answer the question. After interchanging columns (3-paire)

$$
\begin{aligned}
& \operatorname{det}(A)=(-1)^{3}\left|\begin{array}{ccccc}
x^{2} & 13 & 4 & 1 & 3 \\
3 & x & 2 & 1 & 4 \\
2 & 2 & x^{3} & 2 & 2 \\
1 & 4 & 11 & 3 x^{4} & 3 \\
2 & 4 & 1 & 4 & 8
\end{array}\right| \\
& =(-1) x^{2}\left|\begin{array}{cccc}
x & 2 & 1 & 4 \\
2 & x^{3} & 2 & 2 \\
4 & 11 & 3 x^{4} & 3 \\
4 & 1 & 4 & 8
\end{array}\right|+\text { terms of lower byre } \\
& =(-1)\left(x^{2}\right)(x)\left|\begin{array}{ccc}
x^{3} & 2 & 2 \\
11 & 3 x^{4} & 3 \\
1 & 4 & 8
\end{array}\right| \text { t terms of lower byre } \\
& \left.=(-1)\left(x^{2}\right)(x)\left(x^{3}\right) \nmid \begin{array}{cc}
3 x^{4} & 3 \\
4 & 8
\end{array} \right\rvert\, \text { t terms of lower degree } \\
& \text { Answer: }-24
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{det}\left(2 A^{2}\right)=\operatorname{det}\left((-1) A^{\top}\right) \\
& 2^{5} \operatorname{det}(A)^{2}=(-1)^{5} \operatorname{det}(A) \\
& 32 \operatorname{det}(A)^{2}=-\operatorname{det}(A)
\end{aligned}
$$

A invertible $\Rightarrow \operatorname{det}(A) \neq 0$

$$
\begin{aligned}
& (32 \operatorname{det}(A)+1) \operatorname{det}(A)=0 \\
& \Rightarrow 32 \operatorname{det}(A)+1=0 \\
& \operatorname{det}(A)=-\frac{1}{32}
\end{aligned}
$$

$$
\mathbf{u}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right] \quad \mathbf{v}=\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right] \quad \mathbf{w}=\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right] \quad \mathbf{k}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \quad \mathbf{0}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Let A be a 3×4 matrix such that $A \mathbf{u}=\mathbf{0}, A \mathbf{v}=\mathbf{0}$ and $A \mathbf{w}=\mathbf{k}$. What are the possible values of the rank of A ?

$$
\begin{aligned}
& \operatorname{rank}(A)+\underset{\operatorname{dim}(N u l(A))}{\operatorname{dim}(\operatorname{Nul}(A)) \geqslant 2 \text { since } \bar{u}, \bar{v} \text { in } N u l(A)}=4 \\
& \quad \operatorname{are} \text { linearly indef }
\end{aligned}
$$ are linearly independent.

Thus $\operatorname{rank}(A)=4-\operatorname{dim}(N u l(A)) \leq 4-2=2$
(1) $\operatorname{rank}(A) \leq 2$

Since $A \bar{\omega}=\bar{k} \neq 0 \Rightarrow \operatorname{rark}(A) \geqslant 1$
Thus (1) \& (2) $\Rightarrow \operatorname{rank}(A)=1$ or $\operatorname{rank}(A)=2$
Both cases occur
Ex $\quad A=\left[\begin{array}{llll}0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}\right]$ has rank $=1$

$$
A=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1
\end{array}\right] \text { has rank }=2
$$

These 2 matrices satisfy the given conditions.
9. Consider a linear system whose augmented matrix can be reduced via row operations to the echelon form

$$
\left[\begin{array}{ccc:c}
1 & 0 & -2 & a \\
0 & 1 & a & a-3 \\
0 & 0 & a^{2}-9 & a-3
\end{array}\right]
$$

(i) For which values of a will the system have no solution?
(ii) For which values of a will the system have a unique solution?

$$
a=-3
$$

(iii) For which values of a will the system have infinitely many solutions?

$$
a=3
$$

- Unique solution if $\left|\begin{array}{lll}1 & 0 & -2 \\ 0 & 1 & a \\ 0 & 0 & a^{2}-9\end{array}\right|=a^{2}-9 \neq 0$
thus a $\neq \pm 3$
- If $a=3$

$$
\left[\begin{array}{ccc:c}
1 & 0 & -2 & 0 \\
0 & 1 & 3 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

$$
\begin{gathered}
x_{1}-2 x_{3}=0 \\
x_{2}+3 x_{3}=0 \\
x_{1}=25 \\
x_{2}=-35 \\
x_{3}=5
\end{gathered}
$$

. If $a=-3$

$$
\left[\begin{array}{rrr:r}
1 & 0 & -2 & -3 \\
0 & 1 & -3 & -6 \\
0 & 0 & 0 & -6
\end{array}\right]
$$

(infinitely many solutions $x_{3}=5$

$$
\begin{aligned}
& x_{1}=2 \mathrm{~s} \\
& x_{2}=-3 s \quad s i n \mathbb{R}
\end{aligned}
$$

10. Find a matrix A with $\operatorname{det}(A)=1$ whose $\operatorname{adjugate} \operatorname{is} \operatorname{adj}(A)=\left[\begin{array}{lll}1 & 0 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$.

