MA265 Linear Algebra — Exam $\mathbf{2}$

Date: April 7th, 2021 Duration: 60 min

Name:

PUID:

- All answers must be justified and you must show all your work in order to receive full credit.
- Academic integrity is strictly observed

Problem	Points	Score
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
7	10	
8	10	
9	10	
10	10	
Total:	100	

1. Find all numbers a for which the following vectors are linearly independent.

$$\mathbf{v}_{1} = \begin{bmatrix} 1\\ -2\\ -1\\ a \end{bmatrix}, \ \mathbf{v}_{2} = \begin{bmatrix} a^{2}\\ 0\\ -4\\ 1 \end{bmatrix}, \ \mathbf{v}_{3} = \begin{bmatrix} 1\\ 2\\ 1-a\\ -2 \end{bmatrix}, \ \mathbf{v}_{4} = \begin{bmatrix} 2\\ 1\\ 1\\ 1 \end{bmatrix}, \ \mathbf{v}_{5} = \begin{bmatrix} 0\\ 2\\ a\\ 1 \end{bmatrix}.$$
Since dim (IR4) = 4 any 5 vectors in IR4
are linearly dependent.
Thus there exists no a such that
the given vectors are linearly independent.

[10pt]

2. Let V be the vector space of all polynomials p of degree at most 3. [10pt] Let W be the subspace of V consisting of those polynomials p that satisfy the conditions:

$$p(0) = p(-1) = 0.$$

Find a basis of W.

$$P \{t\} = a_0 + a_1 t + a_2 t^2 + a_2 t^3$$

$$P (e_1 = a_0 = 0$$

$$P (-1) = a_0 - a_1 + a_2 - a_3 = 0$$

$$a_0 = 0 \qquad a_2 = a_1 + a_3$$

$$P (t) = a_1 t + (a_1 + a_3)t^2 + a_3 t^3$$

$$= a_1 (t + t^2) + a_3 (t^2 + t^3)$$

$$t + t^2, t^2 + t^3 \quad are \quad linearly \quad independent$$

$$and \quad hwy \quad span \quad W$$
Thus $\{t + t^2, t^2 + t^3\}$ is a basis of W .

- **3.** Let A be a 3×5 matrix with rank(A) = 2. For each of the following assertions indicate |10pt| whether it is **true** or **false**. (*No explanations required*).
 - (1) For some **b** in \mathbb{R}^3 the system $A\mathbf{x} = \mathbf{b}$ has a unique solution.
 - (2) If the rank of the augmented matrix $[A \mathbf{b}]$ is also 2, then the system $A\mathbf{x} = \mathbf{b}$ has infinitely many solutions.
 - (3) If the rank of the augmented matrix $[A\mathbf{b}]$ is 3, then the system $A\mathbf{x} = \mathbf{b}$ has no solution.
 - (4) The system $A\mathbf{x} = \mathbf{b}$ has a solution if and only if **b** is in the row space of A.
 - (5) The null space of A has dimension 1.
 - $r_{ANK}(A) + nullity(A) = 5 => nullity(A) = 5 2 = 3$ because if xo is any solution then xo + v is also 2 solution whenever v is in Null (A) (1) False rank (Al = rank (Alb] => Ax=b [21 True has solutions. if to is any solution then xo + v is also a solution whenever v is in Null (A) (3) True rank (A) < rank [A) b] (4) False Ax=b has a solution (=) b is in the column space of A (5 | False dim (Null (A/) = 3

4. Let $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ be a basis of \mathbb{R}^3 . Let $T : \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation such that [10pt] $T(\mathbf{v}_1) = \mathbf{v}_1 + \mathbf{v}_2, \quad T(\mathbf{v}_2) = \mathbf{v}_1 + \mathbf{v}_2 \text{ and } T(\mathbf{v}_3) = \mathbf{v}_1 + 2\mathbf{v}_2 + 3\mathbf{v}_3.$ Find the eigenvalues of T.

If
$$\mathcal{B} = \{1, 1, \sqrt{2}, \sqrt{3}\}$$

 $A = [T]_{\mathcal{B}} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 2 \\ 0 & 0 & 3 \end{bmatrix}$
 $det (A - \lambda I) = \begin{bmatrix} 1 - \lambda & 1 & 1 \\ 1 & 1 - \lambda & 2 \\ 0 & 0 & 3 - \lambda \end{bmatrix} = \begin{bmatrix} 1 - \lambda & 1 & 1 \\ 1 & 1 - \lambda \end{bmatrix} (3 - \lambda) = 0$
 $= ((1 - \lambda)^2 - 1)(3 - \lambda) = (\lambda^2 - 2\lambda)(3 - \lambda) = 0$
 $\lambda (\lambda - 2)(3 - \lambda) = 0$
 $\lambda 1 = 0$
 $\lambda 2 = 3$

- 5. Let \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 be three vectors in a vector space. For each of the following assertions [10pt] indicate whether it is **true** or **false**. (*No explanations required*).
 - (1) If \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 are linearly independent, then $Span\{\mathbf{v}_1, \mathbf{v}_2\} \neq Span\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$.
 - (2) If $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ are linearly dependent, then $Span\{\mathbf{v}_1, \mathbf{v}_2\} = Span\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}.$
 - (3) If $Span\{\mathbf{v}_1, \mathbf{v}_2\} \neq Span\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$, then \mathbf{v}_3 is not in $Span\{\mathbf{v}_1, \mathbf{v}_2\}$.
 - (4) If \mathbf{v}_3 is in $Span\{\mathbf{v}_1, \mathbf{v}_2\}$, then $Span\{\mathbf{v}_1, \mathbf{v}_2\} = Span\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$.
 - (5) If \mathbf{v}_3 is in $Span\{\mathbf{v}_1, \mathbf{v}_2\}$, then $\mathbf{v}_3 \mathbf{v}_1$ is in $Span\{\mathbf{v}_1, \mathbf{v}_2\}$.

(1) True since dim
$$(\operatorname{Span} \{v_1, v_2 h\}) = 2$$

olim $(\operatorname{Span} \{v_1, v_2, v_3\}) = 3$
(2) False $(e_{Y}: v_1 = 0 \quad v_2 = 0 \quad v_3 \neq 0)$

(3) True (4) True (5) True

6. Consider the matrix
$$A = \begin{bmatrix} 1 & 0 & 1 & 2 & 1 \\ 1 & 0 & 1 & 2 & 2 \\ 2 & 1 & 0 & 1 & 2 \\ 1 & 1 & -1 & -1 & 0 \end{bmatrix}$$
. [10pt]
It is given that $\operatorname{rref}(A) = \begin{bmatrix} 1 & 0 & 1 & 2 & 0 \\ 0 & 1 & -2 & -3 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$.

Consider the subspace W of \mathbb{R}^4 consisting of all vectors **b** for which the system $A\mathbf{x} = \mathbf{b}$ is consistent (admits solutions). What is the dimension of W?

- 7. Consider the vector space \mathcal{P}_5 consisting of all polynomials of degree ≤ 5 . For each of the [10pt] following assertions indicate whether it is **true** or **false**. (*No explanations required*).
 - (1) The set $\{p \text{ in } \mathcal{P}_5 : p(t) = p(-t)\}$ is a subspace of \mathcal{P}_5 .
 - (2) The set $\{p \text{ in } \mathcal{P}_5 : \text{the degree of } p \text{ is equal to } 5\}$ is a subspace of \mathcal{P}_5 .
 - (3) The set $\{p \text{ in } \mathcal{P}_5 : p(0) = p(1)\}$ is a subspace of \mathcal{P}_5 .
 - (4) The set $\{p \text{ in } \mathcal{P}_5 : p(0) = 2p(1)\}$ is a subspace of \mathcal{P}_5 .
 - (5) The set $\{p \text{ in } \mathcal{P}_5 : p(0) = 1\}$ is a subspace of \mathcal{P}_5 .

8. Consider the matrix $A = \begin{bmatrix} 1 & 1 & 17 \\ 0 & -1 & 101 \\ 0 & 0 & \sqrt{2} \end{bmatrix}$ and let *B* be a matrix similar to $A^2 + A^{10}$. [10pt]

Compute the determinant of B.

$$P(\lambda) = \det (A - \lambda E) = \begin{pmatrix} 1 - \lambda & 1 & 12 \\ 0 & -1 - \lambda & 101 \\ 0 & 0 & 12 - \lambda \end{pmatrix} = (1 - \lambda)(1 - 1 - \lambda)(1 - \lambda)$$

$$\lambda_{1} = 1 \quad \lambda_{2} = -1 \quad \lambda_{3} = \sqrt{2} \quad \text{all dishnef}$$

$$Tum \quad A \quad is \quad diagonalityble \quad and \quad similar \quad f \quad D = \begin{pmatrix} 0 & 0 \\ 0 - 1 & 0 \\ 0 & 0 & \sqrt{2} \end{pmatrix}$$

$$A^{2} + A^{10} \quad is \quad similar \quad f \quad D^{2} + D^{10}$$

$$D^{2} + D^{10} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} + \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2^{5} \end{pmatrix} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 34 \end{pmatrix}$$

$$def(A^{2} + A^{10}) = def(D^{2} + D^{10}) = (2)(2)(34) = 4 \cdot 34 = 136$$

9. For each fixed λ in \mathbb{R} consider the set V_{λ} consisting of all vectors of the form $\begin{bmatrix} \lambda^2 b + c \\ b + c \\ \swarrow & \lambda^2 - \lambda \end{bmatrix}$ [10pt] where $\blacksquare b, c$ are in \mathbb{R} . In other words

$$V_{\lambda} = \left\{ \begin{bmatrix} \lambda^2 b + c \\ b + c \\ \bigstar^2 - \lambda \end{bmatrix} : \bigstar b, c \text{ in } \mathbb{R} \right\}$$

(a) For which values of λ is V_{λ} a vector subspace of \mathbb{R}^3 ?

(b) If V_{λ} is a vector subspace of \mathbb{R}^3 find its dimension dim (V_{λ}) .

(2) If
$$\forall_{\lambda}$$
 is a subspace then $\lambda^{n} - \lambda = 0$
since $\begin{bmatrix} 0 \\ 0 \\ \lambda^{n} - \lambda \end{bmatrix} \neq \begin{bmatrix} 0 \\ \lambda^{n} - \lambda \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \\ (\lambda^{n} - \lambda^{n}) \end{bmatrix}$
is in $\forall_{\lambda} = 0$ or $\lambda = 1$ $(=)$ $\lambda^{n} - \lambda = 0$
 $\lambda^{n} - \lambda = 0 = 1$ $\lambda = 0$ or $\lambda = 1$ $(=)$ $\lambda^{n} - \lambda = 0$
(b) $\lambda = 0$ $\forall_{0} = \sum_{i=1}^{n} \begin{bmatrix} c_{i+1} \\ b+c \\ 0 \end{bmatrix} : b_{i}c_{i} = 0$ $\begin{bmatrix} c_{i+1} \\ b+c \\ 0 \end{bmatrix} = b_{i}c_{i} = 0$
 $\forall_{i}h_{i} = b_{i}c_{i} = b_{i}c_{i} = 0$
 $\forall_{i}h_{i} = b_{i}c_{i} = b_{i}c_{i} = 0$

10. The characteristic polynomial of a 4×4 matrix A is $p(\lambda) = -\lambda(1-\lambda)^2(3-\lambda)$. Let I [10pt] denote the 4×4 identity matrix. For each of the following assertions indicate whether it is **true** or **false**. (No explanations required).

(1) det(A) = 3.
(2) rank(A) = 3.
(3) If A is not diagonalizable then rank(A - I) = 3.
(4) If A is not diagonalizable then rank(A - I) = 2.
(5) det(A + 3I) = 0.
Eigenvalues are the roots of
$$p(\lambda | = 0)$$
 $\lambda_1 = 0$ $\lambda_2 = \lambda_3 = 1$ $\lambda_4 = 1$
(1) False since det(A) = det(A - 0.1) = $p(0) = 0$
(2) True since Nul(A) is the eigenspace corresponding
(3) A is $\lambda_1 = 0$. This has dimension 1
since 0 has multiplicity = 1.
multipl(A) = 1 => rank(A - I = 4 - I = 3)
(3) A is diagonalizable (=)
Nullipl(A - I) = $A \leq 2$ multiplicity = 4 - I = 3
(4) False since (2) Is true.
(4) False since -3 is not
(5) False since -3 is not
(5) False -3 is not
(6) A is ince -3 is not
 $\lambda_1 = 0$ has not $A = 1$
 $\lambda_1 = 0$ the false since -3 is not
 $\lambda_2 = \lambda_3 = 1$ $\lambda_4 = 1$