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1. [10pt]Find all numbers a for which the following vectors are linearly independent.
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Since dim 4124 ) = 4 any 5 vectors in 1124

are linearly dependent .

Thus there exists no a such that

the given
vectors are linearly independent .



2. [10pt]Let V be the vector space of all polynomials p of degree at most 3.

Let W be the subspace of V consisting of those polynomials p that satisfy the conditions:

p(0) = p(�1) = 0.

Find a basis of W .
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3. [10pt]Let A be a 3⇥ 5 matrix with rank(A) = 2. For each of the following assertions indicate
whether it is true or false. (No explanations required).

(1) For some b in R3 the system Ax = b has a unique solution.

(2) If the rank of the augmented matrix [Ab] is also 2, then the system Ax = b has
infinitely many solutions.

(3) If the rank of the augmented matrix [Ab] is 3, then the system Ax = b has no
solution.

(4) The system Ax = b has a solution if and only if b is in the row space of A.

(5) The null space of A has dimension 1.
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4. [10pt]Let v1,v2,v3 be a basis of R3. Let T : R3 ! R3 be a linear transformation such that

T (v1) = v1 � v2, T (v2) = v1 + v2 and T (v3) = v1 + 2v2 + 3v3.

Find the eigenvalues of T .
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5. [10pt]Let v1, v2, v3 be three vectors in a vector space. For each of the following assertions
indicate whether it is true or false. (No explanations required).

(1) If v1, v2, v3 are linearly independent, then Span{v1,v2} 6= Span{v1,v2,v3}.

(2) If v1, v2, v3 are linearly dependent, then Span{v1,v2} = Span{v1,v2,v3}.

(3) If Span{v1,v2} 6= Span{v1,v2,v3}, then v3 is not in Span{v1,v2}.

(4) If v3 is in Span{v1,v2}, then Span{v1,v2} = Span{v1,v2,v3}.

(5) If v3 is in Span{v1,v2}, then v3 � v1 is in Span{v1,v2}.
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6. [10pt]Consider the matrix A =

2

664

1 0 1 2 1
1 0 1 2 2
2 1 0 1 2
1 1 �1 �1 0

3

775 .

It is given that rref(A) =

2

664

1 0 1 2 0
0 1 �2 �3 0
0 0 0 0 1
0 0 0 0 0

3

775 .

Consider the subspace W of R4 consisting of all vectors b for which the system Ax = b
is consistent (admits solutions). What is the dimension of W?
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7. [10pt]Consider the vector space P5 consisting of all polynomials of degree  5. For each of the
following assertions indicate whether it is true or false. (No explanations required).

(1) The set {p in P5 : p(t) = p(�t)} is a subspace of P5.

(2) The set {p in P5 : the degree of p is equal to 5} is a subspace of P5.

(3) The set {p in P5 : p(0) = p(1)} is a subspace of P5.

(4) The set {p in P5 : p(0) = �p(1)} is a subspace of P5.

(5) The set {p in P5 : p(0) = 1} is a subspace of P5.
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8. [10pt]Consider the matrix A =
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5 and let B be a matrix similar to A2 + A10.

Compute the determinant of B.
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9. [10pt]For each fixed � in R consider the set V� consisting of all vectors of the form
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(a) For which values of � is V� a vector subspace of R3?

(b) If V� is a vector subspace of R3 find its dimension dim(V�).
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10. [10pt]The characteristic polynomial of a 4 ⇥ 4 matrix A is p(�) = ��(1 � �)2(3 � �). Let I
denote the 4 ⇥ 4 identity matrix. For each of the following assertions indicate whether
it is true or false. (No explanations required).

(1) det(A) = 3.

(2) rank(A) = 3.

(3) If A is not diagonalizable then rank(A� I) = 3.

(4) If A is not diagonalizable then rank(A� I) = 2.

(5) det(A+ 3I) = 0.
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