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1. [10pt]Find all numbers a for which the following vectors are linearly independent.
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Since dim 4124 ) = 4 any 5 vectors in 1124

are linearly dependent .

Thus there exists no a such that

the given
vectors are linearly independent .



2. [10pt]Let V be the vector space of all polynomials p of degree at most 3.

Let W be the subspace of V consisting of those polynomials p that satisfy the conditions:

p(0) = p(�1) = 0.

Find a basis of W .
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3. [10pt]Let A be a 3⇥ 5 matrix with rank(A) = 2. For each of the following assertions indicate
whether it is true or false. (No explanations required).

(1) For some b in R3 the system Ax = b has a unique solution.

(2) If the rank of the augmented matrix [Ab] is also 2, then the system Ax = b has
infinitely many solutions.

(3) If the rank of the augmented matrix [Ab] is 3, then the system Ax = b has no
solution.

(4) The system Ax = b has a solution if and only if b is in the row space of A.

(5) The null space of A has dimension 1.
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4. [10pt]Let v1,v2,v3 be a basis of R3. Let T : R3 ! R3 be a linear transformation such that

T (v1) = v1 � v2, T (v2) = v1 + v2 and T (v3) = v1 + 2v2 + 3v3.

Find the eigenvalues of T .
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5. [10pt]Let v1, v2, v3 be three vectors in a vector space. For each of the following assertions
indicate whether it is true or false. (No explanations required).

(1) If v1, v2, v3 are linearly independent, then Span{v1,v2} 6= Span{v1,v2,v3}.

(2) If v1, v2, v3 are linearly dependent, then Span{v1,v2} = Span{v1,v2,v3}.

(3) If Span{v1,v2} 6= Span{v1,v2,v3}, then v3 is not in Span{v1,v2}.

(4) If v3 is in Span{v1,v2}, then Span{v1,v2} = Span{v1,v2,v3}.

(5) If v3 is in Span{v1,v2}, then v3 � v1 is in Span{v1,v2}.
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6. [10pt]Consider the matrix A =

2
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Consider the subspace W of R4 consisting of all vectors b for which the system Ax = b
is consistent (admits solutions). What is the dimension of W?
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7. [10pt]Consider the vector space P5 consisting of all polynomials of degree  5. For each of the
following assertions indicate whether it is true or false. (No explanations required).

(1) The set {p in P5 : p(t) = p(�t)} is a subspace of P5.

(2) The set {p in P5 : the degree of p is equal to 5} is a subspace of P5.

(3) The set {p in P5 : p(0) = p(1)} is a subspace of P5.

(4) The set {p in P5 : p(0) = �p(1)} is a subspace of P5.

(5) The set {p in P5 : p(0) = 1} is a subspace of P5.
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8. [10pt]Consider the matrix A =
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5 and let B be a matrix similar to A2 + A10.

Compute the determinant of B.
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9. [10pt]For each fixed � in R consider the set V� consisting of all vectors of the form

2

4
�2b+ c
b+ c

a+ �2 � �

3

5
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(a) For which values of � is V� a vector subspace of R3?

(b) If V� is a vector subspace of R3 find its dimension dim(V�).
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10. [10pt]The characteristic polynomial of a 4 ⇥ 4 matrix A is p(�) = ��(1 � �)2(3 � �). Let I
denote the 4 ⇥ 4 identity matrix. For each of the following assertions indicate whether
it is true or false. (No explanations required).

(1) det(A) = 3.

(2) rank(A) = 3.

(3) If A is not diagonalizable then rank(A� I) = 3.

(4) If A is not diagonalizable then rank(A� I) = 2.

(5) det(A+ 3I) = 0.

10

c :)
Eigenvalues are the roots of paleo

X , -0 X ,z=Xz=
l +4=1

C) False since outfit) - def #
- v. I 7=10101--0

Nul ft ) is
the eigen space

corresponding

@ / True since dimension
1

to X
,
-_ o .

This has

since
O has multiplicity

=/
.

nullity (A) =L ⇒ rank #1=4
-
1=3

not

(3) It is diagonal table ⇐

True
nullity (A - I 7=152

- multiplicity,= ,

i s nullity ( A - H E 2 ⇐ rank (A - It's

Thus @ l is true .

since
ranket - I 1=2

⇒ nf,¥I7=2
It

(41 False

⇐ 1 False since
- 3 is not !" , sie

Tu eigenvalue


