MA265 Linear Algebra — Practice Exam 1

Date: Spring 2021 Duration: 60 min

Name:

PUID:

- All answers must be justified and you must show all your work in order to get credit.
- The exam is open book. Each students should work independently, Academic integrity is strictly observed.

Problem	Points	Score
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
7	10	
8	10	
9	10	
10	10	
Total:	100	

1. Consider the matrices $A = \begin{bmatrix} 2 & 2 & 1 \\ 2 & 1 & 2 \\ 1 & 1 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 1 \end{bmatrix}$. Let *S* be the subspace [10pt]

[10pt]

of \mathbb{R}^3 consisting of those vectors **x** such that $A\mathbf{x} = B\mathbf{x}$. Find a basis of S.

2. Consider the vectors

$$\mathbf{u} = \begin{bmatrix} 1\\ -1\\ 1 \end{bmatrix} \quad \mathbf{v} = \begin{bmatrix} 1\\ 2\\ 1 \end{bmatrix} \quad \mathbf{w} = \begin{bmatrix} 0\\ 0\\ 1 \end{bmatrix} \quad \mathbf{0} = \begin{bmatrix} 0\\ 0\\ 0 \end{bmatrix}$$

Let A be a 3×3 matrix such that $A\mathbf{u} = \mathbf{0}$, $A\mathbf{v} = \mathbf{0}$ and $A\mathbf{w} = \mathbf{w}$. What is the rank of A?

- **3.** Let $T : \mathbb{R}^2 \to \mathbb{R}^3$ be a linear map such that $T\left(\begin{bmatrix} 1\\0 \end{bmatrix}\right) = \begin{bmatrix} 1\\2\\3 \end{bmatrix}$ and [10pt] $T\left(\begin{bmatrix} 1\\2 \end{bmatrix}\right) = \begin{bmatrix} 1\\-1\\0 \end{bmatrix}$. Compute $T\left(\begin{bmatrix} 3\\4 \end{bmatrix}\right)$.
- 4. Let A be a 3×5 matrix. Which of the following statements are true? Indicate clearly [10pt] <u>all</u> correct answers.
 - A. The rank of A is 3.
 - B. The null space of A has dimension at least 2.
 - C. $A\mathbf{x} = \mathbf{0}$ has only one solution, the trivial solution.
 - D. There exists two linearly independent vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^5 such that $A\mathbf{u} = A\mathbf{v} = \mathbf{0}$.
 - E. The columns of A are linearly dependent.
- 5. Suppose that A and B are 2×2 matrices satisfying det(B) = 8 and $A^3 = B^2$. Determine [10pt] the value of det $(3 A^T B A^{-1} B^{-1} A)$.

6. Consider the matrix
$$A = \begin{pmatrix} 1 & 1 & 4 & 2 \\ 2 & 2 & 10 & 0 \\ 0 & 3 & 1 & 0 \\ 1 & 0 & 0 & 5 \end{pmatrix}$$
. Compute the (3, 2) entry of the adjugate [10pt] matrix $\operatorname{adj}(A)$.

7. Consider the matrices

$$A = \begin{bmatrix} a & b & c & d \\ x & y & z & 0 \\ -3 & 7 & 2 & 11 \\ -1 & 1 & 2 & 10 \end{bmatrix}, \quad B = \begin{bmatrix} x & y & z & 0 \\ -3 + bx & 7 + by & 2 + bz & 11 \\ a & b & c & d \\ -1 & 1 & 2 & 10 \end{bmatrix}$$

Suppose that det(A) = 3. Find det(2B).

8. Consider a linear system whose augmented matrix is of the form

$$[A|\vec{b}] = \begin{bmatrix} 1 & 0 & -2 & | & a \\ 0 & 1 & a & | & a-3 \\ 0 & 0 & a-4 & | & a-3 \end{bmatrix}$$

- (i) For what values of a will the system have no solution?
- (ii) For what values of a will the system have a unique solution?
- (iii) For what values of a will the system have infinitely many solutions?
- **9.** Consider the system:

$$\begin{array}{rl} x+y+z=&5\\ x+2y+z=&9\\ x+y+(a^2-5)z=&a \end{array}$$

For which value of a does the system have infinitely many solutions?

10. Find a subset T of the set $S = \left\{ \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} \right\}$ such that T is a basis [10pt] for the subspace of \mathbf{R}^3 spanned by S.

[10pt]

[10pt]

[10pt]