MA265 Linear Algebra - Practice Exam 1

Date: Spring 2021 Duration: 60 min

Name:

PUID:

- All answers must be justified and you must show all your work in order to get credit.
- The exam is open book. Each students should work independently, Academic integrity is strictly observed.

Problem	Points	Score
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
7	10	
8	10	
9	10	
10	10	
Total:	100	

1. Consider the matrices $A=\left[\begin{array}{lll}2 & 2 & 1 \\ 2 & 1 & 2 \\ 1 & 1 & 1\end{array}\right]$ and $B=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 1\end{array}\right]$. Let S be the subspace of \mathbb{R}^{3} consisting of those vectors \mathbf{x} such that $A \mathbf{x}=B \mathbf{x}$. Find a basis of S.
2. Consider the vectors
[10pt]

$$
\mathbf{u}=\left[\begin{array}{r}
1 \\
-1 \\
1
\end{array}\right] \quad \mathbf{v}=\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right] \quad \mathbf{w}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \quad \mathbf{0}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Let A be a 3×3 matrix such that $A \mathbf{u}=\mathbf{0}, A \mathbf{v}=\mathbf{0}$ and $A \mathbf{w}=\mathbf{w}$. What is the rank of A?
3. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be a linear map such that $T\left(\left[\begin{array}{l}1 \\ 0\end{array}\right]\right)=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ and
$T\left(\left[\begin{array}{l}1 \\ 2\end{array}\right]\right)=\left[\begin{array}{r}1 \\ -1 \\ 0\end{array}\right] . \quad$ Compute $T\left(\left[\begin{array}{l}3 \\ 4\end{array}\right]\right)$.
4. Let A be a 3×5 matrix. Which of the following statements are true? Indicate clearly [10pt] all correct answers.
A. The rank of A is 3 .
B. The null space of A has dimension at least 2 .
C. $A \mathrm{x}=\mathbf{0}$ has only one solution, the trivial solution.
D. There exists two linearly independent vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^{5} such that $A \mathbf{u}=A \mathbf{v}=\mathbf{0}$.
E. The columns of A are linearly dependent.
5. Suppose that A and B are 2×2 matrices satisfying $\operatorname{det}(B)=8$ and $A^{3}=B^{2}$. Determine $\quad[10 \mathrm{pt}]$ the value of $\operatorname{det}\left(3 A^{T} B A^{-1} B^{-1} A\right)$.
6. Consider the matrix $A=\left(\begin{array}{cccc}1 & 1 & 4 & 2 \\ 2 & 2 & 10 & 0 \\ 0 & 3 & 1 & 0 \\ 1 & 0 & 0 & 5\end{array}\right)$. Compute the $(3,2)$ entry of the adjugate [10pt] matrix $\operatorname{adj}(A)$.
7. Consider the matrices

$$
A=\left[\begin{array}{rrrr}
a & b & c & d \\
x & y & z & 0 \\
-3 & 7 & 2 & 11 \\
-1 & 1 & 2 & 10
\end{array}\right], \quad B=\left[\begin{array}{rrrr}
x & y & z & 0 \\
-3+b x & 7+b y & 2+b z & 11 \\
a & b & c & d \\
-1 & 1 & 2 & 10
\end{array}\right] .
$$

Suppose that $\operatorname{det}(A)=3$. Find $\operatorname{det}(2 B)$.
8. Consider a linear system whose augmented matrix is of the form

$$
[A \mid \vec{b}]=\left[\begin{array}{ccc:c}
1 & 0 & -2 & a \\
0 & 1 & a & a-3 \\
0 & 0 & a-4 & a-3
\end{array}\right]
$$

(i) For what values of a will the system have no solution?
(ii) For what values of a will the system have a unique solution?
(iii) For what values of a will the system have infinitely many solutions?
9. Consider the system:

$$
\begin{aligned}
x+y+z & =5 \\
x+2 y+z & =9 \\
x+y+\left(a^{2}-5\right) z & =a
\end{aligned}
$$

For which value of a does the system have infinitely many solutions?
10. Find a subset T of the set $S=\left\{\left(\begin{array}{l}1 \\ 2 \\ 1\end{array}\right),\left(\begin{array}{l}3 \\ 2 \\ 1\end{array}\right),\left(\begin{array}{l}2 \\ 2 \\ 1\end{array}\right),\left(\begin{array}{c}1 \\ 2 \\ -1\end{array}\right)\right\}$ such that T is a basis $\quad[10 \mathrm{pt}]$ for the subspace of \mathbf{R}^{3} spanned by S.

