Functional Analysis, Spring 2020 Homework # 1due on Wednesday January 22 in class

1. Let (X, d) be a metric space. Let (x_n) and (y_n) be two convergent sequences in X. Namely, suppose that $x_n \to x$ and $y_n \to y$. Show that $d(x_n, y_n) \to d(x, y)$.

2. Show that a normed linear space X is a Banach space if and only if for every sequence (x_n) of vectors in X, the condition $\sum_{n=1}^{\infty} ||x_n|| < \infty$ implies the convergence of $\sum_{n=1}^{\infty} x_n$ in X.

3. Let T be a compact Hausdorff space and let C(T) denote the linear space of all continuous functions from T to \mathbb{C} , endowed with the norm

$$||f||_{\infty} = \sup\{|f(t)| : t \in T\}.$$

Show that C(T) is a Banach space.

(It is fine to give a solution for the case when T is a closed and bounded set in \mathbb{R}^n endowed with the usual euclidean distance.)

(One possible approach is to show that C(T) is a closed normed linear subspace of $\ell^{\infty}(T)$.)

4. Show that the space $C[0,1] = \{f : [0,1] \to \mathbb{C}, f \text{ continuous}\}$ with the norm $||f||_1 = \int_0^1 |f(t)| dt$ is not a Banach space.