Functional Analysis, Spring 2020 Homework # 2 due on Wednesday January 29 in class

1. Consider the space C[0, 1] of complex valued continuous functions on [0, 1] endowed with the with the norm $||f||_1 = \int_0^1 |f(t)| dt$. Show that the linear functional $\lambda : C[0, 1] \to \mathbb{C}, \ \lambda(f) = f(1/2)$ is discontinuous.

2. Let T be a nonempty compact metric space and let C(T) denote the linear space of all continuous functions from T to \mathbb{C} , endowed with the norm

$$||f||_{\infty} = \sup\{|f(t)| : t \in T\}.$$

Let μ be a Borel probability measure on T whose support is equal to T. This means that $\mu(U) > 0$ for every nonempty open subset U of T. For each $f \in C(T)$ define $S : L^2(T, \mu) \to L^2(T, \mu)$ by $S\xi = f\xi, \forall \xi \in L^2(T, \mu)$. Show that $||S|| = ||f||_{\infty}$.

(Recall that the norm on $L^2(T,\mu)$ is defined by $\|\xi\|_2 = \left(\int_T |\xi|^2 d\mu\right)^{1/2}$).

3. Consider the Banach spaces

$$\ell^{1}(\mathbb{N}) = \{\xi : \mathbb{N} \to \mathbb{C} : \|\xi\|_{1} = \sum_{n=1}^{\infty} |\xi(n)| < \infty\},\$$
$$\ell^{2}(\mathbb{N}) = \{\xi : \mathbb{N} \to \mathbb{C} : \|\xi\|_{2} = \left(\sum_{n=1}^{\infty} |\xi(n)|^{2}\right)^{1/2} < \infty\}$$

(a) Show that $\ell^1(\mathbb{N}) \subset \ell^2(\mathbb{N})$.

(b) Show that the linear map $J : \ell^1(\mathbb{N}) \to \ell^2(\mathbb{N})$, defined by $J(\xi) = \xi$ is continuous.