Functional Analysis, Spring 2020
Homework \#5
This assignment is due on Wednesday, February 19 in class

1. Prove that (a) holds in a real Hilbert space and (b) in a complex Hilbert space:

$$
\text { (a) }\langle x, y\rangle=\frac{1}{4}\left(\|x+y\|^{2}-\|x-y\|^{2}\right) \text {. }
$$

(b) $\langle x, y\rangle=\frac{1}{4}\left(\|x+y\|^{2}+i\|x+i y\|^{2}-\|x-y\|^{2}-i\|x-i y\|^{2}\right)$.
2. Let $\left(H_{n}\right)_{n=1}^{\infty}$ be a sequence of Hilbert spaces. By definition

$$
H=\bigoplus_{n=1}^{\infty} H_{n}
$$

consists of all sequences $x=\left(x_{n}\right)_{n=1}^{\infty}$ with the property that $\|x\|^{2}:=$ $\sum_{n=1}^{\infty}\left\|x_{n}\right\|^{2}<\infty$. Show that H is a Hilbert space with respect the scalar product

$$
\langle x, y\rangle=\sum_{n=1}^{\infty}\left\langle x_{n}, y_{n}\right\rangle .
$$

Note that one needs to verify that the scalar product is well defined (i.e. the corresponding series is convergent) and to verify completeness of H.
3. Let $\left(H_{n}\right)_{n=1}^{\infty}$ be a a sequence of Hilbert spaces and let $T_{n} \in L\left(H_{n}\right)$. Define $T: \bigoplus_{n=1}^{\infty} H_{n} \rightarrow \bigoplus_{n=1}^{\infty} H_{n}$ by

$$
T\left(x_{1}, x_{2}, \ldots, x_{n}, \ldots\right)=\left(T_{1} x_{1}, T_{2} x_{2}, \ldots, T_{n} x_{n}, \ldots\right)
$$

Show that $\|T\|=\sup _{n}\left\|T_{n}\right\|$.

