Functional Analysis, Spring 2020
Homework \#6
This assignment is due on Wednesday, February 26

1. Let H be a Hilbert space, let K be a closed subspace of H and let $T \in L(H)$. Let $P=P_{K}$ be the orthogonal projection of H onto K.
(a) Show that K is an invariant subspace for T i.e. $T(K) \subset K$ if and only if $T P=P T P$.
(b) Show that K is a reducing subspace for T i.e. $T(K) \subset K$ and $T\left(K^{\perp}\right) \subset K^{\perp}$ if and only if $T P=P T$.
2. Let H be a Hilbert space and let $x_{1}, y_{1}, \ldots, x_{n}, y_{n} \in H$. Let $T \in L(H)$ be defined by $T x=\sum_{i=1}^{n}\left\langle x, x_{i}\right\rangle y_{i}$ for $x \in H$. Compute T^{*}.
3. Let $S: \ell^{2}(\mathbb{N}) \rightarrow \ell^{2}(\mathbb{N})$ be defined by

$$
S\left(x_{0}, x_{1}, \ldots, x_{n}, \ldots\right)=\left(0, x_{0}, x_{1}, \ldots, x_{n}, \ldots\right)
$$

Find an explicit formula for S^{*}.
4. Define $T: L^{2}[0,1] \rightarrow L^{2}[0,1]$ by

$$
(T f)(x)=f(x)+\int_{0}^{x} y f(y) d y, \quad f \in L^{2}[0,1], x \in[0,1]
$$

a) Show that T is a bounded operator.
b) Show that T is invertible in $L(H)$. (Hint: estimate $\|T-I\|$ where I is the identity operator on $L^{2}[0,1]$.)

