Functional Analysis, Spring 2020 Homework #6 This assignment is due on Wednesday, February 26

1. Let *H* be a Hilbert space, let *K* be a closed subspace of *H* and let $T \in L(H)$. Let $P = P_K$ be the orthogonal projection of *H* onto *K*.

(a) Show that K is an invariant subspace for T i.e. $T(K) \subset K$ if and only if TP = PTP.

(b) Show that K is a reducing subspace for T i.e. $T(K) \subset K$ and $T(K^{\perp}) \subset K^{\perp}$ if and only if TP = PT.

2. Let *H* be a Hilbert space and let $x_1, y_1, ..., x_n, y_n \in H$. Let $T \in L(H)$ be defined by $Tx = \sum_{i=1}^n \langle x, x_i \rangle y_i$ for $x \in H$. Compute T^* .

3. Let $S: \ell^2(\mathbb{N}) \to \ell^2(\mathbb{N})$ be defined by

$$S(x_0, x_1, ..., x_n, ...) = (0, x_0, x_1, ..., x_n, ...).$$

Find an explicit formula for S^* .

4. Define
$$T: L^2[0,1] \to L^2[0,1]$$
 by
 $(Tf)(x) = f(x) + \int_0^x yf(y)dy, \quad f \in L^2[0,1], x \in [0,1].$

a) Show that T is a bounded operator.

b) Show that T is invertible in L(H). (Hint: estimate ||T - I|| where I is the identity operator on $L^2[0, 1]$.)