Functional Analysis, Spring 2020 Homework #7 This assignment is due on Wednesday, March 4

1) Let H be the Hilbert space $L^2([0,1], dt)$. Let $\varphi : [0,1] \to \mathbb{C}$ be a continuous function. Define $T \in L(H)$ by $(Tx)(t) = \varphi(t)x(t)$ for all $t \in [0,1]$ and $x \in H$. T is called the operator of multiplication by φ and is often denoted by M_{φ} .

Show that the spectrum of T, $\sigma_{L(H)}(T) = \{\varphi(t) : t \in [0,1]\}.$

Hint: If an operator T is invertible, then T is bounded below. This means that there is C > 0 such that $||Tx|| \ge C||x||$ for all $x \in H$.

2). Let $(H_n)_{n=1}^{\infty}$ be a family of Hilbert spaces and let $H = \bigoplus_{n=1}^{\infty} H_n$ be the Hilbert space which is the direct sum of the family $(H_n)_{n=1}^{\infty}$ as defined in HW5, question 3. If $T_n \in L(H_n)$ and $\sup_n ||T_n|| < \infty$ for all $n \ge 1$, define $T \in L(H)$ by

$$T(x_1, x_2, \dots, x_n, \dots) = (T_1 x_1, T_2 x_2, \dots, T_n x_n, \dots).$$

(a) Show that T is invertible in L(H) if and only if each T_n is invertible in $L(H_n)$ and $\sup_n ||T_n^{-1}|| < \infty$.

(b) Show that

$$\overline{\bigcup_{n=1}^{\infty}\sigma(T_n)} \subset \sigma(T).$$

3) Given a nonempty compact subset K of \mathbb{C} , find a bounded linear operator $T : \ell^2(\mathbb{N}) \to \ell^2(\mathbb{N})$ whose spectrum is equal to K, i.e. $\sigma_{L(\ell^2(\mathbb{N})}(T) = K$.