Functional Analysis, Spring 2020 Homework #8 This assignment is due on Wednesday, March 11

1) Let A be a unital Banach algebra. Prove that the map $\varphi: GL(A) \to GL(A), \ \varphi(a) = a^{-1}$ is continuous.

2) Let X, Y be Banach spaces and let $T \in L(X, Y)$. Show that T(X) is a closed subspace of Y if and only if there is C > 0 such that

$$||Tx|| \ge C \operatorname{dist}(x, \ker(T)), \quad \forall x \in X.$$

Notation: if $\emptyset \neq N \subset X$, $dist(x, N) = \inf\{\|x - n\|; n \in N\}$.

3) Define $S: \ell^2(\mathbb{N}) \to \ell^2(\mathbb{N})$ by

$$S(x_1, x_2, x_3, ...) = (0, x_1, x_2, x_3, ...).$$

(a) Find ||S|| and $||S^*||$.

(b) Show that for any $\lambda \in \mathbb{C}$, $\ker(S - \lambda I) = \{0\}$.

(c) Show that for any $|\lambda| < 1$, ker $(S^* - \lambda I) \neq \{0\}$. What is the dimension of ker $(S^* - \lambda I)$?

(d) Determine $\sigma(S)$ and $\sigma(S^*)$.

Hint: Consider the relationship between $\sigma(T^*)$ and $\sigma(T)$ for $T \in L(H)$, where H is a Hilbert space.