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Deformations of Wreath Products

Marius Dadarlat, Ulrich Pennig, Andrew Schneider

Abstract

Connectivity is a homotopy invariant property of a separable C∗-algebra A which has three
important consequences: absence of nontrivial projections, quasidiagonality and realization of
the Kasparov group KK(A,B) as homotopy classes of asymptotic morphisms from A to B ⊗K
if A is nuclear. Here we give a new characterization of connectivity for separable exact C*-
algebras and use this characterization to show that the class of discrete countable amenable
groups whose augmentation ideals are connective is closed under generalized wreath products.
In a related circle of ideas, we give a result on quasidiagonality of reduced crossed-product
C*-algebras associated to noncommutative Bernoulli actions.

1. Introduction

Voiculescu [23] has shown that the K-theory of the two-torus T2 can be captured from
sequences of pairs of almost commuting unitaries un, vn ∈ U(n) with limn→∞ ‖unvn − vnun‖ =
0 or equivalently from completely positive and contractive (cpc) discrete asymptotic morphisms
{ϕn : C(T2) ∼= C∗(Z2)→Mn(C)}n. Let us recall that a cpc discrete asymptotic morphism is a
sequence of completely positive contractive maps ϕn : A→ Bn, which is almost multiplicative in
the sense that limn→∞‖ϕn(a)ϕn(b)− ϕn(ab)‖ = 0 for all a, b ∈ A. Voiculescu’s example is not
an isolated phenomenon. Indeed, Connes and Higson [4] showed that the concept of asymptotic
morphism plays a fundamental role in the algebraic topology of C∗-algebras. The homotopy
classes of asymptotic morphisms from the suspension of A to the stable suspension of B is
isomorphic to the E-theory group E(A,B) ∼= [[SA, SB ⊗K]], the universal half-exact C∗-stable
homotopy bifunctor on separable C∗-algebras. Building on these ideas, Houghton-Larsen and
Thomsen [13] have shown that the Kasparov groups can be realized as homotopy classes of cpc
asymptotic morphisms, KK(A,B) ∼= [[SA, SB ⊗K]]cp. A cpc asymptotic morphism consists
of a family of cpc maps {ϕt : A→ B}t∈[1,∞) such that the map t 7→ ϕt(a) is continuous and
limt→∞‖ϕt(a)ϕt(b)− ϕt(ab)‖ = 0 for all a, b ∈ A. The role of suspensions is two-fold as it
provides both a group structure and a good supply of maps due to the quasidiagonality of SA.

An important question in this context is to characterize the class of C*-algebras for which
one can dispense with suspensions and realize E(A,B) and KK(A,B) as homotopy classes
of asymptotic morphisms [[A,B ⊗K]] and respectively [[A,B ⊗K]]cp. Desuspension results
have played a key role in the classification theory of nuclear C*-algebras [19]. Moreover, the
realization of K-homology of a C*-algebra A as homotopy classes of cpc deformations of A into
matrices [[A,M∞(C)]]cp ∼= [[A,K]]cp has other significant applications as illustrated in [3], [8].
The pairing K0(A)×K0(A)→ Z can then be described using the canonical trace on matrices
rather than the Fredholm index.

A first answer to the question of desuspending in E-theory is given in [9]: the natural map
[[A,B ⊗K]]→ E(A,B) is an isomorphism for all separable C∗-algebras B if and only if A
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is homotopy symmetric, which means that [[idA]] ∈ [[A,A⊗K]] has an additive inverse or
equivalently that [[A,A⊗K]] is a group. Unfortunately, it is quite hard in practice to check
that a given C∗-algebra is homotopy symmetric. In a recent paper [10], we employed results of
Thomsen [20] to prove that a separable nuclear C*-algebra is homotopy symmetric if and only
if A is connective, a property which is much easier to verify, see Definition 1 below. Our original
terminology for connectivity was property (QH). In this paper we give a new characterization
of this property, see Prop. 2.2, and that prompted us to introduce the more descriptive notion
of connectivity in place of property (QH). A countable discrete group G is called connective if
the kernel I(G) ⊂ C∗(G) of the trivial representation ι : C∗(G)→ C is a connective C*-algebra.

Connectivity is a homotopy invariant property and it has the important feature that it passes
to C∗-subalgebras. This has allowed us to exhibit vast new classes of homotopy symmetric
C∗-algebras [10]. Connectivity has two other important consequences: absence of nontrivial
projections and quasidiagonality. With this in mind, the task of establishing connectivity
for large classes of (amenable) group C*-algebras becomes particularly interesting, since this
stronger property would give a new explanation of why the conjectures of Kadison-Kaplansky
and Rosenberg are true for amenable groups as proved by Higson and Kasparov [12] and
respectively by Tikuisis, White and Winter [21].

It is implicitly conjectured in [8] that the augmentation ideal I(G) of a discrete, torsion free,
amenable group G is homotopy symmetric and hence that the Kasparov group KK(I(G), B)
can be realized as the homotopy classes of asymptotic morphisms [[I(G), B ⊗K]] for any
separable C∗-algebraB. The case of abelian groups is covered by results from [9]. The conjecture
has been verified for nilpotent groups in [10] using the equivalence between homotopy-symmetry
and connectivity. It was also shown there that the class of discrete countable connective
amenable groups is closed under torsion free central extensions and under direct limits. The
main result of this paper is Theorem 3.2 which shows that the class of discrete countable
amenable connective groups is closed under generalised wreath products. Since connectivity
passes to subgroups, this class contains a lot of new examples of connective groups, including
the free solvable ones. Moreover, Corollary 3.3 shows that semidirect products of amenable
discrete connective groups with respect to periodic actions are connective. The arguments from
the proof of Theorem 3.2 lead naturally to the question of quasidiagonality of crossed products
of the type (

⊗
GD) or G for D a separable unital C*-algebra and G a discrete countable group.

Taking advantage of the breakthrough results from [16] and [21] we show in Theorem 4.2 that
(
⊗

GD) or G is quasidiagonal if and only if D is quasidiagonal and G is amenable.

2. Preliminaries

We will use the notation from [7, Sec. 5]. For a Hilbert space H, we denote by L(H)
the C*-algebra of bounded and linear operators on H. The ideal of compact operators
is denoted by K. If A is a C∗-algebra, H, H′ are Hilbert spaces, F ⊂ A is a finite set,
ε > 0 and ϕ : A→ L(H) and ψ : A→ L(H′) are two maps, we write ϕ ≺F,ε ψ if there is an
isometry v : H → H′ such that ‖ϕ(a)− v∗ψ(a)v‖ < ε for all a ∈ F . If v can be chosen to be
a unitary, we write ϕ ∼F,ε ψ. Moreover, we write ϕ ≺ ψ if ϕ ≺F,ε ψ for all finite sets F and
for all ε > 0. Most maps that we use in this paper are either unital and completely positive
(abbreviated ucp) or completely positive and contractive (cpc). If {ϕn : A→ L(Hn)}n and
{ϕ′n : A→ L(H′n)}n are two sequences of maps, we write (ϕn) ∼ (ϕ′n) if there is a sequence of
unitaries un : Hn → H′n such that limn→∞ ‖ϕn(a)− u∗nϕ′(a)un‖ = 0 for all a ∈ A. A ucp (or
cpc) asymptotic morphism is a sequence {ϕn : A→ Bn}n of ucp (respectively cpc) maps which
are asymptotically multiplicative in the sense that limn→∞ ‖ϕn(ab)− ϕn(a)ϕn(b)‖ = 0 for all
a, b ∈ A.
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Let us recall from [10] that a separable C∗-algebra A has property (QH) if there is
a discrete cpc asymptotic homomorphism {γn : A→ L(Hn)}n with dim(Hn) = kn ↗∞ ,
which is injective and null-homotopic. This means that lim supn ‖γn(a)‖ = ‖a‖ for all a ∈ A
and that there is a discrete cpc asymptotic homomorphism {ϕn : A→ C0[0, 1)⊗ L(Hn)}n,

ϕn = (ϕ
(t)
n )t∈[0,1], such that ϕ

(0)
n = γn for all n ∈ N. It is shown in [10, Prop.2.5] that in the

definition of property (QH) restated above, one can replace all the spaces Hn by the same
separable infinite dimensional Hilbert space H. Let us denote C0[0, 1)⊗ L(H) by CL(H).
The following definition will change terminology from property (QH) to connectivity. This
is motivated by Proposition 2.2.

Definition 1. A separable C*-algebra A is connective if there is a ∗-monomorphism
Φ : A→

∏
n CL(H)/

⊕
n CL(H) which is liftable to a cpc map ϕ : A→

∏
n CL(H). A discrete

countable group G is connective if its augmentation ideal I(G) = ker(ι : C∗(G)→ C) is
connective.

By [10, Prop.2.5], A has property (QH) if and only if A is connective. A connective C*-
algebra is quasidiagonal and p = 0 is the only idempotent element of A⊗K and in fact of any
minimal tensor product A⊗B. Indeed, it is straightforward to check that these properties are
inherited from CL(H).

Proposition 2.2 below gives a new equivalent definition of connectivity, in the case of exact
C∗-algebras. Specifically, it shows that all the components of the injective and null-homotopic
discrete cpc asymptotic homomorphism {γn}n can be chosen to be equal to any given ∗-
representation of A on H which is essential, i.e. π−1(K(H)) = {0}. For the proof we need
Lemma 5.3 of [7] reproduced below.

Lemma 2.1 [7] . Let B be a separable unital C∗-algebra. Let {ϕn : B →Mk(n)(C)}n and
{γn : B →Mr(n)(C)}n be ucp discrete asymptotic morphisms. Suppose that lim supn ‖γn(b)‖ =
‖b‖ for all b ∈ B. Then there exist a sequence (ω(n)) of disjoint finite subsets of N with
maxω(n− 1) < minω(n) and a ucp discrete asymptotic morphism {ϕ ′n : B →Ms(n)(C)}n such
that (ϕn ⊕ ϕ ′n) ∼ (γω(n)), where γω(n) = ⊕i∈ω(n)γi.

For a C∗-algebra A we denote by Ã its unitalization. Let ι : Ã→ C be the corresponding
character. Let H be a separable Hilbert space. The map obtained by composing ι with the
unital homomorphism C→ L(H) will be denoted ι · idH or by ι∞ if H is infinite dimensional.
Let γ : Ã→ L(H) be a ucp map. We will use the notation γ∞ for the infinite sum γ ⊕ γ ⊕ . . . .

Proposition 2.2. Let A be a separable exact C∗-algebra. Then A is connective if and only
if for any essential unital representation π : Ã→ L(H) of Ã on a separable infinite dimensional
Hilbert space, any finite subset F ⊂ Ã and any ε > 0 there is an (F, ε)-multiplicative ucp map
ϕ : Ã→ C[0, 1]⊗ L(H), ϕ = (ϕt)t∈[0,1] such that ϕ0 = π and ϕ1 = ι∞.

Proof. One direction is trivial and it holds for arbitrary separable C*-algebras A. Suppose
now that A is exact and connective. By unitalizing the relevant C∗-algebras and maps, we
obtain a ucp discrete asymptotic morphism {Γn : Ã→ C[0, 1]⊗ L(Hn)}n, Γn = (Γ

(t)
n )t∈[0,1],

Hn finite dimensional, such that {Γ(0)
n : Ã→ L(Hn)}n is injective and Γ

(1)
n = ι · idHn

for all

n ∈ N. Let γn := Γ
(0)
n .
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If αn : Ã→ L(Hn) is a sequence of maps and m > n we define α[n,m] = αn ⊕ αn+1 ⊕ · · · ⊕
αm .
Claim. Fix an essential representation π : Ã→ L(H). Then, for any finite subset F ′ ⊂ Ã,

any ε′ > 0 and any n0 ∈ N, there are integers m > n > n0 such that π ∼F ′,ε′ γ∞[n,m].
Let us observe that if we prove the claim, then we can complete the proof as follows. Let F and

ε be given as in the statement of the proposition. It is straightforward to find a finite set F ′ ⊂ Ã
and ε′ > 0 with the property that for any two (F ′, ε′)-multiplicative ucp maps α, β : Ã→ L(H)
with ‖α(a)− β(a)‖ < ε′ for all a ∈ F ′, it follows that (1− t)α+ tβ is (F, ε)-multiplicative for
all t ∈ [0, 1]. Fix n0 such that Γn is (F, ε)-multiplicative for all n > n0 and choose m,n as
in the claim. We may identify the Hilbert space H with the Hilbert space corresponding to
γ∞[n,m]. Since π ∼F ′,ε′ γ∞[n,m], there is a unitary u ∈ U(H) such that ‖uπ(a)u∗ − γ∞[n,m](a)‖ < ε′

for all a ∈ F ′. Let ut be a norm-continuous path of unitaries in U(H) from 1 to u. Define ϕt
to be the continuous path of ucp maps obtained by concatenating the paths πt = utπu

∗
t with

µt = (1− t)uπu∗ + tγ∞[n,m] and with νt = (Γ
(t)
[n,m])

∞. Due to our choice of F ′, ε′ and n0, the

map t 7→ ϕt defines a continuous path of (F, ε)-multiplicative ucp maps joining π with ι∞.
Let us now verify the claim for any given data π, F ′, ε′ and n0. By [6, Lemma 5.1] applied to

Ã, F ′ ⊂ Ã and ε′ > 0, there exist a finite subset F ′′ ⊂ Ã and ε′′ > 0 with the property that if
αi : Ã→ L(Hi), i = 1, 2 are any two (F ′′, ε′′)-multiplicative ucp maps such that α∞1 ≺F ′′,ε′′ α2

and α∞2 ≺F ′′,ε′′ α1 then α1 ∼F ′,ε′ α2. Let (Fi)i be an increasing sequence of finite subsets of

Ã with union dense in Ã and let (εi)i be a sequence of strictly positive numbers convergent 0.
Since A is separable, exact and quasidiagonal, it follows from Theorem 6 of [5] that there is
a discrete ucp asymptotic morphism {θi : Ã→ L(Hi)}i∈N, with Hi finite dimensional Hilbert
spaces, such that π ∼Fi,εi θ

∞
i for all i. Fix now i sufficiently large such that π ∼F ′′,ε/2′′ θ∞i .

By Lemma 2.1, there exist integers m > n > n0 such that γ[n,m] is (F ′′, ε′′)-multiplicative
and θi ≺F ′′,ε′′/2 γ[n,m] and hence θ∞i ≺F ′′,ε′′/2 γ∞[n,m]. This last relation in conjunction with
π ∼F ′′,ε′′/2 θ∞i gives π∞ ≺F ′′,ε′′ γ∞[n,m]. By Voiculescu’s theorem [22] and Stinespring’s theorem
[1, Thm. 1.5.3] we have γ∞[n,m] ≺F ′′,ε′′ π. We can then apply [6, Lemma 5.1] as explained above,
to conclude that π ∼F ′,ε′ γ∞[n,m].

Lemma 2.3. Let G and H be discrete groups and assume that H acts on G by
automorphisms. Then there is a split short exact sequence

0→ I(G) oH → I(GoH)→ I(H)→ 0 ,

where we use the maximal crossed product throughout.

Proof. By the universality property of the crossed product [14, p.170], the sequence

0→ I(G) oH → C∗(G) oH → CoH → 0

is exact. There are natural isomorphisms CoH ∼= C∗(H) and C∗(G) oH ∼= C∗(GoH). Let
J be the kernel of the map I(GoH)→ I(H) induced by the projection GoH → H. The
rows in the commutative diagram

0 // J //

��

I(GoH)

��

// I(H)

��

// 0

0 // I(G) oH // C∗(GoH)

��

// C∗(H) //

��

0

C =
// C
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are exact and a diagram chase yields that the map I(GoH)→ C∗(GoH) restricts to an
isomorphism J ∼= I(G) oH. The sequence splits via the ∗-homomorphism induced by the
splitting H → GoH.

Proposition 2.4. Let G and H be countable discrete amenable groups, such that H
acts on G by automorphisms. Suppose that H and I(G) oH are connective. Then GoH is
connective.

Proof. This follows from Lemma 2.3 together with [10, Thm. 3.3 (d)] which states that a
split extension of separable nuclear connective C∗-algebras is connective.

3. Wreath Products

For a unital C∗-algebra D and a countable set J one defines the minimal tensor product⊗
J D as the inductive limit of finite minimal products

⊗
F D where F runs through the

family of finite subsets of J ordered by inclusion. Note that if F ⊂ F ′ the connecting map⊗
F D →

⊗
F ′ D is isometric. Indeed this map takes

⊗
j∈F aj to

⊗
j′∈F ′ bj′ where bj′ = aj if

j ∈ F and bj′ = 1D if j′ ∈ F ′ \ F .
Let D be a unital separable C∗-algebra endowed with a unital character ι : D → C and let

I(D) = ker(ι). Let ι⊗ :
⊗

J D → C be the character induced by ι and let I(
⊗

J D) denote its
kernel. Let H be a discrete countable group and let J be a set with a left action of H. H acts
on A :=

⊗
J D by permuting the tensor factors: h · (

⊗
j∈J aj) =

⊗
j∈J ah−1j . We denote this

action by α : H → Aut(A). Note that I(
⊗

J D) is an H-invariant ideal of A since ι⊗ ◦ αh = ι⊗
for all h ∈ H.

The following proposition gives new examples of connective C∗-algebras.

Proposition 3.1. Suppose that D is exact and that I(D) is connective. Then for any
discrete countable amenable group H the crossed product I(

⊗
J D) oH is connective.

Proof. Let π : D → L(H) be a faithful essential representation. Since I(D) is connective, by
Proposition 2.2 there exists a discrete ucp asymptotic morphism {ϕn : D → C[0, 1]⊗ L(H)}n,

such that ϕ
(0)
n = π and ϕ

(1)
n = ι · idH for all n ∈ N. Let B =

⊗
J L(H) (minimal tensor product)

and define Φ
(t)
n =

⊗
J ϕ

(t)
n : A→ B for each t ∈ [0, 1]. By Stinespring’s theorem, Φ

(t)
n is also a

ucp map. For each n ∈ N and a ∈ A the map t 7→ Φ
(t)
n (a) is continuous. In order to verify this

property, since Φ
(t)
n is linear and contractive, we may assume without any loss of generality

that a =
⊗

j∈F aj ∈
⊗

F D ⊂ A for some finite set F ⊂ J . Continuity of t 7→ Φ
(t)
n (a) follows in

this case from the continuity of t 7→
⊗

j∈F ϕ
(t)
n (aj). Hence, we obtain a sequence of ucp maps

{Φn : A→ C[0, 1]⊗B}n .

We show that this sequence is in fact an asymptotic morphism. To prove asymptotic
multiplicativity of {Φn}n we need to verify that limn→∞ ‖Φn(ab)− Φn(a)Φn(b)‖ = 0 for
a, b ∈ A. Since the Φn are linear and contractive, we may restrict to the case a =

⊗
j∈F aj

and b =
⊗

j∈F bj for a finite subset F ⊂ J with ‖aj‖, ‖bj‖ ≤ 1 for all j ∈ F . Then, for each
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t ∈ [0, 1] we have

‖Φ(t)
n (a)Φ(t)

n (b)− Φ(t)
n (ab)‖

=

∥∥∥∥∥∥
⊗
j∈F

ϕ(t)
n (aj)ϕ

(t)
n (bj)−

⊗
j∈F

ϕ(t)
n (ajbj)

∥∥∥∥∥∥
≤
∑
j∈F
‖ϕ(t)

n (aj)ϕ
(t)
n (bj)− ϕ(t)

n (ajbj)‖,

and hence

‖Φn(a)Φn(b)− Φn(ab)‖ ≤
∑
j∈F
‖ϕn(aj)ϕn(bj)− ϕn(ajbj)‖.

Each term of the sum from above converges to 0 for n→∞. Thus, the ucp maps Φn : A→
C[0, 1]⊗B form a discrete asymptotic morphism such that Φ

(0)
n =

⊗
J π is an isometric ∗-

homomorphism and Φ
(1)
n = ι⊗ · 1B .

Let β : H → Aut(B) be the action ofH onB that permutes the tensor factors: βh(
⊗

j∈J bj) =⊗
j∈J bh−1j . Then we have Φ

(t)
n ◦ αh = βh ◦ Φ

(t)
n for all h ∈ H and t ∈ [0, 1] or equivalently Φn ◦

αh = γh ◦ Φn, where γh = idC[0,1] ⊗ βh. Since H acts trivially on C[0, 1], there is a canonical
isomorphism of crossed products (C[0, 1]⊗B) oH ∼= C[0, 1]⊗ (B oH) (see for example [1,
Ex. 4.1.3]). By [18, Thm. 3.5 (d)], Φn induces a ucp map:

Φ̃n : AoH → C[0, 1]⊗ (B oH)

such that for all a ∈ A and h ∈ H, Φ̃n(auh) = Φn(a)vh, where we denote by uh and vh the
canonical unitaries of the corresponding crossed products so that αh(a) = uhau

∗
h and γh(b) =

vhbv
∗
h. Let a, a′ ∈ A and h, h′ ∈ H. The identities

‖Φ̃n(auh)Φ̃n(a′uh′)− Φ̃n(auh a
′uh′)‖ (3.1)

= ‖Φn(a) γh(Φn(a′))vhh′ − Φn(aαh(a′))vhh′‖
= ‖Φn(a) Φn(αh(a′))− Φn(aαh(a′))‖

show that the sequence Φ̃n is asymptotically multiplicative. By Theorem 7.7.5 from [17], any
equivariant embedding of C∗-algebras induces an embedding of reduced crossed products.
It follows that Φ̃

(0)
n : AoH → B oH is an isometric ∗-homomorphism since Φ

(0)
n has that

property. Let

ηn = Φ̃n

∣∣∣
I(A)oH

: I(A) oH → C[0, 1]⊗ (B oH).

We have that η
(0)
n is an isometric ∗-homomorphism, and η

(1)
n = 0 since Φ̃

(1)
n (auh) = Φ

(1)
n (a)vh =

ι⊗(a)vh = 0 for all a ∈ I(A) = ker(ι⊗) and h ∈ H. Finally, since I(A) oH is separable, there
is a separable C∗-algebra E ⊂ B oH such that the image of ηn is contained in C0[0, 1)⊗ E
for all n. Since η

(0)
n is an isometric ∗-homomorphism, it follows that I(A) oH is connective,

since Definition 1 is verified as a consequence of the “if ” part of Proposition 2.2.

Let G and H be countable discrete groups and let J be a set with a left action of H. Recall
that the wreath product is defined as

G oJ H =

(⊕
J

G

)
oH ,

where H acts on the direct sum via the action on the indices.
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Theorem 3.2. Let G and H be countable discrete amenable groups and let J be a
countable H-set. If G and H are connective, then the wreath product G oJ H is also connective.

Proof. Let A =
⊗

J C
∗(G). Since C∗(

⊕
J G) ∼=

⊗
J C
∗(G), we have that C∗(G oJ H) ∼=

AoH, where H acts on A by permuting the tensor factors: h · (
⊗

j∈J aj) =
⊗

j∈J ah−1j . Let
ι : C∗(G)→ C be the character induced by the trivial representation and let ι⊗ : A→ C be
the character induced by ι. Note that the isomorphism

⊗
J C
∗(G) ∼= C∗(

⊕
J G) intertwines ι⊗

with the corresponding character of C∗(
⊕

J G). Let

I(A) = ker(ι⊗) ∼= I

(⊕
J

G

)
.

We apply Proposition 3.1 to obtain that I(A) oH is connective. It follows now from
Proposition 2.4 that G oJ H is connective.

As a consequence of the last theorem we can prove that semidirect products with respect to
periodic actions are connective.

Corollary 3.3. Let G, H be countable discrete amenable connective groups. Let α : H →
Aut(G) be a homomorphism with finite image. Then the semidirect product Goα H is
connective.

Proof. Let K = ker(α) and set S = H/K ∼= im(α). The group S is finite by assumption.
H acts on S via left multiplication. Denote this action by β. Let π : H → S be the quotient
homomorphism and let α̇ : S → G be such that α̇ ◦ π = α. Consider the group homomorphism

ϕ : G→
⊕
S

G

given by ϕ(g)(s) = α̇s−1(g). Observe that ϕ is injective and

ϕ(αh(g))(s) = α̇s−1(αh(g)) = α̇s−1π(h)(g) = α̇(π(h)−1s)−1(g)

= ϕ(g)(π(h)−1s) = βh(ϕ(g))(s) ,

which proves that ϕ intertwines the two actions on both sides. Hence we obtain a homomor-
phism Φ: Goα H → G oS H. Since connectivity passes to C∗-subalgebras, in view of Thm. 3.2
it suffices to prove that Φ is injective. Since Φ(g, h) = (ϕ(g), h), this follows from the injectivity
of ϕ.

Example 1. Since connectivity passes to C∗-subalgebras, it follows from Thm. 3.2 that if
G and H are countable discrete amenable connective groups, then any subgroup of G oH =
G oH H also is connective

In this way we obtain many interesting examples of connective groups, including the free
solvable groups Sr,n on r generators of derived length n. Every solvable group with r generators
of derived length n is a quotient of Sr,n. The groups Sr,n can be defined recursively as follows:
Let F (0) = F = Fr be the free group on r generators and let F (n+1) = [F (n), F (n)] be the
commutator subgroup of F (n). Then we have Sr,n = F/F (n). In particular, Sr,1 ∼= Zr and Sr,2
is the free metabelian group on r generators. In other words Sr,2 is a metabelian group with
r generators which maps surjectively onto any other metabelian group with r generators. By
Magnus’ embedding theorem [15] we have the following: Let G be a finitely generated countable
discrete group and choose a free group F = Fr on r generators and a normal subgroup R / F ,
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such that G is isomorphic to F/R. Let R′ be the commutator subgroup of R. Let A be the
free abelian group on r generators. Then F/R′ embeds as a subgroup into A oG. Thus, if G is
amenable and is connective, the same holds true for F/R′. By induction it follows from this
observation that all Sr,n is connective.

Chapuis gave a characterization of the subgroups of Zr o Zs in terms of model theory [2,
Cor. 3.1] generalizing the embedding theorem of Magnus in the free metabelian case. He called
these ∀-free metabelian. By our observations above, they are all connective.

4. Quasidiagonality of crossed-products associated to noncommutative Bernoulli shifts

Prop. 3.1 leads naturally to the question of quasidiagonality of the crossed products of the
type (

⊗
GD) or G for D a separable unital C*-algebra and G a discrete countable group.

Theorem 4.2 below shows that (
⊗

GD) or G is quasidiagonal if and only if D is quasidiagonal
and G is amenable.

Recall the following characterisation of quasidiagonality due to Voiculescu. A separable C∗-
algebra A is quasidiagonal if and only if for every finite subset F ⊂ A and every ε > 0 there is
n ∈ N and a cpc map ψ : A→Mn(C) such that ‖ψ(xy)− ψ(x)ψ(y)‖ < ε for all x, y ∈ F and
‖ψ(x)‖ ≥ ‖x‖ − ε for all x ∈ F [24, Thm. 1]. Note that in fact it suffices to fulfil the condition
‖ψ(x)‖ ≥ ‖x‖ − ε for just a single element x ∈ F at a time, since one can then consider finite
directs sums of such maps.

All the tensor products in the sequel are minimal tensor products.

Lemma 4.1. Let A, B, Cn, Dn be separable C∗-algebras. If {αn : A→ Cn}n and {βn : B →
Dn}n are cpc discrete asymptotic morphisms with

lim sup
n→∞

‖αn(a)‖ = ‖a‖ , lim
n→∞

‖βn(b)‖ = ‖b‖ ,

then {αn ⊗ βn : A⊗B → Cn ⊗Dn}n is a cpc discrete asymptotic morphism such that
lim supn→∞‖(αn ⊗ βn)(x)‖ = ‖x‖ for all x ∈ A⊗B.

Proof. As in the proof of Prop. 3.1 one verifies that αn ⊗ βn is a cpc discrete asymptotic
morphism. Therefore it suffices to prove that the induced ∗-homomorphism

η : A⊗B →
∏
n∈N Cn ⊗Dn⊕
n∈N Cn ⊗Dn

is injective. Seeking a contradiction suppose this is false. Let J = ker(η) 6= 0. By Kirchberg’s
Slice Lemma [19, Lem. 4.1.9] there is 0 6= x ∈ A⊗B, such that x∗x ∈ J and xx∗ = a⊗ b for
some a ∈ A, b ∈ B. We have

0 = ‖η(x∗x)‖ = ‖η(xx∗)‖ = lim sup
n→∞

‖αn(a)⊗ βn(b)‖

= lim sup
n→∞

(‖αn(a)‖ ‖βn(b)‖) =

(
lim sup
n→∞

‖αn(a)‖
)
‖b‖ = ‖a‖ ‖b‖ .

But this implies ‖a⊗ b‖ = 0 and therefore x = 0, which is a contradiction.

Using the results from [16] and [21], we can now adapt the method used in Prop. 3.1 to prove
the following:

Theorem 4.2. Let D be a unital separable quasidiagonal C∗-algebra and let G be a
countable discrete amenable group. Then the crossed product (

⊗
GD) oG is quasidiagonal.
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Here we work with minimal tensor products and G acts via noncommutative Bernoulli
shifts. Rosenberg has shown that quasidiagonality of the reduced group C∗-algebra C∗r (G) of a
countable discrete group G implies the amenability of G [11]. Hence, since both D and C∗(G)
are subalgebras of (

⊗
GD) or G, the conditions that D is quasidiagonal and G is amenable

are certainly necessary.

Proof. Let A =
⊗

GD. By Voiculescu’s characterisation of quasidiagonality it suffices to
find a discrete ucp asymptotic morphism {Ψn : AoG→ Bn}n with lim supn→∞‖Ψn(x)‖ = ‖x‖
for all x ∈ AoG, such that all C∗-algebras Bn are quasidiagonal.

By quasidiagonality of D there is a ucp discrete asymptotic morphism {ϕn : D →Mk(n)(C)}n
with limn→∞‖ϕn(d)‖ = ‖d‖ for all d ∈ D. Define

Φn :
⊗
G

D →
⊗
G

Mk(n)(C)

by Φn =
⊗

G ϕn and let Rn =
⊗

GMk(n)(C). As in the proof of Prop. 3.1 it follows that
{Φn}n∈N is a ucp discrete asymptotic morphism. Next we show that lim supn→∞‖Φn(a)‖ = ‖a‖
for all a ∈ A. It suffices to verify this for elements a ∈

⊗
F D for any finite set F ⊂ G. This is

proved by induction on the cardinality of F , using Lemma 4.1.
Since each Φn is cpc and G-equivariant (where G acts on Rn via Bernoulli shifts), each Φn

extends to a ucp map Φ̃n : AoG→ Rn oG by [18, Thm. 3.5 (d)]. The same calculation as
in (3.1) shows that {Φ̃n}n∈N is a discrete asymptotic morphism. By [16] and [21] the algebra
Bn = Rn oG is quasidiagonal.

To conclude the proof it remains to be shown that

lim sup
n→∞

‖Φ̃n(y)‖ = ‖y‖ ∀y ∈ AoG . (4.1)

To this purpose consider the commutative diagram

AoG

E

��

Φ̃n // Rn oG

En

��
A

Φn

// Rn

where E and En are the canonical faithful conditional expectations (see [1, Prop. 4.1.9]).
Suppose (4.1) is false. Then there exists an x ∈ AoG with x ≥ 0, x 6= 0 such that
lim supn→∞‖Φ̃n(x)‖ = 0. But since En(Φ̃n(x)) = Φn(E(x)) and En are contractive, we obtain

0 = lim sup
n→∞

‖En(Φ̃n(x))‖ = lim sup
n→∞

‖Φn(E(x))‖ = ‖E(x)‖ ,

which implies x = 0 by faithfulness of E and yields a contradiction.

Acknowledgements. We thank the referee for a number of suggestions that improved the
exposition and for pointing out that Lemma 2.3 and its proof holds without assuming
amenability of the involved groups.
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