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Abstract. Let M be a closed connected manifold and let D be an

elliptic operator on M . Let G be a discrete countable group and let

M̃ → M be a principal G-bundle. Connes and Moscovici showed that

this data defines an analytic index ind`1(G)(D) ∈ K0(`1(G)). If B is a

unital tracial C*-algebra, we give a formula for the trace of the image of

ind`1(G)(D) in K0(B) under the map induced by a quasi-representation

of G in B. As an application, we reprove and generalize a formula of

Exel and Loring to surface groups.

1. Introduction

Let M be a closed connected Riemannian manifold with fundamental

group G and let D be an elliptic operator on M . Connes, Gromov and

Moscovici [5] introduced the notion of almost flat bundle and proved an

index theorem showing that the pushforward of the equivariant index of

D under a quasi-representation of G coming from parallel transport in an

almost flat bundle E on M is equal to the index of D twisted by E. They

used this result to show that the signature with coefficients in an almost flat

bundle is a homotopy invariant.

In this paper we take a dual approach where the input data involves

a group quasi-representation rather than an almost flat bundle. In con-

junction with a finite dimensional approximation technique based on quasi-

diagonality, this approach enables us to use the classic Atiyah-Singer index

theorem [1] and respectively the Mishchenko-Fomenko index theorem [20]

to give a new proof and a generalization of the index theorem of Connes,

Gromov and Moscovici that allows for almost flat bundles E with fibers

projective Hilbert modules over a tracial C*-algebra, see Theorem 3.6. In

the last section, we reprove and generalize the Exel-Loring formula [9] to

surface groups, by reinterpreting it as an index theorem, see Theorem 4.2.
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Let G be a discrete countable group, let G ⊂ G be a finite set and let

ω > 0. Let B be a unital C*-algebra. A map π : G → B is called a

(G, ω)-unitary representation if it satisfies the following conditions:

(i) π(1) = 1, ‖π(s)‖ ≤ 1 for all s ∈ G.

(ii) ‖π(s−1)− π(s)∗‖ < ω for all s ∈ G,

(iii) ‖π(st)− π(s)π(t)‖ < ω for all s, t ∈ G.

Let A be a unital involutive Banach algebra, let G ⊂ A be a finite

set and let ω > 0. A unital linear contraction π : A → B such that

‖π(a∗) − π(a)∗‖ < ω and ‖π(aa′) − π(a)π(a′)‖ < ω for all a, a′ ∈ G is

called a (G, ω)-∗-representation of A in B. We will use the term quasi-

representation to refer to a (G, ω)-unitary representation or to a (G, ω)-∗-
representation where G and ω are not necessarily specified. Let us note

that a quasi-representation of G induces a quasi-representation of the invo-

lutive Banach algebra `1(G) by the formula: π̂(
∑

s∈G λs · s) =
∑

s∈G λsπ(s).

Moreover, given a finite set Ĝ ⊂ `1(G) and ω̂ > 0 there exist a finite set

G ⊂ G and ω > 0 such that if π : G→ B is a (G, ω)-unitary representation,

then π̂ : `1(G) → B is a (Ĝ, ω̂)-∗-representation. An important method

for turning K-theoretical invariants of G into numerical invariants is to use

quasi-representations π : G → Mk(C) to pushforward idempotents in ma-

trices over `1(G) or C∗(G) to scalar idempotents [5]. It is then very nat-

ural to seek quasi-representations that act non-trivially on K-theory. This

question is addressed in [7] where we study the existence of sequences of

quasi-representations πn : C∗(G) → Mk(n)(C) that induce prescribed maps

K0(C
∗(G))→ Z and we give conditions for G under which all the K-theory

classes in K0(BG) are almost flat. The first example of a topologically

nontrivial quasi-representation is due to Voiculescu [27] for G = Z2.

Suppose that M is a closed smooth connected manifold. Let G be a dis-

crete countable group and let M̃ →M be a principal G-bundle. The diago-

nal action of G on M̃ × `1(G) defines a flat `1(G)-bundle M̃ ×G `1(G)→M

which gives an element ` ∈ K0(C(M) ⊗ `1(G)) (Mishchenko’s line bun-

dle). Using Lafforgue’s cap product (see [16]) KKban(C, C(M) ⊗ `1(G)) ×
KKban(C(M),C) → KKban(C, `1(G)), (y, z) 7→ y ◦ (z ⊗ 1), one defines a

map µ : K0(M)→ K0(`
1(G)), by µ(z) = `◦ (z⊗1). For Banach algebras A,

B we denote by A⊗B the completion of the algebraic tensor product with

respect to the maximal Banach norm such that ‖a⊗ b‖ ≤ ‖a‖‖b‖.
The goal of the paper is to provide a formula for the push-forward of µ(z),

z ∈ K0(M), under a quasi-representation π of `1(G). To make this precise,

we write µ(z) = [e0]− [e1] where e0, e1 are idempotents in Mm(C)⊗ `1(G).

If π : `1(G) → Mk(C) is sufficiently multiplicative (this depends on the
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choice of the representatives e0, e1), then (idm ⊗ π)(ei) can be perturbed

canonically to idempotents fi in Mmk(C), i = 0, 1. We are interested in

computing the integer π](µ(z)) := [f0]− [f1] ∈ K0(C) = Z. More generally,

if π : `1(G) → B is a sufficiently multiplicative quasi-representation in a

unital C*-algebra B and τ is a tracial state of B, we would like to compute

τ(π](µ(z))) where π](µ(z)) is defined similarly. We reserve the notation µ`1 :

K0(M)→ K0(`
1(G)) for a related map defined in [16]. Its definition involves

a projection p ∈ `1(G,C0(M̃)) (constructed from a cutoff function) and the

descent map jG : KKban
G (C0(M̃),C) → KKban(`1(G,C0(M̃)), `1(G)). The

author does not know if µ`1 = µ in this general context. If M̃ → M is the

universal cover of M , then µ`1 is the Lafforgue’s `1-version of the assembly

map and it is known that the images of µ`1(z) and µ(z) coincide under the

map K0(`
1(G))→ K0(C

∗(G)), see [16]. We will verify that if G is sufficiently

large and ω is sufficiently small, then for any (G, ω)-unitary representation

π : G → B, π](µ`1(z)) = π](µ(z)), see Corollary 3.5. The computation

π](µ`1(z)) is given by Theorem 3.6. This is obtained by combining a tech-

nical result, Theorem 3.2 (see also Corollary 3.5), with the Mishchenko-

Fomenko index theorem [20], [24]. The case of a matricial C*-algebra

B = Mk(C) yields a result that is closely related to the index theorem

of Connes, Gromov and Moscovici [5]. Our approach, which is very different

from [5], is based on descriptions of the isomorphism KKban(C, A) ∼= K0(A)

and of the cap product KKban(C, A ⊗ B) ×KKban(A,C) → KKban(C, B)

that involve compressions by quasi-central idempotents, see Corollary 2.4

and Proposition 2.5. In the last part of the paper we bring a new perspec-

tive and generalize the Exel-Loring formula [9] to surface groups by realizing

it as an index formula.

The author would like to thank Walther Paravacini for useful discussions

on KKban-theory and to the referee for his thorough suggestions and criti-

cism that lead to an improved exposition.

2. Idempotents in Banach algebras and KKban-theory

In this section we study various perturbation properties of idempotents in

a Banach algebra. Proposition 2.5 is a key tool for the rest of the paper, for it

allows us to approach index computations via compressions by quasi-central

idempotents. We work with Lafforgue’s KKban-theory [16] in a simplified

version which does require the use of dual pairs. This equivalent approach

is used in the survey [15]. A written account of why the two approaches are

equivalent is given in [22].



4 MARIUS DADARLAT

We begin by a short review of the setup from [15]. Let A be a unital

Banach algebra. A right Banach A-module is a Banach space E endowed

with a right action of A such that x ·1 = x and ‖xa‖ ≤ ‖x‖‖a‖ for all x ∈ E
and a ∈ A. A left Banach A-module F is defined similarly. We denote by

E ⊗A F the completion of E ⊗alg F under the largest seminorm such that

‖x⊗ ay − xa⊗ y‖ = 0 and ‖x⊗ y‖ ≤ ‖x‖‖y‖, for all x ∈ E, y ∈ F , a ∈ A.

Let E and F be right Banach A-modules. The space of C-linear contin-

uous maps T : E → F such that T (xa) = T (x)a for x ∈ E and a ∈ A is

denoted by LA(E,F ) or LA(E) if E = F . The ideal KA(E) of A-compact

operators is defined as the closure of the linear span of the A-rank one op-

erators, i.e. those of the form S ◦T where S ∈ LA(A,E) and T ∈ LA(E,A).

A Fredholm module over A consists of a Z/2-graded right Banach A-module

E and an odd operator T ∈ LA(E) such that T 2 − idE ∈ KA(E). If (E, T )

is a Fredholm module over A and θ : A → B is a unital morphism then

(E ⊗A B, T ⊗ 1) is a Fredholm module over B. Let A[0, 1] be the Ba-

nach algebra of continuous functions from [0, 1] to A endowed with norm

‖f‖ = supt∈[0,1] ‖f(t)‖A. Let θ0, θ1 : A[0, 1]→ A be the evaluations at 0 and

1. Two Fredholm modules over A are homotopic if they are the images under

θ0 and θ1 of a Fredholm module over A[0, 1]. Let us recall that for any uni-

tal Banach algebra A there is a functorial bijection between K0(A) and the

set of homotopy classes of Fredholm modules over A, see [16, Thm. 1.2.8].

Eban(A,B) is the set of isomorphism classes of triples (E, π, T ), where E is

a Z/2-graded Banach right B-module, π : A→ LB(E) is a morphism of Ba-

nach algebras that takes values in even operators, and T ∈ LB(E) is an odd

operator that satisfies π(a)(T 2−idE) ∈ KB(E) and π(a)T−Tπ(a) ∈ KB(E)

for any a ∈ A. One defines KKban(A,B) as the set of homotopy classes in

Eban(A,B), where the homotopy relation is defined using Eban(A,B[0, 1]).

If we are in a situation when α ∈ KKban(A,B) is given by the class of a

triplet

(1)

(
H ⊕H,π =

(
π0 0

0 π1

)
, T =

(
0 1

1 0

))
,

where H is a right Banach B-module, then we will also write α = [π0, π1].

Here πi : A → LB(H) have the property that π0(a) − π1(a) ∈ KB(H), for

all a ∈ A. In the case A = C, we will also write α = [p0, p1] where pi is the

idempotent pi = πi(1) and p0 − p1 ∈ KB(H). While a general intersection

product is not available in KKban, there are cap products

(2) K0(A)×KKban(A,B)→ K0(B), (x, z) 7→ x ◦ z,
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(3) K0(A⊗D)×KKban(A,B)→ K0(B ⊗D) (x, z) 7→ x ◦ (z ⊗ 1).

The product (3) is defined by combining the product (2) with the morphism

KKban(A,B) → KKban(A ⊗D,B ⊗D). Recall that Eban(C, B) is the set

of isomorphism classes of Fredholm modules over B and KKban(C, B) ∼=
K0(B). With this in mind, assuming that A is unital, one can describe

the product (2) as follows (see [15]). If p is an idempotent in A, and

(E, π, T ) ∈ Eban(A,B), then the product of [p] ∈ K0(A) with α = [E, π, T ] ∈
KKban(A,B) is the class of the Fredholm module over B equal to

(4) (Imπ(p), π(p)Tπ(p)).

When p is an idempotent in Mk(A), we use the image of p by idk ⊗ π :

Mk(A)→ LB(Ek). If α is of the form (1), then the class of (4) is equal to

(5) [π0(p), π1(p)],

since both π(p)(π(p)Tπ(p)−T ) and (π(p)Tπ(p)−T )π(p) are in KB(H⊕H).

Given 0 < ε ≤ 1/2 we consider the following neighborhood of {0, 1}:

V (ε) = {λ ∈ C : |λ| < ε} ∪ {λ ∈ C : |λ− 1| < ε}.

Let B be a unital Banach algebra. Let x ∈ B and suppose that its spectrum

Sp(x) is contained in V (ε). Then we denote by χ(x) the idempotent

χ(x) =
1

2πi

∫
C

(λ− x)−1dz

where C = {λ ∈ C : |λ−1| = 1/2}. Note that χ(x) is well-defined whenever

‖x2 − x‖ < 1/4. Indeed, suppose that ‖x2 − x‖ < ε2. If λ ∈ Sp(x), then

λ2−λ ∈ Sp(x2−x) and so |λ2−λ| ≤ ‖x2−x‖ < ε2. It follows that λ ∈ V (ε).

Definition 2.1. Let π : A → B be a unital linear contraction of Banach

algebras. Let p ∈ Mm(C)⊗ A be an idempotent and let x = (idm ⊗ π)(p) ∈
Mm(C) ⊗ B. We define π](p) = [χ(x)] ∈ K0(B) whenever ‖x2 − x‖ < 1/4

and set π](p) = 0 otherwise.

One can fix for each K-theory element α ∈ K0(A), two idempotents eα, fα
such that α = [eα] − [fα] and define π] : K0(A) → K0(B) by π](α) =

π](eα)−π](fα). While this definition of π] on K0(A) depends on the choices

we make for eα, fα, the ambiguity can be eliminated by passing to maps

that are more and more multiplicative. Specifically, if α = [e′α] − [f ′α] for

another set of idempotents e′α, f
′
α, then π](eα)− π](fα) = π](e

′
α)− π](f ′α) if

π : A→ B is a unital linear contraction such that ‖π(aa′)− π(a)π(a′)‖ < ω

for all a, a′ in a sufficiently large finite set G and sufficiently small ω.
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Lemma 2.2. Let B be a unital Banach algebra and let E be a Banach

right B-module. Let (e0, f0) and (e1, f1) be pairs of idempotents in LB(E)

such that e0 − f0 ∈ KB(E) and e1 − f1 ∈ KB(E). If there is M ≥ 0

such that ‖ei‖ ≤ M , ‖fi‖ ≤ M , i = 0, 1, ‖e0 − e1‖ < 1/(8M + 4) and

‖f0 − f1‖ < 1/(8M + 4), then [e0, f0] = [e1, f1] in KKban(C, B) ∼= K0(B).

Proof. Let ε = 1/(8M + 4). Define x, y ∈ C([0, 1], LB(E)) by x(t) = (1 −
t)e0 + te1 and y(t) = (1 − t)f0 + tf1. Then ‖x − e0‖ ≤ ‖e1 − e0‖ < ε and

‖y − f0‖ ≤ ‖f1 − f0‖ < ε. Moreover

‖x2 − x‖ ≤ ‖x‖‖x− e0‖+ ‖x− e0‖‖e0‖+ ‖e0 − x‖ < (2M + 1)ε ≤ 1/4.

Similarly one checks that ‖y2−y‖ < 1/4. As observed earlier, it follows that

Sp(x) and Sp(y) are contained in V (1/2). Then e := χ(x) and f := χ(y)

are idempotents in LB[0,1](E[0, 1]) such that e − f ∈ KB[0,1](E[0, 1]) since

x − y ∈ KB[0,1](E[0, 1]) and the Riesz calculus is functorial. It follows that

the pair (e, f) gives a homotopy between (e0, f0) and (e1, f1). �

Lemma 2.3. For any M ≥ 0 and 0 < ε < 1/2 there is δ = δ(M, ε) > 0

with the following property. If B is a unital Banach algebra and x, y ∈ B
satisfy ‖x‖ ≤M , ‖x2−x‖ ≤ δ, ‖x− y‖ ≤ δ, then Sp(x)∪Sp(y) ⊂ V (ε) and

‖χ(y)− x‖ < ε, ‖χ(x)− x‖ < ε, ‖χ(y)− y‖ < ε, ‖χ(x)− χ(y)‖ < ε.

Proof. Given 0 < ε < 1/2, suppose that δ > 0 is sufficiently small so that

2Mδ + δ2 + 2δ < ε2. Then ‖x2 − x‖ ≤ δ < ε2 < 1/4 and ‖y2 − y‖ ≤
‖y‖‖y− x‖+ ‖y− x‖‖x‖+ ‖x2− x‖+ ‖x− y‖ ≤ 2Mδ+ δ2 + 2δ < ε2 < 1/4.

As observed earlier, from these estimates it follows that Sp(x), Sp(y) ⊂ V (ε).

Seeking a contradiction, suppose now that there are M ≥ 0 and 0 < ε < 1/2

for which the lemma is false. It follows that we can find a decreasing sequence

(δn) converging to 0, with 2Mδn + δ2n + 2δn < ε2/2 for all n ≥ 1, and such

that the conclusion of the lemma is false for each δn. Thus for each n ≥ 1,

there is a unital Banach Bn and there exists elements xn, yn ∈ Bn which

satisfy ‖xn‖ ≤ M , ‖x2n − xn‖ ≤ δn, ‖xn − yn‖ ≤ δn and such that for each

n ≥ 1,

(6) max{‖χ(yn)− xn‖, ‖χ(xn)− xn‖, ‖χ(yn)− yn‖, ‖χ(xn)− χ(yn)‖} ≥ ε.

Consider the unital Banach algebra A :=
∏
nBn consisting of all bounded

sequences b = (bn) with bn ∈ Bn and norm ‖b‖ = supn ‖bn‖. Let J be

the two-sided closed ideal of A consisting of sequences b = (bn) such that

limn ‖bn‖ = 0 and let q : A→ A/J denote the canonical quotient morphism.

Then A/J is a unital Banach algebra . Let us consider the elements x = (xn)

and y = (yn) of A. By arguing as above we see that Sp(x) ∪ Sp(y) ⊂ V (ε)
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and that x2−x, y2−y ∈ J . It is then clear that q(x)2 = q(x) = q(y) = q(y)2

and by the functoriality of the Riesz calculus, q(x) = χ(q(x)) = q(χ(x))

and q(y) = χ(q(y)) = q(χ(y)). This shows that {x − χ(x), y − χ(y), x −
χ(y), χ(x) − χ(y)} ⊂ J . It follows that limn ‖xn − χ(xn)‖ = limn ‖yn −
χ(yn)‖ = limn ‖xn − χ(yn)‖ = limn ‖χ(xn) − χ(yn)‖ = 0. This contradicts

(6). �

Lemma 2.4. For any M ≥ 1 and 0 < ε < 1/2 there is θ = θ(M, ε) > 0

with the following property. Let B be a unital Banach algebra and let E be

a Banach right B-module. Let e, f ∈ LB(E) and h ∈ KB(E) be idempotents

such that

(i) e− f ∈ KB(E),

(ii) ‖e‖ ≤M , ‖f‖ ≤M , ‖h‖ ≤M ,

(iii) ‖[e, h]‖ ≤ θ, ‖[f, h]‖ ≤ θ, ‖(1− h)(e− f)(1− h)‖ ≤ θ.

Then

(a) Sp(heh) ∪ Sp(hfh) ⊂ V (ε),

(b) ‖heh− χ(heh)‖ < ε, ‖hfh− χ(hfh)‖ < ε

(c) [e, f ] = [χ(heh), χ(hfh)] ∈ KKban(C, B) ∼= K0(B).

Proof. We may assume that ε < 1/(8(M+1)3+4). Let δ be the two-variable

function given by Lemma 2.3. We show that if

(7) 0 < θ < min

{
ε,
δ(M3, ε)

M3
,
δ((M + 1)3, ε)

(M + 1)3
,
δ(2(M + 1)3, ε)

2M

}
then θ satisfies the statement of the Lemma 2.4. Set

x = heh, x′ = (1− h)e(1− h), y = hfh, y′ = (1− h)f(1− h).

We have a series of straightforward estimates:

‖x‖ ≤M3, ‖x′‖ ≤ (M + 1)2M, ‖y‖ ≤M3, ‖y′‖ ≤ (M + 1)2M,

‖x+ x′‖ ≤ 2(M + 1)3, ‖y + y′‖ ≤ 2(M + 1)3

‖e− (x+ x′)‖ = ‖h(he− eh) + (eh− he)h‖ ≤ 2Mθ < δ(2(M + 1)3, ε),

‖f − (y + y′)‖ < δ(2(M + 1)3, ε)

‖x′ − y′‖ = ‖(1− h)(e− f)(1− h)‖ ≤ θ < ε,

‖x2 − x‖ = ‖he(he− eh)h‖ ≤M3θ < δ(M3, ε),

‖x′2 − x′‖ = ‖((1− h)e(he− eh)(1− h)‖ ≤ (M + 1)3θ < δ((M + 1)3, ε),

‖y2 − y‖ < δ(M3, ε), ‖y′2 − y′‖ < δ((M + 1)3, ε).
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These estimates enable us to apply Lemma 2.3 and obtain that both Sp(x)

an Sp(y) are contained in V (ε) and moreover

‖x− χ(x)‖ < ε, ‖x′ − χ(x′)‖ < ε, ‖y − χ(y)‖ < ε, ‖y′ − χ(y′)‖ < ε;

‖χ(x′)− χ(y′)‖ < ε, ‖e− χ(x+ x′)‖ < ε, ‖f − χ(y + y′)‖ < ε.

Note that χ(x), χ(y) ∈ KB(E), x′ − y′ ∈ KB(E) and hence χ(x′)− χ(y′) ∈
KB(E). Recall that x ∈ hBh and x′ ∈ (1 − h)B(1 − h) and hence χ(x +

x′) = χ(x) + χ(x′) and χ(x)χ(x′) = χ(x′)χ(x) = 0. Similar properties

hold for y and y′ and we will use these in the sequel. Since ‖e‖ ≤ M ,

‖χ(x+ x′)‖ ≤ ‖e‖+ ε < M + 1, ‖f‖ ≤M , ‖χ(y + y′)‖ ≤ ‖f‖+ ε < M + 1,

and ε < 1/(8(M + 1) + 4), we deduce from Lemma 2.2 that

[e, f ] = [χ(x+ x′), χ(y + y′)] = [χ(x) + χ(x′), χ(y) + χ(y′)].

On the other hand,

[χ(x) + χ(x′), χ(y) + χ(y′)] = [χ(x), χ(y)] + [χ(x′), χ(y′)] = [χ(x), χ(y)],

since [χ(x′), χ(y′)] = [χ(x′), χ(x′)] = 0, also by Lemma 2.2 which we can

apply since we have ‖χ(x′)‖ ≤ ‖x′‖ + ε < (M + 1)3, ‖χ(y′)‖ ≤ ‖y′‖ + ε <

(M + 1)3 and

‖χ(x′)− χ(y′)‖ < ε < 1/(8(M + 1)3 + 4).

We conclude that [e, f ] = [χ(x), χ(y)]. �

The following description of a special case of the cap product (3) plays

an important role in the paper.

Proposition 2.5. Let A,B be unital Banach algebras. Suppose that an

element α ∈ KKban(A,C) is given by the class of a triplet(
H ⊕H,ϕ =

(
ϕ0 0

0 ϕ1

)
,

(
0 1

1 0

))
,

where H is a Banach space. Let p ∈ A ⊗ B be an idempotent. Let ϕ̃i :=

ϕi ⊗ idB : A ⊗ B → L(H) ⊗ B. Let ẽ ∈ Mr(C) ⊗ B ⊂ L(H) ⊗ B be an

idempotent (Mr(C) ∼= L(Cm) ⊂ L(H) is induced by a choice of embedding

Cm ⊂ H). Suppose that there is M > 0 and 0 < ε < 1/2 such that

(i) ‖ẽ‖ ≤M, ‖ϕ̃i(p)‖ ≤M, i = 0, 1,

(ii) ‖[ϕ̃i(p), ẽ]‖ < θ(M, ε), i = 0, 1,

(iii) ‖(1− ẽ)(ϕ̃0(p)− ϕ̃1(p))(1− ẽ)‖ < θ(M, ε),



QUASI-REPRESENTATIONS AND INDEX 9

where θ(M, ε) is given by Lemma 2.4.

Then the idempotents qi := χ(ẽ ϕ̃i(p) ẽ) ∈ Mr(B) are well defined, they

satisfy

‖qi − ẽ ϕ̃i(p)ẽ‖ < ε, i = 0, 1,

and the cap product

KKban(C, A⊗B)×KKban(A,C)→ KKban(C, B)

satisfies

[p] ◦ (α⊗ 1B) = [q0]− [q1],

under the isomorphism KKban(C, B) ∼= K0(B). More generally, an entirely

similar statement holds for idempotents p ∈Mm(C)⊗A⊗B.

Proof. Let j be the linear contractive map j : L(H)⊗B → LB(H ⊗B) and

let ˜̃ϕi = j ◦ ϕ̃i, i = 0, 1. From the definition of the product (2) as described

in (5), it follows that [p]◦(α⊗1B) = [˜̃ϕ0(p),
˜̃ϕ1(p)]. On the other hand, since

j is contractive, we deduce from the hypotheses of the proposition that

‖˜̃e‖ ≤M, ‖˜̃ϕi(p)‖ ≤M, i = 0, 1

‖[˜̃ϕi(p), ˜̃e]‖ < θ(M, ε), i = 0, 1

‖(1− ˜̃e)(˜̃ϕ0(p)− ˜̃ϕ1(p))(1− ˜̃e)‖ < θ(M, ε).

These estimates enable us to apply Lemma 2.4 and obtain that

[˜̃ϕ0(p),
˜̃ϕ1(p)] =[χ(˜̃e ˜̃ϕ0(p)

˜̃e), χ(˜̃e ˜̃ϕ1(p)
˜̃e)]

=[j(χ(ẽ ϕ̃0(p) ẽ)), j(χ(ẽ ϕ̃1(p) ẽ))] = [j(q0), j(q1)]
(8)

in KKban(C, B). By [16, Thm. 1.2.8], the image of [j(q0), j(q1)] in K0(B)

is equal to [q0]− [q1]. �

3. Group quasi-representations and index theorems

Let G be a discrete countable group. Consider the action of G on `1(G)

by multiplication, by viewing G as a set of units of `1(G). Let Ỹ → Y

be a principal G-bundle over a compact metrizable space Y . Let `Y be

the ”line bundle” Ỹ ×G `1(G) → Y induced by the diagonal action of G.

One can cover Y by a finite family of open sets (Uα)α∈I in such a way

that the bundle `Y is obtained by gluing the trivial bundles Uα × `1(G)

via a constant cocycle sαβ ∈ G ⊂ `1(G). Thus sαβsβγ = sαγ whenever

Uα ∩ Uβ ∩ Uγ 6= ∅. If (χα)α∈I are positive continuous functions with χα
supported in Uα and such that

∑
α∈I χ

2
α = 1, then the finitely generated



10 MARIUS DADARLAT

projective right Banach C(Y ) ⊗ `1(G)-module of continuous sections in `Y
is represented by an idempotent

(9) P =
∑
α,β∈I

eαβ ⊗ χαχβ ⊗ sαβ ∈Mm ⊗ C(Y )⊗ `1(G).

Here m = |I| and (eαβ) is the canonical matrix unit of Mm(C).

Definition 3.1. Let G be a discrete countable group and let B be a unital

Banach algebra. Let G ⊂ G be a finite subset and let ω > 0. A map π : G→
B is called a (G, ω)-representation if it satisfies the following conditions: (i)

π(1) = 1 and ‖π(s)‖ ≤ 1 for all s ∈ G; (ii) ‖π(st) − π(s)π(t)‖ < ω for all

s, t ∈ G.

If B is a unital C*-algebra, a map π : G → B is called a (G, ω)-unitary

representation if it satisfies (i), (ii) from above and (iii)‖π(s−1)−π(s)∗‖ < ω

for all s ∈ G. Note that if ω < 1 and {s, s−1} ⊂ G, then π(s) ∈ GL(B).

One can extend π to a linear contraction π : `1(G)→ B by π(
∑

s∈G λss) =∑
s∈G λsπ(s).

Let B be a unital Banach algebra. An element z ∈ KK(C(Y ),C) gives

rise to an element z⊗ 1B ∈ KKban(C(Y )⊗B,B) which induces via the cap

product (3) a map K0(C(Y ) ⊗ B) → K0(B), x 7→ x ◦ (z ⊗ 1B). We work

with the following `1-version of the assembly map:

(10) µ : KK(C(Y ),C)→ K0(`
1(G)), µ(z) = [P ] ◦ (z ⊗ 1`1(G)).

If π : `1(G)→ B is a unital contractive morphism of Banach algebras, then

there is a commutative diagram

K0(C(Y )⊗ `1(G))×KK(C(Y ),C)

(id⊗π)∗
��

// K0(`
1(G))

π∗
��

K0(C(Y )⊗B)×KK(C(Y ),C) // K0(B)

The following result extends this property to quasi-representations (starting

from scratch), see Definitions 2.1 and 3.1.

Theorem 3.2. Let z ∈ KK(C(Y ),C) and let q0, q1 be idempotents in ma-

trices over `1(G) such that µ(z) = [P ] ◦ (z⊗ 1`1(G)) = [q0]− [q1]. Then there

exist a finite subset G ⊂ G and ω > 0 (which depend on the representatives

P, q0 and q1), such that if B is a unital Banach algebra and π : G → B is

any (G, ω)-representation, then

π](q0)− π](q1) = (idC(Y ) ⊗ π)](P ) ◦ (z ⊗ 1B).
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With the convention that follows Definition 2.1, we could have written

π](µ(z)) in place of π](q0)− π](q1).

Proof. Given two pairs of idempotents q0, q1 and q′0, q
′
1 in matrices over `1(G)

such that [q0] − [q1] = [q′0] − [q′1], there exist G0 and ω0 > 0 such that if

G0 ⊂ G and ω < ω0, then for any (G, ω)-representation π : G → B, one has

π](q0) − π](q1) = π](q
′
0) − π](q′1). Thus it suffices to prove the theorem for

a pair of idempotents q0, q1 of our choice with µ(z) = [q0]− [q1].

Before we can exhibit G and ω we need to choose carefully three constants

ε1, ε2 and η. Let us regard the numbers δ(M, ε) and θ(M, ε) given by the

Lemma 2.3 and respectively Lemma 2.4 as functions of the variables M

and ε. For m > 0 as in the definition of P and 0 < ε < 1/3 we choose

0 < ε1 < 1/2 such that

(11) ε1 < δ(m2, ε).

Next we choose ε2 > 0 such that

(12) ε2 < min

{
ε,

1

4
θ(m2 + 1, ε)

}
.

Then we fix a number 0 < η < 1 such that

(13) η < min

{
1

2m3
δ(m2, ε),

1

m2
θ(m2, ε1),

1

2m2
θ(m2 + 1, ε)

}
.

We are going to describe the construction of the idempotents q0 and q1 that

are convenient to work with. By the Cuntz-picture of the KK-groups [3],

any element z ∈ KK(C(Y ),C) is represented by a pair of ∗-representations

ϕ0, ϕ1 : C(Y ) → L(H) such that ϕ0(a) − ϕ1(a) ∈ K(H) for all a ∈ C(Y ).

Correspondingly, we have Banach algebra morphisms

ϕ̃i = idm ⊗ ϕi ⊗ id`1(G) : Mm ⊗ C(Y )⊗ `1(G)−→Mm ⊗ L(H)⊗ `1(G).

By Voiculescu’s theorem, ϕ1 is a compact perturbation of a ∗-representation

of C(Y ) which is a direct sum of one-dimensional representations. Therefore,

there is an approximate unit (en)n of K(H) consisting of projections such

that limn ‖[ϕ1(a), en]‖ = 0 for all a ∈ C(Y ). Since ϕ0(a) − ϕ1(a) ∈ K(H)

for all a ∈ C(Y ), it follows that there is a projection e ∈Mr(C) = L(Cr) ⊂
L(H) such that

(14) ‖ [ϕi(a), e] ‖ < η, ‖ (1− e)(ϕ0(a)− ϕ1(a))(1− e) ‖ < η,

for all a ∈ {χαχβ;α, β ∈ I} and i = 0, 1.

Let ẽ := 1m ⊗ e⊗ 1`1(G). Then ‖ẽ‖ ≤ 1. Let us note that

‖ϕ̃i(P )‖ = ‖
∑
α,β∈I

eαβ ⊗ ϕi(χαχβ)⊗ sαβ‖ ≤ m2,
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since ‖sαβ‖ ≤ 1. Next we verify that

(15) ‖[ϕ̃i(P ), ẽ ]‖ < m2η, and ‖(1− ẽ)(ϕ̃0(P )− ϕ̃1(P ))(1− ẽ)‖ < m2η.

Using (14) we have

‖[ϕ̃i(P ), ẽ ]‖ = ‖
∑
α,β∈I

eαβ ⊗ [ϕi(χαχβ), e]⊗ sαβ‖ < m2η.

For the other estimate, we write ‖(1− ẽ)(ϕ̃0(P )− ϕ̃1(P ))(1− ẽ)‖ as

‖
∑
α,β∈I

eαβ ⊗ (1− e)(ϕ0(χαχβ)− ϕ1(χαχβ))(1− e)⊗ sαβ‖ < m2η.

Since m2η < θ(m2, ε1) by (13), it follows by Proposition 2.5 that if we set

xi := ẽ ϕ̃i(P )ẽ, then Sp(xi) ⊂ V (1/2) and qi := χ(xi) ∈ Mm ⊗Mr ⊗ `1(G)

are idempotents such that

(16) ‖xi − qi‖ < ε1, i = 0, 1,

(17) µ(z) = [P ] ◦ (z ⊗ 1`1(G)) = [q0]− [q1] ∈ K0(`
1(G)).

We now fix these idempotents qi = χ(xi), i = 0, 1 and we will prove that if

G = {sαβ : α, β ∈ I} and ω > 0 is such that

(18) ω < min

{
1

2m3
δ(m2, ε),

1

m3
δ(m2, ε2)

}
,

then G and ω satisfy the statement of the theorem.

First we want to compute π](q0) − π](q1) where π : `1(G) → B is the

canonical extension of a unital map π : G → B which satisfies ‖π(s)‖ ≤ 1

for all s ∈ G and

(19) ‖π(st)− π(s)π(t)‖ < ω for all s, t ∈ G.

Let π̃ := idm ⊗ idr ⊗ π : Mm ⊗Mr ⊗ `1(G)→Mm ⊗Mr ⊗B and recall that

(20) xi = ẽ ϕ̃i(P )ẽ =
∑
α,β∈I

eαβ ⊗ eϕi(χαχβ)e⊗ sαβ.

Since π̃ is contractive, ‖π̃(xi)‖ ≤ m2. Moreover, it follows from (16) and

(11) that

(21) ‖π̃(qi)− π̃(xi)‖ < ε1 < δ(m2, ε).

We are going to verify that

(22) ‖π̃(xi)
2 − π̃(xi)‖ < δ(m2, ε), i = 0, 1.

To this purpose let us consider the following expressions:

Ui =
∑
α,β,γ

eαγ ⊗ eϕi(χαχβ)eϕi(χβχγ)e⊗ π(sαβ)π(sβγ),



QUASI-REPRESENTATIONS AND INDEX 13

Vi =
∑
α,β,γ

eαγ ⊗ eϕi(χαχβ)ϕi(χβχγ)e⊗ π(sαβ)π(sβγ),

Wi = π̃(xi) =
∑
α,β,γ

eαγ ⊗ eϕi(χαχ2
βχγ)e⊗ π(sαγ),

and observe that π̃(xi)
2− π̃(xi) = (Ui−Vi)+(Vi−Wi), that ‖Ui−Vi‖ < m3η

by (14) and that ‖Vi −Wi‖ < m3ω by (19). It follows from (13) and (18)

that

‖π̃(xi)
2 − π̃(xi)‖ ≤ m3η +m3ω < δ(m2, ε).

Thus we have verified the inequality (22).

Due to the estimates (21), (22) and ‖π̃(xi)‖ ≤ m2, we can apply Lemma 2.3

to deduce that for any map π : G→ B as in the statement, we have

(23) ‖χ(π̃(qi))− π̃(xi)‖ < ε,

(24) π](q0)− π](q1) = [χ(π̃(q0))]− [χ(π̃(q1))].

In the second part of the proof we are going to compute (idC(Y )⊗π)](P )◦
(z ⊗ 1B) by using again Lemma 2.3 and Proposition 2.5. The result of this

calculation is given in (31). The proof will be completed by comparing the

expressions from (24) and (31). If we set

x := (idm⊗ idC(Y )⊗ π)(P ) =
∑
α,β∈I

eαβ ⊗χαχβ ⊗ π(sαβ) ∈Mm⊗C(Y )⊗B,

then ‖x‖ ≤ m2. Since

x2 − x =
∑
α,δ

eαδ ⊗
∑
β

χαχ
2
βχδ ⊗ (π(sαβ)π(sβ,δ)− π(sαδ)) ,

we obtain from (18) and (19) the estimate

(25) ‖x2 − x‖ ≤ m3ω < δ(m2, ε2).

By definition, (idC(Y ) ⊗ π)](P ) = [h], where h is the idempotent h = χ(x)

given by Lemma 2.3. Thus (idC(Y )⊗π)](P )◦ (z⊗1B) = [h]◦ (z⊗1B), where

(26) ‖h− x‖ = ‖χ(x)− x‖ < ε2.

In order to compute [h] ◦ (z ⊗ 1B), we need to consider the maps

Φi = idm ⊗ ϕi ⊗ idB : Mm ⊗ C(Y )⊗B →Mm ⊗ L(H)⊗B.

Since ϕi is contractive, so is Φi and hence by (26) we obtain that

(27) ‖|Φi(h)− Φi(x)‖ < ε2, i = 0, 1,

and hence ‖Φi(h)‖ ≤ ‖Φi(x)‖+ ε2 < m2 + 1, i = 0, 1.
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We are going to show that the idempotents Φi(h) and E := 1m ⊗ e⊗ 1B
satisfy the assumptions of Proposition 2.5 with θ = θ(m2 + 1, ε). Thus we

must verify that

‖[Φi(h), E]‖ < θ(m2+1, ε) and ‖(1−E)(Φ0(h)−Φ1(h))(1−E)‖ < θ(m2, ε).

We first estimate ‖[Φi(x), E]‖ and ‖(1− E)(Φ0(x)− Φ1(x))(1− E)‖. Since

(28) Φi(x) =
∑
α,β∈I

eαβ ⊗ ϕi(χαχβ)⊗ π(sαβ),

using (14) we have

(29) [Φi(x), E] = ‖
∑
α,β∈I

eαβ ⊗ [e, ϕi(χαχβ)]⊗ π(sαβ)‖ < m2η, and

(30) ‖(1− E)(Φ0(x)− Φ1(x))(1− E)‖ < m2η,

as it becomes clear after writing it in the form

‖
∑
α,β∈I

eαβ ⊗ (1− e)(ϕ0(χαχβ)− ϕ1(χαχβ))(1− e)⊗ π(sαβ)‖.

From (27), (29) and (30) we deduce that ‖(1− E)(Φ0(h)− Φ1(h))(1− E)‖
and ‖[Φi(h), E]‖, i = 0, 1 are dominated by m2η + 2ε2 and hence they are

smaller than θ(m2 + 1, ε) by (12) and (13). Applying Proposition 2.5 we

obtain that

(31) [h] ◦ (z ⊗ 1B) = [χ(EΦ0(h)E)]− [χ(EΦ1(h)E)],

as well as the estimate

(32) ‖χ(EΦi(h)E)− EΦi(h)E‖ < ε.

On the other hand, from (26) and (32) we see that

(33) ‖χ(EΦi(h)E)− EΦi(x)E‖ < ε+ ε2 < 2ε.

It is important to note that EΦi(x)E = π̃(xi), as it follows by comparing

(20) and (28). Consequently, from (23) and (33) we deduce that

‖χ(π̃(qi))− χ(EΦi(h)E)| < 3ε < 1.

This shows that [χ(π̃(qi))] = [χ(EΦi(h)E)] in K0(B), i = 0, 1. Therefore

from (24) and (31) we obtain that [h] ◦ (z ⊗ 1B) = π](q0)− π](q1). �

Let G be a discrete countable group and let j : `1(G) → C∗(G) be the

canonical ∗-homomorphism.
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Lemma 3.3. Let x, y ∈ K0(`
1(G)) be such that j∗(x) = j∗(y) in K0(C

∗(G).

Then there exist a finite subset G of G and ω > 0 with the property that for

any unital C*-algebra B and any (G, ω)-unitary representation, it follows

that π](x) = π](y).

Proof. The definitions of π](x), π](y) depend on the choices of representa-

tives for x and y as as explained in the comments following Definition 2.1.

The set G and ω > 0 will also depend on these representatives.

For any given (G, ω)-unitary representation π : G → B we will denote

also by π its canonical linear extension π : `1(G)→ B.

Fix idempotents ei ∈ Mk(`
1(G)), i = 1, 2, 3, 4 such that x = [e1] − [e2]

and y = [e3] − [e4]. Seeking a contradiction, assume that the conclusion

of the lemma is false. Then there exists a sequence of (Gn, ωn)-unitary

representations πn : G → U(Bn) such that ∪nGn = G, 0 < ωn ≤ 1/n with

‖xn(i)2 − xn(i)‖ < 1/4, where xn(i) = (idk ⊗ πn)(ei), i = 1, 2, 3, 4, and such

that πn ](x) 6= πn ](y), or equivalently [χ(xn(1))]− [χ(xn(2))] 6= [χ(xn(3))]−
[χ(xn(4))] in K0(Bn) for all n ≥ 1. We can assemble the sequence (πn) to

form a linear contractive map Φ : `1(G)→
∏
nBn. Let q :

∏
nBn → B∞ :=∏

nBn/
∑

nBn be the quotient map. Then q◦Φ is a unital ∗-homomorphism.

It follows that q ◦Φ factors through the universal group C*-algebra C∗(G).

In other words, there is a unital ∗-homomorphism Ψ : C∗(G) → B∞ such

that q◦Φ = Ψ◦j. Since j∗(x) = j∗(y) in K0(C
∗(G) by assumption, it follows

that (q ◦ Φ)∗(x) = (q ◦ Φ)∗(y) in K0(B∞). Let us note that by naturality

of functional calculus, the idempotent Ei = (χ(xn(i)))n ∈ Mk(
∏
nBn) is a

lifting of (idk ⊗ (q ◦Φ))(ei). It follows that q∗([E1]− [E2]) = q∗([E3]− [E4])

and hence [E1]− [E2] and [E3]− [E4] have the same image under the map

K0(
∏
n

Bn)→
∏
n

K0(Bn)/
∑
n

K0(Bn).

Therefore the sequences ([χ(xn(1))]−[χ(xn(2))])n and ([χ(xn(3))]−[χ(xn(4))])n
could differ only by an element of

∑
nK0(Bn). This implies that πn ](x) =

πn ](y) for all sufficiently large n, leading to the desired contradiction. �

Definition 3.4. Let G be a discrete countable group. Let Ỹ → Y be a

principal G-bundle over a compact metrizable space Y . Following Lafforgue,

we consider the map µ`1 : K0(Y ) → K0(`
1(G)) which is defined as fol-

lows. Let p ∈ `1(G,C0(Ỹ )) be an idempotent constructed in the usual way

from a cutoff function c, i.e. p(s)(y) =
√
c(y)c(sy), s ∈ G, y ∈ Ỹ . Let

jG : KKban
G (C0(Ỹ ),C)→ KKban(`1(G,C0(Ỹ )), `1(G)) be the descent map of

[16]. Let z′ ∈ KKban
G (C0(Ỹ ),C) be the image of z ∈ K0(Y ) = KK(C(Y ),C)
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under the composition of the maps

KK(C(Y ),C) ∼= KKG(C0(Ỹ ),C)→ KKban
G (C0(Ỹ ),C).

Then by definition µ`1(z) = [p] ◦ jG(z′).

We do not know whether or not µ coincide with µ`1 . We show that if B

is a C*-algebra and if π is a sufficiently multiplicative quasi-representation

of G in B, then one can replace µ by µ`1 in Theorem 3.2.

Corollary 3.5. Let z ∈ K0(Y ) and let q0, q1 be idempotents in matrices

over `1(G) such that µ`1(z) = [q0] − [q1]. Then there exist a finite subset

G ⊂ G and ω > 0 such that if B is a unital C*-algebra and π : G → B is

any (G, ω)-unitary representation, then

π](µ`1(z)) = π](q0)− π](q1) = (idC(Y ) ⊗ π)](P ) ◦ (z ⊗ 1B).

Proof. We use the fact that the natural map K0(Y ) → K0(C
∗(G)) (this is

called the assembly map if Ỹ → Y is the universal covering of Y ) has two

equivalent descriptions µ′ and µ′′. The definition of µ′ is similar to (10):

(34) µ′ : KK(C(Y ),C)→ K0(C
∗(G)), µ′(z) = [P ] ◦ (z ⊗ 1C∗(G)).

The definition of µ′′ involves an idempotent p ∈ C0(Ỹ )oG (constructed from

a cutoff function) and the image of z ∈ KK(C(Y ),C) ∼= KKG(C0(Ỹ ),C)

under the descent map jG : KKG(C0(Ỹ ),C)→ KK(C0(Ỹ ) oG,C∗(G)).

(35) µ′′ : KK(C(Y ),C)→ K0(C
∗(G)), µ′′(z) = [p] ◦ jG(z).

It is known that µ′′ = µ′, see [14], [26]. The definition of µ′′ is similar to

that of µ`1 and it is shown in [16] that if j : `1(G)→ C∗(G) is the canonical

∗-homomorphism, then j∗ ◦ µ`1 = µ′′. On the other hand by comparing

equations (10) and (34) we see that j∗ ◦ µ = µ′ and hence j∗ ◦ µ`1 = j∗ ◦ µ.

It follows then by Lemma 3.3 that π](µ`1(z)) = π](µ(z)). We conclude the

proof by applying Theorem 3.2. �

Let Mn be a closed connected smooth manifold and let G be a dis-

crete countable group. Let f : M → BG be a continuous map to the

classifying space of G and let M̃ be the pull-back of the universal cover

EG → BG. The diagonal action of G on M̃ × `1(G) defines a flat bun-

dle M̃ ×G `1(G) → M , to which one can associate (as seen earlier (9)) an

idempotent P in matrices over C(M) ⊗ C[G] ⊂ C(M) ⊗ `1(G). The con-

struction of the analytic index Indf,C∗(G)(D) of an elliptic pseudodifferential

operator D on M of Mishchenko and Kasparov has been refined by Connes

and Moscovici and Lafforgue. The covering index of D associated to the

cover M̃ , denoted by Indf,G(D), was constructed in [6] as an element of
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K0(C[G]⊗R), where R is the algebra of rapid decay infinite matrices. We

denote its image in K0(`
1(G)) by Indf,`1(G)(D). On the other hand the

map µ`1 : K0(M)→ K0(`
1(G)) described in Definition 3.4 gives an element

µ`1 [D] ∈ K0(`
1(G)). It is known that the images of Indf,`1(G)(D) and µ`1 [D]

in K0(C
∗(G)) coincide and they are both equal to Indf,C∗(G)(D) by [6], [4,

Lemma 8, p.243 ] and [16]. If h is the K-theory class of an idempotent in

matrices over C(M) we denote by Ind(Dh) = h ◦ [D] ∈ Z the index of D

twisted by h given by the pairing K0(M) × K0(M) → Z. The principal

symbol of D is denoted by σ(D).

Let B be a unital C*-algebra which has a tracial state τ . We shall use the

Chern character chτ (E) defined for a smooth bundle E on M with fibers

finitely generated projective modules over B, [20], [24].

Let us fix idempotents q0, q1 in Mr(`
1(G)) such that µ`1 [D] = [q0]− [q1].

Given a (G, ω)-unitary representation π : G → B, where B is a unital C*-

algebra, we will write π](µ`1 [D]) := π](q0) − π](q1). Fix a smooth finitely

generated projective B-module bundle Eπ over M such that

(36) [Eπ] = (1⊗ π)](P )

in K0(C(M)⊗B).

Theorem 3.6. Let Mn be a closed connected smooth manifold and let f :

M → BG be a continuous map to the classifying space of a discrete countable

group G. Let D be an elliptic pseudodifferential operator on M . There exist a

finite set G ⊂ G and ω > 0 (which depend on the choice of the representatives

q0, q1 and P ) such that if B is a unital C*-algebra endowed with a tracial

state τ and π : G→ B is a (G, ω)-unitary representation, then

τ(π](µ`1 [D])) = (−1)n(ch(σ(D)) ∪ Td(TM ⊗ C) ∪ chτ (Eπ)[T ∗M ].

Proof. We apply Corollary 3.5 with Y = M and z = [D] to obtain that

π](q0)− π](q1) = (1⊗ π)](P ) ◦ ([D]⊗ 1B) = [Eπ] ◦ ([D]⊗ 1B) =: Ind(DEπ)

and hence τ(π](q0)− π](q1)) = τ(Ind(DEπ)). The latter expression is com-

puted by the cohomological version of the Mishchenko-Fomenko index the-

orem, see [20], [24, Thm. 5.9]:

τ(Ind(DE)) = (−1)n(ch(σ(D)) ∪ Td(TM ⊗ C) ∪ chτ (E))[T ∗M ]. �

Remark 3.7. Since the images of Indf,`1(G)(D), µ[D] and µ`1 [D] coin-

cide in K0(C
∗(G)), they are all equal to Indf,C∗(G)(D), by Lemma 3.3 one

may replace µ`1 [D] by Indf,`1(G)(D) or by µ[D] in the statement of Theo-

rem 3.6. Just as above, the definitions of π](Indf,`1(G)(D)) and π][D] in-

volve representative idempotents ei in matrices over `1(G) and G ⊂ G and
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ω > 0 depend on the choice of e0, e1 and P . A similar remark applies to

Indf,G(D) ∈ K0(C[G]⊗R) since one can pair idempotents in matrices over

C[G]⊗R with sufficiently multiplicative quasi-representations.

Corollary 3.8. If Mn is oriented, then by integration over the fibers of p :

TM →M one obtains under the assumptions and the setup of Theorem 3.6,

τ(π](µ`1 [D]) = (−1)n(n+1)/2(p!ch(σ(D)) ∪ Td(TM ⊗ C) ∪ chτ (Eπ)[M ].

Let M be a closed manifold with universal cover M̃ and classifying map

f : M → BG. Let P = P (M,f) be a projection in matrices over C(M)⊗C[G]

that represents the Mishchenko line bundle M̃×G`1(G)→M constructed as

above. The corresponding ”assembly” map is denoted by µ(M,f) : K0(M)→
K0(`

1(G)). If π is a quasi-representation of G we define Eπ = E
(M,f)
π as in

(36). The following is a variation of a result of Hilsum and Skandalis [12],

see also [10]. In this context, similar results were obtained by Hanke and

Schick [11] using sequences of almost-flat bundles. Let L(M) denote the

stable L-class of M .

Corollary 3.9. Let M , N be two closed connected oriented manifolds and let

h : N →M be an oriented homotopy equivalence. There exist a finite subset

G ⊂ G and ε > 0 such that for any (G, ε)-unitary representation π : G→ B

into a unital C*-algebra B with a trace τ , one has (L(N)∪h∗chτ (Eπ))[N ] =

(L(M) ∪ chτ (Eπ))[M ].

Proof. Let DM be the signature operator of M . Then Indf,C∗(G)(DM ) is

an oriented homotopy invariant of M by results of Mishchenko and Kas-

parov, and hence Indf,C∗(G)(DM ) = Indf◦h,C∗(G)(DN ). By Lemma 3.3,

π](µ
(M,f)[DM ]) = π](µ

(N,f◦h)[DN ]) if π is sufficiently multiplicative. On the

other hand, h∗(P (M,f)) = P (N,f◦h) and hence h∗(E
(M,f)
π ) ∼= E

(N,f◦h)
π . We

conclude the proof by applying Corollary 3.8. �

Using Theorem 3.6 in the case when G = π1(M) and B = Mm(C), one

can give a new proof of the following theorem from [5], see also [21]. Let M̃

be the universal cover of a closed connected Riemannian manifold M with

classifying map f : M → BG and let D be as above.

Theorem 3.10 (Connes, Gromov and Moscovici). There is ε0 > 0 such

that if E is any ε-flat smooth Hermitian vector bundle on M with ε < ε0
and π is the associated quasi-representation of G = π1(M), then

π](Indf,G(D)) = (−1)n(ch(σ(D)) ∪ Td(TM ⊗ C) ∪ ch(E))[T ∗M ].
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Proof. We only give a sketch of the proof. The argument relies on the corre-

spondence between almost flat vector bundles on M and finite dimensional

quasi-representations of the fundamental group of M . By definition of ε-

flatness, E is a Hermitian vector bundle over M which admits a metric

preserving connection ∇ such that if Θ = ∇2 is the curvature of ∇, then

‖(E,∇)‖ := sup{‖Θx(X,Y )‖ : ‖X ∧ Y ‖ ≤ 1, X, Y ∈ TxM, x ∈M} < ε.

One constructs a quasi-representation π : G → L(Cm) using parallel trans-

port as in [5], where m is the rank of E. By Lemma 4 of [5], for any finite

subset G ⊂ G, there is C > 0 such that ‖π(st) − π(s)π(t)‖ ≤ C‖(E,∇)‖
for all couples (E,∇) and s, t ∈ G. Therefore, for any given ω > 0, π

will be a (G, ω)-unitary representation provided that ε is sufficiently small.

Conversely, for any given ε > 0, there exist a finite set G of G and ω > 0

such that one can associate an ε-flat vector bundle Eπ to any (G, ω)-unitary

representation of G via a construction of [23, Sect. 3, and Appendix], see

also [19]. Moreover, one verifies that in agreement with our earlier notation

one has in fact that [Eπ] = (1 ⊗ π)](P ), where P is the projection corre-

sponding to the M̃ ×G `1(G)→M . As noted in the remark on page 312 of

[25], if a (G, ω)-unitary representation π is associated to an ε-flat bundle E,

one can take E as a particular model of Eπ (Eπ ∼= E). One concludes the

proof by applying Theorem 3.6 and Remark 3.7 for the quasi-representation

π associated to E. �

In order to derive very explicit formulas from Corollary 3.8 it would be

desirable to compute chτ (Eπ). In the next section we work out this computa-

tion for a Riemaniann surface of genus n > 0 in the scalar case B = Mk(C).

4. Quasi-representations of surface groups

Given two unitaries u, v ∈ U(m) such that ‖uv−vu‖ < ε, Loring has intro-

duced in [17] an integral invariant κ(u, v) defined for small ε. One can view

the pair u, v as associated with a quasi-representation ϕ : C(T2)→Mm(C),

such that ϕ(z1) = u and ϕ(z2) = v, where zi are the canonical unitary gen-

erators of C(T2). Then one defines κ(u, v) := ϕ](β), where K0(C(T2)) ∼=
Z ⊕ Zβ and β is the Bott element. On the other hand, Loring and Exel

[9] introduced another invariant ω(u, v) defined as the winding number in

C \ {0} of the loop t 7→ det((1 − t)uv + tvu) and they proved the equality

κ(u, v) = ω(u, v). Exel pointed out that ω(u, v) = − 1
2πiTr log(uvu−1v−1)

and reproved the equality κ(u, v) = ω(u, v) using the soft torus C*-algebra,

see [8].
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In this section we use the results from Section 3 to generalize the result

of Loring and Exel as follows. Two almost commuting unitaries can be

viewed as corresponding to a quasi-representation of Z2 = π1(T2). More

generally, we are going to consider quasi-representations of surface groups,

Γn = π1(Yn), where Yn is a compact oriented Riemann surface of genus

n ≥ 1. It is well-known that Γn has a standard presentation as a one-relator

group

Γn = 〈s1, t1, ..., sn, tn ;
n∏
i=1

[si, ti] 〉,

(where [s, t] = sts−1t−1) which we will review in the sequel. But first let us

note the following consequence of Corollary 3.5 (or Theorem 3.6).

The assembly map µ`1 : K0(Yn) → K0(`
1(Γn)) (to be denoted in the

remainder of this section by µ) is an isomorphism [16], since Γn has the

Haagerup property. Thus K0(`
1(Γn)) ∼= Z ⊕ Zµ[Yn] where z = [Yn] is the

fundamental class of Yn in K-homology. It is known that [Yn] = [∂̄n] + (n−
1)[1], where ∂̄n is the Dolbeault operator for some (any) complex structure

on Yn and [1] denotes the class of a character C(Yn) → C. Moreover, the

Chern character of [Yn] is equal to the fundamental class of Yn in H2(Yn,Z),

which we denote again by [Yn], see [2, Lemma 7.9].

Corollary 4.1. There exist a finite set G ⊂ Γn and ω > 0 such that if

π : Γn → U(m) is (G, ω)-representation, then π](µ[Yn]) = 〈c1(Eπ), [Yn]〉.

Proof. By Corollary 3.5 applied to B = Mm(C) and z = [Yn] we have that

π](µ[Yn]) = 〈[Eπ], [Yn]〉 = 〈ch[Eπ], ch[Yn]〉 = 〈c1(Eπ), [Yn]〉. �

Consider the free group F2n with generators ŝ1, t̂1, ..., ŝn, t̂n and the canon-

ical morphism ρ : F2n → Γn, ρ(ŝi) = si, ρ(t̂i) = ti. Let σ : Γn → F2n be

a fixed set theoretic section of ρ with the property that σ(s±1i ) = ŝi
±1 and

σ(t±1i ) = t̂i
±1

. Using σ, we can associate to each representation π̂ : F2n →
U(m) a quasi-representation π : Γn → U(m) defined by π = π̂ ◦ σ.

Any set {u1, v1, ..., un, vn} ⊂ U(m) determines a unique representation

π̂ : F2n → U(m) such that π̂(ŝi) = ui and π̂(t̂i) = vi, i = 1, ..n. Define

π : Γn → U(m) as above, π = π̂ ◦ σ. It is then easy to verify that for any

given finite subset G of Γn and any ω > 0 there is ε > 0 such that if the

unitaries {u1, v1, ..., un, vn} ⊂ U(m) satisfy ‖
∏n
i=1[ui, vi] − 1‖ < ε, then π

is a (G, ω)-unitary representation. Let h : Γn → Γ1 be the homomorphism

defined by h(s1) = s1, h(t1) = t1, h(si) = 1 and h(ti) = 1 for i ≥ 2. We

denote also by h the induced map h : Yn ∼= BΓn → Y1 ∼= BΓ1. All the maps
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in the following diagram are known to be bijections.

K0(Yn)
µ //

h∗
��

K0(`
1(Γn))

h∗
��

K0(Y1)
µ // K0(`

1(Γ1))

Let β ∈ K0(`
1(Γn)) be the unique element with the property that the

Chern character of image of h∗(β) under the canonical map K0(`
1(Γ1)) →

K0(C
∗(Γ1)) ∼= K0(T2) is equal to the fundamental class [T2] ∈ H2(T2). The

element β is equal to µ[Yn] up to sign, so that K0(`
1(Γn)) ∼= Z⊕ Zβ.

We will apply Corollary 4.1 to obtain the following formula.

Theorem 4.2. There exists ε > 0 such that for any m ≥ 1 and any set of

unitaries {u1, v1, ..., un, vn} ⊂ U(m) with ‖
∏n
i=1[ui, vi]− 1‖ < ε,

π](β) = − 1

2πi
Tr log([u1, v1] · · · [un, vn]).

The proof requires some preparation. Let us view Yn as obtained by iden-

tifying pairs of edges in a 4n-gon Qn in the hyperbolic plane, as illustrated

in Figure 1. We follow closely the presentation of this construction given in

[13]. An edge of Qn is an oriented side of Qn. For each edge e we denote

by e−1 the result of changing the orientation. The polygon Qn comes with

a side pairing. This is an involution e 7→ ∗e on the set of edges En of Qn
which satisfies ∗(e−1) = (∗e)−1. For each edge e ∈ En we denote by τe the

isometry of the hyperbolic plane which maps ∗e to e in such a way that

locally the half-plane bounded by ∗e and containing Qn is mapped to the

half-plane bounded by e but opposite Qn. One refers to τe as the transfor-

mation determined by e and one has τe−1 = τe and τ∗e = τ−1e . We denote by

En = {∗a1, a1, ∗b1, b1, ..., ∗an, an, ∗bn, bn} the set of edges of Qn oriented

as shown in Figure 1 and set αk = τak , βk = τbk . It is shown in [13] that

the group Γn generated by these isometries is isomorphic to the one-relator

group

Γn = 〈α1, β1, ..., αn, βn : [β−11 , α1] · · · [β−1n , αn]〉.
Thus si corresponds to β−1i and ti corresponds to αi from our earlier pre-

sentation of Γn.

We construct orientation preserving parametrizations for all edges as fol-

lows. First, we fix orientation preserving homeomorphisms [0, 1]→ ∗ak and

[0, 1] → ∗bk, 1 ≤ k ≤ n. Then, by composing these maps with αk and βk
we obtain orientation preserving parametrizations for ak and bk. It is con-

venient to use the same notation for a point t ∈ [0, 1] and its images t ∈ ∗ak
and respectively t ∈ ∗bk.
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∗b1
an

bn

∗an

∗bn

a1

b1

∗a1

Figure 1. 4n-gon Qn

Let uk, vk ∈ U(m), k = 1, ..., n with the property that

‖
n∏
k=1

[v−1k , uk]− 1m‖ < ε < 1.

Set W0 = 1m and Wk :=
∏k
i=1[v

−1
i , ui], 1 ≤ k ≤ n. We are going to

construct a complex vector bundle E of rank m over the surface Yn that is

a model for Eπ. This bundle is obtained by gluing together pairs of fibers

(t×Cm), (τet×Cm), t ∈ ∗e, on the edges of the base Qn of the trivial bundle

Qn × Cm according to the following equivalence relation.

(1) (t, ξ) ∼ (βkt, vkξ), t ∈ ∗bk, ξ ∈ Cm, 1 ≤ k ≤ n.

(2) (t, ξ) ∼ (αkt, ukξ), t ∈ ∗ak, ξ ∈ Cm, 1 ≤ k ≤ n− 1.

(3) (t, ξ) ∼ (αnt, yn(t)ξ), t ∈ ∗an, ξ ∈ Cm, where

yn(t) = (t1m + (1− t)Wn)un.

Let us note also that ‖un − yn(t)‖ < ε since ‖1m −Wn‖ < ε. One verifies

immediately that ∼ is indeed an equivalence relation. This property would

not hold for yn = un if Wn 6= 1. To explain why we consider the bundle

E, let us note that the projection P from Theorem 3.2 corresponds to the

bundle on Yn obtained as the quotient of Qn × `1(Γn) by the equivalence

relation:

(1’) (t, ξ) ∼ (βkt, βkξ), t ∈ ∗bk, ξ ∈ `1(Γn), 1 ≤ k ≤ n.

(2’) (t, ξ) ∼ (αkt, αkξ), t ∈ ∗ak, ξ ∈ `1(Γn), 1 ≤ k ≤ n− 1.

(3’) (t, ξ) ∼ (αnt, αnξ), t ∈ ∗an, ξ ∈ `1(Γn).

Using a standard perturbation argument, one verifies that if ε is sufficiently

small, then the projection associated to (1⊗ π)(P ) corresponds to a vector
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bundle isomorphic to E and hence [E] = [Eπ]. Indeed, this is seen by com-

paring the equivalence relation defined by (1),(2), (3) with the one defined

by (1’), (2’), (3’). If ε is sufficiently small, then (1 ⊗ π)](P ) = [E], since

π(βk) = vk, 1 ≤ k ≤ n, π(αk) = uk, 1 ≤ k ≤ n − 1 and ‖π(αn) − yn(t)‖ =

‖un − yn(t)‖ < ε. It follows that c1((1⊗ π)](P )) = c1(Eπ) = c1(E).

We compute c1(E), by realizing it as the first obstruction for the existence

of a cross-section in the principal GL(m,C)-bundle F associated to E.

Proposition 4.3. The first Chern class c1(E) ∈ H2(Yn,Z) ∼= Z is given

(up to a sign) by the winding number of t 7→ det(t1m+(1− t)Wn) and hence

it is equal to ± 1
2πiTr(logWn).

Proof. We begin by constructing a cross-section Φ in F over the 1-skeleton

of Yn. Choose continuous paths t 7→ Vk(t) and t 7→ Uk(t), t ∈ [0, 1] in U(m)

such that Vk(0) = Uk(0) = 1m and Vk(1) = vk, Uk(1) = uk. The map Φ will

given by a continuous map φ : En → U(m), defined on the boundary En of

Qn as follows.

For 1 ≤ k ≤ n and t ∈ ∗bk, βkt ∈ bk,

φ(t) = Vk(t)
−1Uk(t)

−1Vk(t)W
−1
k−1

and φ(βkt) = vkφ(t) = Vk(1)Vk(t)
−1Uk(t)

−1Vk(t)W
−1
k−1.

For 1 ≤ k ≤ n− 1 and t ∈ ∗ak, αkt ∈ ak,

φ(t) = Vk(t)Vk(1)−1Uk(1)−1Vk(1)W−1k−1

and φ(αkt) = ukφ(t) = Uk(1)Vk(t)Vk(1)−1Uk(1)−1Vk(1)W−1k−1.

For t ∈ ∗an and αnt ∈ an,

φ(t) = Vn(t)Vn(1)−1Un(1)−1Vn(1)W−1n−1, and

φ(αnt) = yn(t)φ(t) = (t1m+(1−t)Wn)Un(1)Vn(t)Vn(1)−1Un(1)−1Vn(1)W−1n−1.

One verifies that φ is well-defined and that φ(βkt) = vkφ(t) for t ∈ ∗bk,
1 ≤ k ≤ n, φ(αkt) = ukφ(t) for t ∈ ∗ak, 1 ≤ k ≤ n − 1, and φ(αnt) =

yn(t)φ(t) for t ∈ ∗an. Since φ satisfies these relations, it defines a cross-

section Φ in F over the 1-skeleton of Yn. The first Chern class of E (or F )

is represented by the obstruction to extending φ from the boundary of Qn
to Qn. This obstruction lies in H2(Yn, π1(GL(m,C)) ∼= π1(GL(m,C)) ∼= Z.

The map det : GL(m,C)→ C \ {0} induces an isomorphism of fundamental

groups. The restriction of det φ(−) to four successive edges ∗bk, ∗ak, b−1k , a−1k ,

1 ≤ k ≤ n − 1, gives a loop in C \ {0} based at 1. This loop is ob-

tained by the concatenation of the paths det(Uk(t)
−1), det(Vk(t)Uk(1)−1),
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det(Vk(1)Uk(1 − t)−1) and det(Vk(1 − t)). We note that this loop is triv-

ial in π1(C \ {0}, 1) via the homotopy of loops which for s ∈ [0, 1] is ob-

tained by the concatenation of the paths det(Uk(st)
−1), det(Vk(st)Uk(s)

−1),

det(Vk(s)Uk(s(1 − t))−1) and det(Vk(s(1 − t))) respectively. By a similar

reasoning, the restriction of det φ(−) to the edges ∗bn, ∗an, b−1n , a−1n is ho-

motopic to t 7→ det((1− t)1m + tWn). This shows that c1(E) = c1(det(E))

is given (up to a sign) by the winding number of t 7→ det(t1m + (1− t)Wn).

Finally, it is known and immediate that there is θ > 0 with the following

property. Let w ∈ GL(m,C) be such that ‖w− 1‖ < θ and det(w) = 1. The

winding number of t 7→ det((1− t)1m + tw) is equal to 1
2πiTr(logw), where

log is the branch of the natural logarithm with log 1 = 0.

�

Conclusion of proof of Theorem 4.2. Since we have seen that [Eπ] = [E]

the result follows (up to a sign) from Corollary 4.1 and Proposition 4.3.

In order to determine the appropriate sign it suffices to consider the case

of a quasi-representation π : Γn → U(m) of the form π = π′ ◦ h, where

h : Γn → Γ1 is the morphism and π′ is a quasi-representation of Γ1 de-

scribed earlier, corresponding to Voiculescu’s unitaries [27]. In other words

it suffices to determine the sign in the case of the 2-torus. From the calcu-

lations done in [17] for Voiculescu’s unitaries, one concludes that π](β) =

− 1
2πiTr log(uvu−1v−1). �

Remark 4.4. Another possible approach to the computation of c1(Eπ) is to

appeal to a formula from a survey paper of Manuilov and Mishchenko [19].

That entails to working with a triangularization of Yn and becomes quite

laborious. For instance, the minimum number of triangles in a triangulation

of the torus is 14. Manuilov [18] has results on homotopy properties of quasi-

representations of group surfaces that can be used to deduce Theorem 4.2

from the original Exel-Loring formula.

References

[1] M. F. Atiyah and I. M. Singer. The index of elliptic operators. III. Ann. of Math. (2),

87:546–604, 1968.

[2] H. Bettaieb, M. Matthey, and A. Valette. Unbounded symmetric operators in K-

homology and the Baum-Connes conjecture. J. Funct. Anal., 229(1):184–237, 2005.

[3] B. Blackadar. K-theory for operator algebras, volume 5 of Mathematical Sciences Re-

search Institute Publications. Cambridge University Press, Cambridge, second edition,

1998.

[4] A. Connes. Noncommutative Geometry. Academic Press, San Diego, CA, 1994.

[5] A. Connes, M. Gromov, and H. Moscovici. Conjecture de Novikov et fibrés presque

plats. C. R. Acad. Sci. Paris Sér. I Math., 310(5):273–277, 1990.



QUASI-REPRESENTATIONS AND INDEX 25

[6] A. Connes and H. Moscovici. Cyclic cohomology, the Novikov conjecture and hyper-

bolic groups. Topology, 29(3):345–388, 1990.

[7] M. Dadarlat. Group quasi-representations that act nontrivially on K-theory and al-

most flat bundles. preprint 2011.

[8] R. Exel. The soft torus and applications to almost commuting matrices. Pacific J.

Math., 160(2):207–217, 1993.

[9] R. Exel and T. A. Loring. Invariants of almost commuting unitaries. J. Funct. Anal.,

95(2):364–376, 1991.

[10] B. Hanke and T. Schick. Enlargeability and index theory. J. Differential Geom.,

74(2):293–320, 2006.

[11] B. Hanke and T. Schick. Enlargeability and index theory:infinite covers. K-Theory,

38(1):23–33, 2007.

[12] Hilsum-Skandalis. Invariance par homotopie de la signature à coefficients dans un
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