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BOUNDED SOLUTIONS FOR SINGULAR BOUNDARY 
VALUE PROBLEMS 

MARIUS DADARLAT 

1. Introduction 

M. Dur ikov icova [2] and M. G r e g u s Jr. [3] have proved the existence 
of bounded solutions for certain singular boundary value problems associated 
with the equations: 

(1.1) ±t±x(t)=f(t,x(t),x'(t)) 
dt dt 

respectively 

(1.2) ż
t
±t±x(t)=f(t,x(t),x'(t)) 

àt át àt 
where te]0, 1] and/ i s a real valued continuous and bounded function defined 
on ]0,1] x R2. These problems are called singular because the leading coefficients 
of the involved equations have zeros at the boundary point t = 0. 

The aim of the present paper is to improve the quoted results by considering 
more general coefficients and also to give some generalizations for the case of 
the higher order differential equations and systems with several singularities 

Let T be the set obtained by removing the points tx ^ t2 ^ ... ^ tk from the 
closed unit interval. These points will be the singular points of our problem. 
Suppose that k ^ 1, p ^ 0, and let us consider the following differential opera-
tors: 

Lx(t) = ± Ax(t)...± Ak(t)±-x(t) 
dt dt dtp 

and 
Px(t) -= C0(t)x^(t) + ... + Cp(t)x(t) 

acting between the spaces Ck+P(T, R") and C(T, R"). As usual Cr(T, R") denotes 
the space of all functions defined on T with values in the ^-dimensional Eucli-
dian space R" and which are r-times continuously differentiable. The coefficients 
i.4,, ..., Ak are real matrix valued functions such that for any 1 < i ^ k, _4, is an 
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invertible element of the algebra C'(F, R"x") or equivalently A(e C'(F, R"*") and 
A(0 _ 1 exists for all t in T. The coefficients C0, ..., Cp are taken from C(r, R"x"). 

Let f:Tx R^ + '> x Rniq~l) -> R" be a continuous functions, 1 ̂  q < k. For any 
points /0, ,.., /p_, from the closed unit interval (if p = 0, no such points are to 
be considered) we considered the following boundary value problem which will 
be the main subject of our study: 

(1.3) Lx(t) + Px(t) = /( / , x(t), ..., jr^ + *-1>(0), teT 

(1.4) Jr(/0) = .. .=x^-, />(/ / ,_1) = 0 
The boundary conditions (1.4) will be imposed only if p > 0. 
If some lj is equal to some singular point th then x® (/,) = 0 means lim x01 (t) = 

= 0 when t -• tt. 
This problem is called singular because of the gaps {?,}, ..., {tk} where the 

coefficients Au ..., Ak are not defined. In fact even if there are smooth extensions 
of A-s to [0, 1], these extensions may take noninvertible values in the points 
/,,.. . , tk. Moreover, if, for example, _4, has its limit at the point r, and if this limit 
is a noninvertible matrix, then it is easy to prove that ||-4i(0-1|| ~* °° when t -+ /,. 

This suggests that the solutions of the singular problems may be unbounded 
(see the examples at the end of the paper) or have other "bad" properties related 
to the singular points. However, under some suitable assumptions involving the 
behaviour of the coefficients Au ..., Ak around the singular points and the 
growing of the function /, the boundary problem (1.3)—(1.4) has a solution 
xe Ck+P(T, R") such that x, ..., x^~1} may be extended to continuous functions 
on the closed unit interval and x^ is bounded on T. This is in fact the main result 
of the paper and it is contained in Theorem 3.1. Of a certain interest, in 
connection with the references [1], [2] and [3] are the Corollaries 3.3, 3.4 and the 
Theorem 3.5. Before concluding this introductory part we state some notation 
and recall two classical theorems needed in the second section of the paper. 

We endow the vector space Cr(F, R") with the topology of the uniform 
convergence on compacta for derivatives, which is a metrizable locally convex 
topology and is defined by the family of seminorms: 

{II - ||r.m: meU,m>2b-]} where b = min{|l,— tj\: tt^ # 

For JTGC^F, R"), 11*11,„, = sup{max{||jr(OII, ..., 11^(011}: teTJ where 

Tm = [0, l]\\J]tl-m-\tl + m-ll 
i= 1 

If r = 0 we write || • ||r> m = || • ||m. The space Cr(T, R") is complete relative to the 
uniform topology defined above. 

The following theorem is a well-known generalization for the space C(T, R") 
of the classical Ascoli-Arzela theorem: 
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Theorem 1.1. A subset of C(T, R") is relatively compact with respect to the 
locally convex topology of C(T, R

n
) if and only if it is equibounded and equicon!

tinuous with respect to this topology. 

We shall need also: 

Theorem 1.2. (Tyhonov's fixed point theorem.) Let Z be a convex closed subset 
of a Hausdorff, complete, locally convex space and let Q be a continuous map from 
Z to Z. If the image Q(Z) is relatively compact, then Q has a fixed point in Z. 
(See ref. [4].) 

2. A class of continuous and compact integral operators 

For each 1 ^ i ^ k let B
(
e C

l
(T, R

nxn
). Let g be a continuous function from 

TxR
n(p+l)

 xR
n(q

~
])
 to R

n
, (t, u, v)\!+g(t, u, v), where teT, u= (u°, ..., u

p
) and 

v= (v\ ...,v
q
~

l
)e R

n(q
~

1}. We recall here that every norm on R
n induces a norm 

on the space of all nxn real matrices: if B is such a matrux, then ||__?|| = 
= sup{||flif||: tie R", ||u|| ^1} . 

Throughout this section we suppose that the following conditions are satis-
fied: 

(2.1) For every l^i^k there is a strictly positive number A, such that 

\\(t ! 0!^(011 ^ Kfor all t in T. Let 

A !!! A ] A 2 . . . A,
k
 . 

(2.2) There is F> 0 such that X\\g(t, u, v)\\ ̂  F whenever te T, \\u°\\ ^ F, ..., 
| |ti' | | ^FandvGR

n(q
~

l)
. 

(2.3) g is uniformly continuous on KxR
n(q

~
l)
 for every compact subset K of 

TxR
n(p+l)

. 

Remark. If q = 1 the condition (2.3) becomes trivial and in this case the 
condition (2.2) is satisfied by every bounded and continuous map (t, u)h!> 
r!+g(t, u). Indeed if ||gr(t, u)\\ < M, then we can choose F = AM. 

Let us consider the sets: 

Z, = {xe C
l
~ \T, R

n
): \\x(t)\\ ^ A,... X

t
Xf

x for all tin T}, l^i^k 

Z
k+j

 = {xeC
k
+J!\T, R

n
): \\x(t)\\ ^ F, ..., ||jr«(0|| < F, teT}, 1 <j^k. 

The sets Z
h+j

 will be defined only if p ^ 1. 

We shall study the integral operator Q: Z
k+p
!+Z

k+p
 given by 

/•/ t»
r
2 ~

r
l »*

k 

Qx(t)= dr,_,... dr, ds
k
B

k
(s

k
)\ ... 

J'o J'.!J J ' . ! i Ji> •p!г •",!! 
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... .9,(5,) ! g(s, x(s), ..., x^ + i!^s)) ds 

This expression may be suggestive but not very precise. We define Q rigorously 
as a product of certain operators. This enables us to prove with little effort some 
useful facts about Q. For this purpose we considered the sequences of operators 
(£/,), </<A. and (5,), <J<p acting as described in the following diagram: 

z, u2 7 u3 uk s, .. 
•* ^k * 

. sp_ i zk + p 

4 
z. 

uk s, .. 
•* ^k * ' î 

* z, •^k !"p 

and whose expressions are: 

Ô = sp...sxuk...ux 
* ^k-rp 

Uxx(t) = Bt(t)j g(s, x(s), ..., x^ + "~l\s)) ds 

U,x(t) = B,(t) J x(s) ds, l^i^k 

SjX(t)= x(s)ds, l^j^p 

h-, 
Finally we close the diagram by choosing Q = Sp...SxUk... Ux. (Up = 0 we take 
Q = Uk...Ux.) 

Lemma 2.1. The operator Ux is well defined and continuous; the image 
Ux(Zk+p) is relatively compact. 

Proof. Consider the set 

W={xeC(T, tV): \\x(t)\\ < X~XF for all t in T) 

and define the map R: Zk+P-+ W, xt-*Rx, by setting 
Rx(t) = g(t, x(t), ..., x^ + "-'\t)). 

The condition (2.2) together with the continuity of g imply that Rxe W for all 
x in Zk+p and therefore the operator R is well defined. Moreover the uniform 
continuity of g on the sets /„ = Tmx{(u°, ..., w')eR"('+l): ||w'j| ^f}xR" ( ' -" 
(assured by (2.3)) implies the continuity ofR. Indeed, for given meN and e > 0 
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we find S > 0 such that for every x, yeZk + p with ||x - y\\k + p-,. m < 5 w e h a v e 

| |iRx- /?y||m s$ e. For we have only to choose 8> 0 such that \\g(t, u, «t) -
- g ( r , u0, v0)|| < e whenever (t, u, v), (t, o0, fo)eL, and \\uJ - uJ

0\\ ^5, 
||f' - roll ^ S. Now we consider the operator s: W-* Z,, defined by 

J/, 
SJT(0 = » I ( 0 *(s)ds 

J/, 
If JTG W and se T9 we have \\x(s)\\ < X'lF whence, using (2.1), it follows that 
||5JT(0II < II (f - ' L W O I I X~XF^ XXX-XF. Thus SxeZx and the operator S is 
well defined. In addition we shall prove that S is continuous. Indeed for e > 0 
and q ^ 1 we find 8 > 0 and m ^ 1 such that for all x, ye W7 the inequality 
|| jr - y||m ^ 8 implies || Sx - Sy\\q ^ s. To do it, it is enough to choose m > q and 
8 > 0 such that 

sup{||fl,(0 I: te FJ.(2A-1m-1F+ 8) < s. 
Then for re 7̂  setting .7 = signum(t — tx) we may write 

||5x(0-Sy(0ll = 

(*(j) - y(s)) ds + (x(s) - y(s)) ds\\< 
/, J/, + T\\m J II 

^ sup{||fl,(OII: te TqY(m~x2X-xF+ \\x-y\\m) ^ e. 
We finish the investigation of this operator by proving that the image S(W) is 
relatively compact. In virtue of the Ascoli-Arzela theorem it suffices to prove that 
S( W) is equibounded and equicontinuous. The equiboundedness of S( W) is 
obvious since S(W) cz Z, and Zx is uniformly bounded. To show that S(W) is 
equicontinuous, for given t0eT and e > 0 we find 8 > 0 such that | |SJT(0 — 
— 5x(/0)|| ^ € for all xin W and te T with |f — r>0| < 8. To do this we choose 
8> 0 small enough so that ^-'.FHfl^OII < e/2 and ||fl,(0 - A,(to)II k~xF < 
< e/2 for any te Twith \t — t0| < 8. This choice is possible since 5, is continuous 
in t0. Now using the identity 

Í x(s)ds + (0,(0 - ß , ( / o ) ) Í J 
J/n J/, 

5x(0 - SJT(/0) = fl,(0 Jr(j) ds + (fl,(0 - fli(to)) x(s) ds 
J/0 J/, 

we get the desired inequality. To complete the proof we return to the operator 
Ux and observe that Ux = SR. Therefore Ux is continuous and Ux (Zk+P) a S(W) 
is relatively compact. 

Lemma 2.2. The operators (UD2<i<k
 and (Sj)\ ^j<P

 are we/7 defined and con-
tinuous. 
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Proof. Since the operators (SJ) are very simple the only thing to prove is 
the continuity of the operators (£/,). 

Set 2 ^ i ^ k and consider £/,: Zf- _ , -> Z,. Let e > 0 and a ^ 1. We shall find 
£ > 0 and meU such that || Utx — Uiy\\i_x^q ^ £ whenever x, yeZi_] and 
| | x - y | | / . 2 t l i l < & L e t 

M =- sup {sup { l ^ r II: 0 ^ k ^ i - l l : teA 

and choose m > q large enough and 8 > 0 small enough such that 

M(2A1...A/_1A-1F>r2-1 + 2''-1(5)^£ 

Now for any 0 ^ j ^ / — 1 we show that 

\$L(Vtx-U,y) 
Ч 

and this will complete the proof. Let te T
q
 and r/ = signum (t — t,). Then we may 

write 

0% / , + rj/m 

(x(s) " y(s)) ds + 
dt

j
 dt 

+1 
Jtj + тj/m 

<*<—Hö9^<*! '>» 
whence 

l^!mx!UMtúš# 
II á ! II 

^ M(2A, ...Vi^ " iw!
1
 + ll* + /IL) + _ (j[)

 M d *
! 1

 II 
( *!У ) < I d ^ "

1 

^M(2X
x
...X

i
_

l
X"

l
Fm"

l
+2

J
\\x"y\\

j
_

lm
)^8 

s i n c e j ^ / ! 1 and | | J T ! y||;_,,~ ^ II*!y||/!2,m < & 
Taking advantage of lemmas 2.1 and 2.2 the main theorem of this section 
follows straighforwardly: 

Theorem 2.3. The integral operator Q: Z
k+p
"> Z

k+p
, Q = S

p
... 5, U

k
... U\ 

has at least one fixed point. 

Proof. The set Z
k
+

p
 is nonvoid, convex and closed. The operator Q is 

continuous, being a product of continuous operators, and the image Q(Z
k
+

p
) is 

relatively compact since it is equal to S
p
... S

x
 U

k
... U

x
(Z

k+p
) and we have seen 
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that U
x
(Z

k
+

p
) is relatively compact. Now we apply the Tyhonov fixed point 

theorem to obtain the desired conclusion. 

3. Bounded solutions 

With the same notation as in the introduction we prove now the main result 
of the paper. Let P: Tx R

n(p + l) !> R", (/, u)h!P(t, u) = C
0
(t)u

p
 + ... + C

p
(t)u° 

be the function canonically associated with the differential operator Px. Then we 
have the following. 

Theorem 3.1. Suppose thast the coefficients A^C^T, R
nxn

) and the continuous 
functions P(t, u) and /(t, u, v) satisfy the following conditions (derived from 
(2.1!2.3)). 

(3.1) For every 1 ^ i ^ k there is X
t
 > 0 such that \\(t ! ^ ( t ) " 1 . ! < XJor 

all t in T. Let X = X
x
X2...X

k
. 

(3.2) There is F>0 such that X\\f(t, u, v) ! P(t, u)|| ^ F, whenever te T, 
\\u°\\ ^F, ..., ||i*'|| ^FandveR

n{q
!

])
. 

(3.3) f is uniformly continuous on Kx R
n{q

~
X)

 for every compact subset K of 
TxR

n(p+l)
. 

Then the singular boundary value problem (1.3)—(1.4) has a solution xe 
eC

p + h
(T, R

n
) which can be extended to a function belonging to C

p
~ *([0, 1], R"). 

Moreover \\x(t)\\ < F, ..., ||Jf^(t)|| ^ Ffor all t in T. 

Proof. Consider the operator Q defined in the second section with Af~
l 

instead of B
t
 and /(/, «/, v) — P(t, u) instead of g(t, u, v). By Theorem 2.3 the 

operator Q has a fixed point xeZ
k+p

. One will differentiate the equality Qx = x 
to see that x satisfies equation (1.3) and xe C

p + k
(T, R

n
). Now since xeZ

k+p
, it 

is clear that x, ..., x^ are bounded by the constant F. To end the proof observe 
that for p ^ 1 the equality x = S

p
... S

}
 U

k
... U

x
 x implies 

,(/!!) = = (S
p
!

j+i
... U

к
... l/,)(x)(0 = I (S,_,... U

к
... lt,)(Jr)(i) ás, 

" j - 1 

1 ^j^P 
and since Sp_j...Uk...Ulxis an element of Zk+p_p which is a set consisting of 
continuous bounded functions, the previous formulae can be used to extend x 
to a function in Cp~ '([0, 1], R"). It is also clear that xu-X)(lj_,) = 0. 

Corollary 3.2. Suppose that the function fis bounded and satisfies the condition 
(3.3) of Theorem 3.1. If in addition 

(3.4) sup ( £ ||C,(f)ll)• A sup ll(! ! O A W I I < 1 , 
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each member of the product being finite, then the singular boundary problem 
(1.3)—(1.4) has a solution xeCp + k(T, R") such that the derivative x^ is bounded 
on T. Therefore x can be extended to a function be'onging to Cp~l([0, 1], R"). 

Proof. Set A, = sup ||(f - OAXO"1!! < oo, A = A1... Xk and 

77 = A s u p ( t l!Cy(t)||)< 1. 
p 

I 
= 1 

- 1 If \\f(t, u, v)\\ ^ M, then we may choose F= AM(1 — rj) x to verify the con-
dition (3.2). Indeed if ||i*°|| < F, ..., ||w'|| ^ F, then 

A||/(l, u, v) - P(t, II)|| < AM + A ( | \\Cj(t)\\ • | y | | ) < AM + r/F= F 

and so we may apply Theorem 3.1. 

Corollary 3.3. Consider the singular boundary value problem: 

(3.5) a{t)x"{t) + b{t)x'{t) + c{t)x{t) =f{t, x{t), x'{t)) 

(3.6) x(l) = 0 te]0, 1] 

where ae C'QO, 1]), b, ce C(]0, 1]) andfe CQO, 1] x R2) is bounded. Assume that 

(3.7) inf r'a(OI> sup {\a'{t) - b{t)\ + \c{t)\) 
0 < f=s$ 1 0 < if < 1 

Then the problem (3.5)—(3.6) has a solution xeC2(]0, 1]) such that x and x' are 
bounded. 

Proof. Apply the previous corollary with n = 1, T = ]0, 1] 

Lx = — a(t) — x(t), Px = (-a'(t) + b(t))x'(t) + c(0x(0-
dt dt 

Since q = 1 the condition (3.3) is trivial. 

Corollary 3.4. Let fe CQO, 1] x R3) be a bounded function which is uniformly 
continuous on KxR whenever K is a compact subset of]0, l]xR2. If c0, cxe 
e CQO, 1]) are such that 

sup(|c0(0| + |c,(OI) < 1 (over * '" 1°> 1]) 
then the following singular boundary value problem 

t2x'"(t) + 3tx"(t) + (1 + c0(0)x '(0 + ci(0x(0 = 
= f(t,x(t),x'(t),x"(t)), te]0, 1] 
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(3.9) x(\) = 0 

has a solution xe C3(]0, 1]) such that x and x' are bounded. 

Proof. Apply the Corollary 3.2 with n = 1, k = 2, f, = t2 = 0, p = 1, 

Lx = — t — t — x(t) and Px = c0(t)x'(t) + c, (t)x(t). 
dt dt dt 

Next we revise under weakened hypotheses the main result of D. Andrica [1]. 

Theorem 3.5. Consider the boundary value problem 

(3.10) a(t)x"(t) + b(t)x'(t) = a(t)h'(t)f(t, x(t), x'(0) 
(3.11) x(\) = 0 te]0,\] 

where a, beCQO, \]),fe CQO, 1] x R2) is a bounded function, andhsC2(]0, 1]) is 
a solution of the associated homogeneous equation (i.e., a(t)h"(t) + b(t)h'(t) = 0). 
If in addition 

sup t\h'(t)\ < oo, (over t in ]0, 1]), 

then the problem (3.10)—(3.11) has a solution xeC2(]0, 1]) such that x andx' are 
bounded. 

Proof. Let n = 1, k = 1, p = 1, q = 1, t, = 0, T= ]0, 1]. Then the func-
tions Bx(t) = h'(t) and g(t, u) =f(t, u) satisfy the conditions (2.1)—(2.3) with 
X = A, = sup (\th'(t)\) and _F = A sup |/(t, II)|, hence by Theorem 2.3 the operator 
Q:Z2-+Z2 

Qx(t) = | h'(s) Q / ( r , x(r), x'(r)) dr) ds 

has a fixed point x. One will differentiate the equality x(t) = Qx(t) to obtain 

x'(t) = h'(t)^f(r,x(r),x'(r))dr 

x"(t) = h"(t) | / ( r , x(r), x'(r)) dr + h'(t)f(t, x(t), x'(t)). 

and 

It follows that a(t)x"(t) + b(t)x'(0 = a(t)h'(t)f(t, *( '), x'(t)), which means 
that x verifies the equation (3.10). Also *(1) = Qx(l) = 0. Since xeZ2, ^ 
and x' are bounded by F. 
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4. Examples and concluding remarks 

Consider the singular equation 

(4.1) A ' T ' x O + c o(0*'(0 + *i(0*(0 = 1, *e]0, 1] 
df df 

In virtue of Corollary 3.2 we know that this equation has a bounded solution 
ifsup(|c0(OI + k1(OI)< 1. 

From the point of view of our approach this restriction seems to be essential, 
since if we take c

0
(t) = 0 and c

}
(t) = — 1, then the corresponding equation has 

the general solution x(t) = 2 _ 1 ln(0 + at~
2
 + b with a, beR and no bounded 

solution is available. However, other choices of the coefficients show that this 
restriction is not necessary. 

Concerning the boundary conditions (1.3) they are maximal, since if one 
more condition is added the problem may have no bounded solutions, despite 
the fact that all the hypotheses of Theorem 3.1 are satisfied. In this respect, the 
following example is conclusive: the problem tx'(t) + x(t) = I, x(\) = 0, 
/e]0, 1] has the unique solution x(t) = 1 — t~

l which is not bounded. 
To explain the relation between the number of the singularities (counted with 

multiplicities) and the number of the boundary conditions as it appears in our 
approach, we can offer only a not exact argument which is, however, pertinent 
in some cases. Generally speaking the solutions of a (k + p)!order differential 
equation depend on (k + p) parameters. To obtain bounded solutions there are 
needed suitable choices for k parameters that annihilate the undesired behaviour 
of the general solution around the singularities /,, ..., t

k
. The rest of the p 

parameters are available for the boundary conditions. 
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ОГРАНИЧЕННЫЕ РЕШЕНИЯ СИНГУЛЯРНЫХ КРАЕВЫХ ЗАДАЧ 

Мапиз Оас1аг1а1 

Резюме 

В ЭТОЙ работе изложены нелинейные граничные задачи с более многими сингулярнос"
тями. 

Исползуя теорему Тихонова о неподвижной точки в случае адекватных интегральных 
операторов доказывается сущестование некоторых решении которые ограничены вместе со 
свими определенными производными. 
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