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1 Introduction

Let X = G/K be a Riemannian symmetric space and let DG(X)
be the algebra of all G-invariant differential operators on X. Let
I ⊂ DG(X) be a co-finite ideal. A C∞ function F on X is I-harmonic
if it is annihilated by every element of I. For example, if χ is a
character of DG(X) and F satisfies

XF = χ(X)F (1)

for all X ∈ DG(X), then F is I-harmonic where I is the kernel of χ.
One of the most beautiful results in the harmonic analysis of sym-

metric spaces is the “Helgason Conjecture”, which states that on a
Riemannian symmetric space of non-compact type, a function satis-
fies 1 if and only if it is the Poisson integral of a hyperfunction over
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the Furstenberg boundary. A companion result, due to Oshima and
Sekiguci, [13] says that the boundary hyperfunction is a distribution
if and only if there are positive constants A and ro (depending on F )
such that

|F (x)| ≤ Aeroτ(x) (2)

for all x ∈ X where τ(x) is the Riemannian distance in X from x to
the base point xo = eK.

In this work, we begin work on generalizing these results to gen-
eral connected, homogeneous, Käher manifolds X. Specifically, we
assume that X = G/K where G is the connected component of the
holomorphic isometry group of X and K is the isotropy subgroup of
a point in X. In this context, we hope to

1. Define a collection G-invariant differential operators F on C∞(X)
to play the role of DG(X).

2. Define an appropriate boundary for X.

3. Define a distributional “boundary value” for any I-harmonic
function F satisfying 2.

4. Define a “Poisson” transform which reconstructs F from its
boundary distribution.

A result of Dorfmeister and Nakajima [6] (generalizing earlier
work of
Gindikin and Vinberg [8] ) states that the general homogeneous Kähler
manifold is a holomorphic fiber bundle whose base is a bounded ho-
mogeneous domain in C

n and whose fiber is the product of C
k with a

compact, complex, homogeneous Kähler manifold. Thus, we assume
that X is a bounded homogeneous domain in C

n. In this work, we
solve (a)-(d).

Concerning (a), in the non-symmetric case, the group of bi-holomorphisms
can be quite small, in which case the algebra DG(X) can be so large
that the space of harmonic functions can consist of little more than
the constant functions. In particular, holomorphic functions need
not be harmonic. Hence, to produce an interesting theory we need a
smaller algebra.

In place of DG(X) we use an algebra of “geometrically” defined
invariant differential operators. Specifically, let T (X) be the tangent
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bundle for X and let g be the Riemannian form on T (X) × T (X).
Let

gher(Z,W ) = g(Z,W )

be the corresponding Hermitian form on Tc(X) where g is extended
to Tc(X) by bi-linearity.

Let ∆(·)(·) be the torsion free Riemannian connection defined by
g and let

R(U, V ) = ▽U▽V − ▽V ▽U − ▽[U,V ]

be the curvature operator. Then for each k ∈ N, we define sections
ωk of (T ∗)2k(X) by

ωk(X1, Y1, X2, Y2, . . . , Xk, Yk) = (−1)k Tr (
k

∏

j=1

R(Xj, Yj)) (3)

It is clear that ωk is invariant under any isometry of X. Let Tgeo(X)
be the subalgebra of the full tensor algebra T ∗(X) generated by the
ωk, k ≥ 1.

Let T 01(X) denote the bundle of complex tangent vectors of type
(0, 1) and let {Zj}j=1...n be a (local) frame field for T 01(X) which is
orthonormal with respect to gher.

For f ∈ C∞(X) and ω ∈ Tgeo(X) of degree 2k, we define

Dωf =
∑

i,j

ω(Zi1 , Zj1 , . . . , Zik , Zjk
)▽2kf(Zi1 , Zj1 , . . . , Z ik , Zjk

) (4)

where ▽
k denotes the k-fold covariant derivative of f and i and j

range over the set of multi-indices of length k with entries between
1 and n. It is easily seen that these are real differential operators
which are independent of the orthonormal frames and thus define
canonical differential operators which commute with all holomorphic
isometries of the domain; hence, they belong to DG(X). We extend
this definition to all of Tgeo(X) by linearity in ω.

Definition 1. The operator algebra generated over C by the Dω for
w ∈ Tgeo(X) is denoted Dgeo(X).

It should be remarked that a given complex manifold may carry
many non-isometric Kähler structures for which the corresponding
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group of biholomorphic isometries acts transitively. This is true even
if the underlying manifold is bi-holomorphic with a symmetric space.
On a bounded homogeneous domain, the Bergman metric yields the
largest isometry group since all bi-holomorphisms are automatically
isometries. However, the Dorfmeister, Nakajima, Gindikin, Vinberg
Theorem does not imply that the induced metric on the base is the
Bergman metric. Hence, we are forced to consider more general met-
rics, even in the symmetric case. The spaces of operators defined
above are only guaranteed invariant under the holomorphic isometry
group of X which will not typically be the full bi-holomorphism group
unless we are actually using the Bergman metric. Fortunately, this
all causes only minor complications.

Definition 2. By a “co-finite ideal I”, we mean a co-finite ideal of
Dgeo(X). In this case we say that F ∈ C∞(X) is I-harmonic if it is
annihilated by every element of I.

We use the concept of I-harmonic as a replacement for the har-
monicity studied in the semi-simple case.

The next question is, “What should play the role of the Fursten-
berg boundary in the non-symmetric case?” There seems, in general,
to be no way of constructing an analogue of the Furstenberg bound-
ary. We can, however construct what, in the symmetric case, is an
open subset of the Furstenberg boundary. Specifically, in general, G
is algebraic and has an “Iwasawa” decomposition

G = ANSK

where A is an R split algebraic torus, NS is a unipotent subgroup
normalized by A, and K is a maximal compact subgroup. Then
S = ANS acts simply-transitively on X.

We identify X with S.
As an algebraic variety,

S = NS × (R+)d ⊂ NS × R
d

where d is the rank of X. Under this identification, NS is contained
in the topological boundary of ANS. We use NS as a substitute for
the Furstenberg boundary. In the semi-simple case this amounts to
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restricting to a dense, open, subset of the Furstenberg boundary. We
refer to NS as the naive boundary.

We prove the following result in the Hermitian-symmetric case.
Our proof carries over to the non-symmetric case. However, in the
non-symmetric case, our operator algebras are non-abelian so the
concept of regular singularities requires some conditions on the com-
mutators of the operators which we have not been able to verify.
(See [10] and [12].) Our techniques do, however, provide an especially
simple way of proving the regular singularity property for Hermitian
symmetric spaces.

Theorem 1. Let X be a Hermitian symmetric space and let I be a
co-finite ideal. There are elements Di ∈ I and elements Qi ∈ (S),
1 ≤ i ≤ d, such that the system R(Qi)Di has regular singularities in
the week sense along the walls ti = 0 with edge NS where R is the
right action of S on C∞(X) = C∞(S).

Without the regular singularity property, we cannot appeal to
the general theory of hyperfunctions to define the boundary values.
Instead, we use ideas due to Wallach [16] as extended by van den
Ban and Schlichtkrull [1] to construct a family of boundary values
on the naive boundary for F . To describe these ideas we require
some notation. Our basic references for the structure of bounded
homogeneous domains are [7] and [15], although we will at times
refer the reader to some of our papers where the results are presented
in similar notation to our current needs. In particular, the summary
given on p. 86-91 and p. 94-97 of [4] covers many of the essentials.

Throughout this work, we will usually denote Lie groups by upper
case Roman letters, in which case the corresponding Lie algebra will
automatically be denoted by the corresponding upper case script letter.

Since the elements of Dgeo(X) commute with the left action of
S on X = S, we may consider Dgeo(X) ⊂ (S) where the univer-
sal enveloping algebra is identified with the left invariant differential
operators, in which case we will usually set Dgeo(X) = Igeo.

Let I ⊂ Igeo be a co-finite ideal. Let

J = (S)I ⊂ (S) (5)

be the left ideal generated by I and

P = (S)/ (J + (S)NS)
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Since
(S) = (A) + (S)NS, (6)

it follows that
P = (A)/(A) ∩ (J + (S)NS) (7)

In particular, P is an abelian algebra over R which is also an (S)-
module. The following result, which is proved in Section 2, is central:

Proposition 1. P is finite dimensional.

An element λ̃ ∈ P∗
c is a root of P if there is a non-zero X ∈ P

such that
AX = λ̃(A)X

for all A ∈ P. The roots are characters on P . In particular, λ̃ is
determined by its lift λ ∈ A∗

c . The set of such functionals in A∗
c is

denoted Eo and is referred to as the set of characteristic exponents.
Since P is abelian, there is a direct sum decomposition

Pc =
∑

α∈Eo

Pα (8)

where each Pα is an ideal in Pc and for all A ∈ A

(LA− < A,α >)nα
∣

∣

Pα
= 0 (9)

where nα = dimPα and LA denotes the action of A on P . The of
α is, by definition, nα. Let Σ ⊂ A∗ be be the set of roots of A on
NS–i.e. λ ∈ Σ if and only if there is a non-zero vector X ∈ NS such
that

[A,X] =< A, λ > X

There is an ordered basis λ1, λ2, . . . , λd for A∗ consisting of roots for
which the root space of λi is a one dimensional subspace Mii of NS.
All of the other roots are one of the following types

1. βij = (λi − λj)/2 where i < j,

2. β̃ij = (λi + λj)/2 where i ≤ j,

3. λi/2.
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The root spaces are denoted, respectively, (a): Sij, (b): Mij, and
(c): Zi. We let νij = dimSij = dimMij and νi = dimZi. Note that
some of these dimensions may be 0.

The ordered basis of A that is dual to the basis formed by {λi}
is denoted {Ai}. Let

W+ = span R+Σ.

Then, W+ is an open cone in A∗ which plays the role of a positive
Weyl chamber. Let

A+ = {A ∈ A |< A, λ > > 0, λ ∈ Σ}

A− = −A+

Finally, let
E = Eo + span N0

(Σ)

where
N0 = N ∪ {0}

Now for r ∈ R, let

L1
r(S) = L1(S, erτ(x) dx)

where dx is a choice right-invariant of Haar measure on S and τ(x)
is the Riemannian distance from x to e in S = X. Since S acts on X
by isometries, it is easily seen that

τ(xy) ≤ τ(x) + τ(y) (10)

for all x, y ∈ S. It follows that L1
r(S) is invariant under right transla-

tion by elements of S. Let πr be the right-regular representation of S
in L1

r(S). Let Hω(πr) (resp. H∞(πr)) be the space of analytic vectors
(resp. C∞ vectors) for πr–i.e. the space of functions f ∈ L1

r(S) for
which g → πr(g)f extends holomorphically to a neighborhood of e in
the complexification Sc of S (resp. is C∞ on a neighborhood of e in
S). It follows from Theorem 4 of [11] that Hω(πr) is dense in L1

r(S).
The topology on Hω(πr) is of particular importance to us. Let

ρ(·, ·) be some metric on the complexification Sc of S which defines
the topology of Sc and, for s > 0, let Bs ⊂ Sc be the closed ρ-ball
of radius s centered at e. For each s > 0, let Hs

ω(πr) be the set of
v ∈ Hω(πr) such that g → πr(g)v extends continuously to Bs and
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holomorphically to the interior of this set. This space is non-zero for
all sufficiently small s. For v ∈ Hs

ω(πr) let

‖v‖s = sup
g∈Bs

‖πr(g)v‖

where we use the L1
r(S) norm on the right. Then Hs

ω(πr) is a Banach
space in this norm. Furthermore, for s < t, there is an obvious injec-
tion of Ht

ω(πr) into Hs
ω(πr) where the norm of the injection mapping

is ≤ 1. The Hω(πr) topology is defined by the equality

Hω(πr) = Dir limHs
ω(πr)

The dual topology is defined by

H−ω(πr) = Inv lim(Hs
ω(πr))

∗

(See p. 155 and p. 174 of [9] for notation.)
Now let F be I-harmonic on X = S and satisfy 2. For each

A ∈ A, let FA ∈ L1
r(S)∗ be defined by

< φ, FA >=

∫

S

φ(x)F (x exp A) dx. (11)

By restriction, we may also consider FA as an element of either
H−∞(πr) or H−ω(πr).

The following result is a strengthening of Theorem 3.5 of [1]. The
convergence of this expansion, which seems to be new even in the
symmetric case, is one of or main results. Our arguments are based
techniques of Baouendi and Goulaouic [3]. (In both [1] and [16], only
aysmptotic convergence, similar to (a) below, was proven.)

Theorem 2. Assume that F ∈ C∞(X) satisfies 2 and is I-harmonic
where I is either a co-finite ideal in Dgeo(X) or X is a Riemannian
symmetric space and I is a co-finite ideal of DG(X). Let s > 0. Then
for each α ∈ E, there exists a unique H−ω(πr)-valued polynomial Fα

on A (independent of s) and a to > 0 (which may depend on s) such
that

FA =
∑

β∈<A,E>

(

∑

α∈E,<A,α>=β

Fα(A)e<A,α>

)

(12)

for all A ∈ A−
K, |A| > to, where the convergence is in (Hs

ω(πr))
∗.

(The inner sum is finite and the outer is countable.) Furthermore
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1. For all A and α, Fα(A) ∈ H−∞(πr). Hence the Fα(A) define
distributions on S. Also, for all s ∈ R and A ∈ A− there is
a finite set Js ⊂ E such that the following set is bounded in
H−∞(πr):

{e−st(FtA −
∑

α∈Js

Fα(A)e<A,α>t) | t ∈ R
+}

2. The Fα have bounded homogeneous degree. Specifically, for α ∈
Eo, deg Fα < nα where nα is the multiplicity of α.

3. For all A,B ∈ A−

πr(exp B)Fα(A)e−<A,α> = Fα(A + B).

Remark: Since C∞
c (S) ⊂ H−∞(πr), part (a) of Theorem 2 implies

that the expansion 12 converges in the sense of distribution valued
asymptotic expansions. Hence, our result implies Theorem 3.5, part
(i), of [1].

In [1], the asymptotic expansions are over A+ as A → ∞. This
is because they use the parabolic opposite to ours–i.e., they use N S

rather than NS. The difference is really just a matter of notation. If
we think of NS as being in the opposite parabolic, then we should
call the roots −λi rather than λi, in which case our A− becomes their
A+.

Definition 3. The boundary values of F are the set of polynomials
Fα(A) for α ∈ Eo.

According to the preceding definition, the boundary values are
distributions on S ×A. It appears that we have made describing the
harmonic functions more difficult in that we have replaced functions
on S with distributions on S × A. It turns out, however, that each
boundary function is uniquely determined by a distribution on the
C∞

c sections of a finite dimensional line bundle over NS.
To describe this, let F satisfy the same conditions as Fα in con-

ditions (b) and (c) in Theorem 2. For n = nα, let Wn be the space
of polynomial functions on A of total degree ≤ n and let ρn be the
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representation of A in Wn defined by right translation. F defines an
element of H−∞(πr)⊗Wn, which is the dual space of H∞(πr)⊗W∗

n.
The covariance condition becomes

πr(a)F = ρn(a−1)F (13)

for all a ∈ A. (With obvious abuse of notation, we denote πr ⊗ I and
I ⊗ ρn by πr and ρn respectively.)

Formally, for φ ∈ C∞
c (S) ⊗W∗

n,

< φ, F > =

∫

S

< φ(x), F (x) > dx

=

∫

NS

∫

A

< φ(na), F (na) > dadn

=

∫

NS

< Tφ(n), F (n) > dn

(14)

where

Tφ(x) =

∫

A

ρ∗
n(a)φ(xa) da (15)

and ρ∗
n is the contragrediant representation to ρn in W∗

n. Then

Tφ(xa) = ρ∗
n(a−1)Tφ(a).

Hence, Tφ is a section of the homogeneous line bundle Ln over NS

defined by
Ln = (S ×W∗

n)/A

where the A-action is defined by

(x, p)a = (xa, ρ∗
n(a−1)p)

As is well known, and easily shown, T maps C∞
c (S,Wn) onto the

space Γ∞
c (Ln) of C∞, compactly supported sections of Ln. These

calculations suggest the following proposition.

Proposition 2. For any F ∈ H−∞(πr)⊗Wn which satisfies 13, there
is a unique element T̃F ∈ Γ∞

c (Ln)∗ such that for all φ ∈ C∞
c (S)⊗W∗

n,

< φ, F >=< Tφ, T̃F >
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Proof For the functional T̃F to be well defined it suffices to show
that Tφ = 0 implies < φ, F >= 0. If F is a function, this follows
from 14. The general case follows by convolving F on the left with
a C∞

c approximate identity. The continuity of T̃F is due to the
observation that kernel of T is a closed subspace of C8

c (S,Wn).
It is clear that Γ∞

c (Ln) = C∞
c (NS) ⊗ W∗

n. Hence, Γ∞
c (Ln)∗ =

D′(NS) ⊗Wn, implying that each boundary function is uniquely de-
termined by a finite family of distributions on NS.

In the Hermitian symmetric case, our boundary values are the
restrictions of those of [1] to the naive boundary. In [2] it was shown
that in the Hermitian symmetric case, the function F is uniquely de-
termined by the restrictions of its boundary values to any open subset
of the Furstenberg boundary. It is a consequence of our convergence
result mentioned above that the same holds in the general case for re-
strictions to the naive boundary. As in the symmetric, case we require
all of the boundary values. (For the Furstenberg boundary, there is
a distinguished boundary distribution that uniquely determines the
solution. This, however, is not true for restrictions to open subsets
of the boundary.) We also describe an algorithm for reconstructing
all of the Fα from the boundary distributions. From the convergence
result mentioned above, this then reconstructs F , producing a kind
of Poisson transformation.

2 Abstract Asymptotic Expansions

Here we prove the existence and convergence of general asymptotic
expansions. The existence, but not the convergence nor the bound-
edness of the degrees, was already proven in [14].

Let V be a locally convex, topological vector space space over C.
For r ∈ R, let Cr be the set of F : (−∞, 0] → R such that

{e−rtF (t) | t ∈ (−∞, 0]} (16)

is bounded in V . Let
C = ∪rCr

Let I ⊂ C be countable. An exponential series with exponents from
I is a formal sum

F̃ (t) =
∑

γ∈I

eγtFγ(t) (17)
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where Fγ is an V-valued polynomial. If I is finite the above sum
(which is now an element of C) is referred to as an exponential poly-
nomial.

Let F be the family of finite subsets of I, directed by inclusion.

Definition 4. Let F ∈ C. Given a topology T on C, we say that the
exponential series 17 equals F (t) in T if

F (t) = lim
J∈F

∑

γ∈J

eγtFγ(t)

where the limit is in the sense of nets.

The two topologies of interest are

1. The topology of point-wise convergence.

2. The locally convex TVS-topology for which the spaces Cr form a
base of neighborhoods of 0. We refer to this as the asymptotic
topology. Convergence in this topology is called asymptotic
convergence. It is a T1 topology.

Let D =
d

dt
. We consider a differential equation on C of the form

P (D)F (t) = NF (t) + G(t) (18)

where:

1. P is a polynomial of degree d.

2.

N =
k

∑

i=1

eβitNi (19)

where the Ni are continuous linear operators on V and

re βi > b > 0

for all 1 ≤ i ≤ k.

3. G is a exponential polynomial with exponents from E1 ⊂ C.
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Note that under these assumptions,

N : Cr → Cr+b (20)

We factor P (D) as

P (D) = (D − α1)(D − α2) . . . (D − αd) (21)

where some of the roots may be repeated. Let ai = re αi. We assume
that the αi are ordered so that

ai ≤ ai+1.

Let
I = {α +

∑

j

βjkj | α ∈ Eo ∪ E1, kj ∈ N0}

where
Eo = {α1, . . . , αd}.

Theorem 3. Let F ∈ C satisfy 18. Then F has an asymptotically
convergent expansion with exponents from I. Furthermore, the Fα

have degrees bounded independently of α.

Proof From Corollary 1.7 of [14], it suffices to show that for all r
there is an exponential polynomial Fr with exponents from I such
that F − Fr ∈ Cr.

Let Λo
α be the integral operator on C defined by

Λo
α(F )(t) = eαt

∫ t

0

e−αxF (x) dx

It is easily checked that Λo
α is a right inverse for D − α and

Λo
α : Cr → Cro

(22)

where ro = min{r, re α}. Let

Λ(0) =
d

∏

i=1

(Λo
αi

) (23)
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Then, Λ(0) is a right inverse for P (D) and

Λ(0) : Cr → Cr1
(24)

where r1 = min{r, a1}.
Let H0 = Λ(0)NF . Then from 18

P (D)(F − H0) = NF − NF + G = G

Hence
F − H0 = Λ(0)G + F0 ≡ H1 (25)

where P (D)F0 = 0. Thus, F0, Λ(0)G, and, H1 are exponential poly-
nomials with exponents from I.

We write equation 25 as

(I − Λ(0)N)F = H1

Let

Fn =
n

∑

k=0

(Λ(0)N)kH1 = (I − (Λ(0)N)n+1)F (26)

so that
F − Fn = (Λ(0)N)n+1F.

Fn is an exponential polynomial with exponents from I. Also, from
24 and 20, for r + nb ≥ a1,

F̃ = F − Fn ∈ Ca1
.

Note that
P (D)F̃ = P (D)F − P (D)Fn

= NF̃ + G̃
(27)

where
G̃ = NFn − P (D)Fn + G

is an exponential polynomial. Equation 27 has precisely the same
form as 18. Hence, we are reduced to the case where F ∈ Ca1

.
For r > re α, the operator Λα defined by

Λα(F )(t) = eαt

∫ t

−∞

e−αxF (x) dx (28)
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maps Cr into itself and is the (two sided) inverse of D−α on Cr. Also,
from 20, for r > re α − b

ΛαN : Cr → Cr+b. (29)

We repeat the argument leading up to 27 with Λ(0) replaced by
Λ(1) where

Λ(i) =
i

∏

1

(Λαi
)

d
∏

i+1

(Λo
αi

) (30)

Note that from 24 and 29, for r > aj,

Λ(j) : Cr → Crj
(31)

where rj = min{r, aj+1}. In particular, Λ(1)NF is defined since F ∈
Ca1

. Precisely as before we are able to replace 18 with a similar
differential equation where F ∈ Ca2

.
We continue, using each of the operators Λ(i) in succession, even-

tually reducing to the case where F ∈ Cal
. In this case, the asymptotic

series is produced by 26 with Λ(0) replaced by Λ(d). The boundedness
of the degrees follows from the observation that Λα preserves degrees
of exponential polynomials.

For future reference, we note the following lemma:

Lemma 1. If F satisfies 18 where F and G both belong to Cr then
F (n) ∈ Cro

for all n where ro = min{r, re α1}.

Proof
Suppose that F ∈ Cr is such that P (D)F = H ∈ Cr. Then

F = Λ(0)H + K

where P (D)K = 0. In particular, K is an exponential polynomial
with exponents from the αi. Hence

(D − α1)(D − α2) . . . (D − αk)F =
d

∏

i=k+1

(Λo
αi

)H + Kk

where Kk is an exponential polynomial with exponents from the αi. It
follows easily by induction on k that F (k) ∈ Cro

for 0 ≤ k ≤ deg P (D).
Our result now follows by repeated differentiation of 18.
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Remark: We can actually generalize Theorem 3 to apply to equa-
tions 18 where

N =
k

∑

i=1

eβitPi(D)Ni

where the Pi are polynomials. In fact, suppose that F satisfies such
an equation where F ∈ Cr. Let F̃ : (−∞, 0] → Cr be defined by

F̃ (t)(s) = F (t + s)

Then F̃ satisfies

P (Dt)F̃ (t) =
k

∑

i=1

eβiteβisPi(Ds)NiF̃ (t) + G̃(s)

where G̃ is a Cr valued exponential polynomial. Hence, the more
general result follows from Theorem 3. We leave the details to the
reader as we don’t require the more general result.

Next we define a “Poisson transformation” for 18 with G = 0. For
the remainder of this section, we assume that there is an increasing
family of Banach spaces (V(s), ‖·‖s) for s ∈ R

+, with continuous and
dense, injections, such that

V = Inv limV(s).

For example, if V(s) = Hs
−ω(πr), then V = H−ω(πr). (See the dis-

cussion below 10 for the notation.) The theory also works, with only
slight modifications, for inverse limits. We do not, however, require
this case.

We say that an operator N : V → V has degree ≤ d if for all
0 < a ≤ u < v ≤ b, N : V(u) → V(v), and there is a constant
CN(a, b) such that

‖Nw‖v ≤
CN(a, b)

|v − u|d
‖w‖u (32)

for all w ∈ V(u).
Assume that F satisfies 18 with G = 0. We assume also that

degreeNi ≤ d
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for all i where d is the degree of P (D). By definition, the Poisson
transformation maps the Fα, α ∈ Eo, into F . We showed in [14] that
asymptotic expansions may be differentiated term-by-term. Substi-
tution of 17 into 18 and equating terms with the same exponent shows
that

P (D)(eγtFγ(t)) = eγt

k
∑

i=1

NiFγ−βi
(t). (33)

Let α ∈ E have re α minimal with respect to Fα 6= 0. Equation 33
shows that

P (D)(eαtFα(t)) = 0.

Hence, α is a root of P . Let the distinct roots of P be α̃1 . . . , α̃l so
α = α̃j for some j.

Then deg Fα ≤ nj where nj is the multiplicity of α̃j as a root of
P . Let the α̃i be ordered so that re α̃i ≤ re α̃j for i ≤ j. For each
multi-index n of length k, let

γ(n) = α̃j + n1β1 + · · · + nkβk.

Given a V(s)-valued polynomial H, we inductively define for each
n ∈ Z

k a polynomial Hn (which also depends on j through γ(n)) by
the stipulations

1. H0(t) = H(t).

2. Hn = 0 if any of the components of n are negative.

3.

P (D)(eγ(n)tHn)(t) = eγ(n)t

k
∑

i=1

NiHn−ei
(t) (34)

where ei is the ith standard basis element in R
k.

4. If for some n 6= 0, γ(n) = α̃k ∈ Eo, then

Dm(eγ(n)tHn)(0) = 0 0 ≤ m < nk

where nk is the multiplicity of α̃k as a root of P .

We remind the reader that N0 = N ∪ {0}.
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Proposition 3. Conditions (1)-(4) uniquely determine polynomials
Hn which are valued in V(u) for all u > s. Furthermore, for all
u > s, there is a to ≤ 0 such that

πj(H)(t) =
∑

n∈Nk
0

eγ(n)tHn(t) (35)

converges in the V(u) topology for t ≤ to. If P (D)(eγ(n)tH)(t) = 0,
then πj(H) is a V(u)-valued solution to 18 for t < to.

Proof
Let

Pα(D) = P (D + α) = e−αtP (D)eαt

Equation 34 can be written

P γ(n)(D)Hn = Qn

where Qn is may be assumed (by induction) to be a known polyno-
mial, valued in V(u) for all u > s.

If γ(n) /∈ Eo, then P γ(n)(D) has trivial kernel in the space of
polynomials. Hence, in this case, P (D)γ(n) maps the space of polyno-
mials of a given degree invectively onto itself. Thus equation 34 has
a unique solution Hn in the space of polynomials. It is clear that Hn

is valued in V(u) for all u > s.
If γ(n) = α̃i ∈ Eo, then

P γ(n)(D) = DniDo

where Do is bijective on the space of polynomials of a given degree.
It follows that 34, together with condition (4), uniquely determines
H(n).

To prove convergence, for r ∈ R, let C(u)r be the set of
F ∈ C∞((−∞, 0],V) for which the set 16 is a bounded subset of
V(u). For such F , we define

‖F‖u,r = sup
t∈(−∞,0]

e−rt‖F (t)‖u

Let no ∈ N
k
0 be such that re γ(n) > re α̃l for all |n| ≥ no where

n ∈ N
k
0 and |n| =

∑

nj. (Note that due to the ordering of the roots,
this implies that re γ(n) > re α̃i for all i.) Let

Kn(t) = eγ(n+no)tHno+k(t).
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Then K0 ∈ Cr where r = re γ(no) and equation 34 implies that

Kn(t) =
k

∑

i=1

Λ(d)Nie
βitKn−ei

(t). (36)

For q ∈ N0, let
ρ(q, u, s) = sup

|n|=q

‖Kn‖u,s.

Lemma 2. For all n ∈ N0 and all 0 < uo ≤ u < v ≤ vo,

ρ(n, u, r + nb) ≤ K

(

edC(uo, vo)

bd|u − v|d

)n

ρ(0, v, r)

where
C(uo, vo) =

∑

i

CNi
(uo, vo).

and K is independent of u, v, and n.

Proof
For simplicity of notation, we let C(uo, vo) = C. It is easily seen

that for re α = a and r > a,

‖ΛαF‖u,r ≤ (r − a)−1‖F‖u,r.

Let m = re α̃l. Then for r > m,

‖Λ(d)F‖u,r ≤ (r − m)−d‖F‖u,r.

Let 0 < uo ≤ u < v ≤ vo be given. It follows from the preceding
equality that

‖(Λ(d)Nie
βit)F‖u,r+b ≤

CNi
(uo, vo)

(r − m + b)d|u − v|d
‖F‖v,r (37)

We apply this inequality to 36 with v replaced by u + ǫ where
ǫ = (v − u)/n, and r replaced by r + (n − 1)b, finding

ρ(n, u, r+nb) ≤
Cnd

bd(n + (r − m)/b)d|u − v|d
ρ(n−1, u+ǫ, r+(n−1)b)
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We repeat n− 1 more times, with (u, v) replaced by (u + kǫ, u + (k +
1)ǫ), k = 1, 2, . . . , n − 1, finding

ρ(n, u, r + nb) ≤

(

C

bd|u − v|d

)n
nndΓ((r − m)/b)d

Γ(n + (r − m)/b + 1)d
ρ(0, v, r)

Our lemma follows from Stirling’s formula.

The convergence of the series 35 follows since for all t ≤ 0,

‖eγ(n)tHn(t)‖u ≤ e(r+|n|b)tρ(|n|, u, r + |n|b)

That πj(H) is a solution to 18 follows since a series such as 17
satisfies 18 if and only if 33 holds.

Remark: The G = 0 assumption is made only for convenience.
In fact, suppose that F satisfies 18 with G a non-zero exponential
polynomial. Then there is a polynomial Q such that

Q(D)P (D)F = Q(D)NF.

The reasoning from the remark following the proof of Theorem 3
allows us to reduce to the case of Theorem 3. Again, we leave the
details to the reader as we don’t require this generality.

The following theorem, together with the uniqueness of the asymp-
totic expansions, implies the convergence of the asymptotic expan-
sions in the topology of V(s) for all s > 0. In the case of direct limits
this implies convergence in V since the injection of V(s) into V is
continuous.

Theorem 4. Let F ∈ Cr satisfy 18 with G = 0. Then for 1 ≤ i ≤ l
there exist unique V-valued polynomials Hj satisfying P (D)(eα̃itHj)(t) =
0 such that for for all s > 0 there is a to (depending on s) such that
in the V(s) topology

F (t) =
l

∑

j=1

πj(Hj)(t)

for all t ≥ to. Furthermore, deg Hj < nj, where nj is the multiplicity
of α̃j as a root of P .
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Proof
Let re α be minimal with respect to Fα 6= 0. Then, as noted

previously, α = α̃j is a root of P and P (D)(eαtFα)(t) = 0. Let
H1 = Fα. Since H1 ∈ V, H1 ∈ V(s) for all s > 0. Fix s > 0 and set

F1(t) = F (t) − πj(H1)(t)

Then, for sufficiently large t, F1 is a V(s)-valued solution to 18 such
that (F1)α̃j

= 0. We repeat this argument l times, producing Hj such
that

Fl = F −
l

∑

j=1

πj(Hj)

is a V(s)-valued solution to 18 with all of its boundary functions zero.
The following lemma shows that then Fl = 0, proving our theorem.

Lemma 3. Suppose that F ∈ Cro
satisfies 18 with G = 0. If Fα = 0

for all α ∈ Eo, then there is a to such that F (t) = 0 for all t ≤ to.

Proof It follows by induction from 33 that Fα = 0 for all α. Then
Theorem 3 implies that F ∈ Cr for all r ∈ R. Since Λ(d) is a left
inverse for P (D) on Cr for sufficiently large r, we have

F = Λ(d)NF.

Thus
F = (Λ(d)N)nF

for all n ∈ N. Reasoning as in the proof of Lemma 2 using 37, we see
that for all 0 < uo ≤ u < v ≤ vo,

‖F‖u,r+nb = ‖(Λ(d)N)nF‖u,r+nb ≤ K

(

edC(uo, vo)

bd|u − v|d

)n

‖F (t)‖v,r

Our lemma follows by letting n tend to infinity in

‖F (t)‖u ≤ e(r+nb)t‖F‖u,r+nb

The following result follows from Theorem 3 and the uniqueness
of the asymptotic expansions.
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Theorem 5. Assume that F ∈ Cr satisfies 18 where the Ni in 19
have deg Ni ≤ deg P . Then for all s > 0 there is a to ≤ 0 such
that the expansion from Definition 4 converges pointwise in the V(s)
topology for all t ≤ to.

Next we consider multi-variable expansions. By a V-valued expo-
nential series on R

n with exponents from E ∈ C
n we mean a formal

sum of the form
F̃ (t) =

∑

γ∈E

et·γFγ(t) (38)

where the Fγ are V-valued polynomials on R
n. If E is finite, then

F̃ (t) is an exponential polynomial.
Let β ∈ R

n. We say that F ∈ Cβ if

{e−β·tF (t) | t ∈ (−∞, 0]n} (39)

is bounded in V . We say that F ∈ C∞
β if for all multi-indecies j of

length n,
DjF = Dj1

1 Dj1
2 . . . Djn

n F ∈ Cβ. (40)

For β and γ in R
n, we say

β ≻ γ

if, for all i, βi > γi. If B ⊂ R
n is finite, we define inf B, to be the

vector c where ci = min{bi | (b1, . . . , bn) ∈ B}.
Suppose that F ∈ Cβ. We say that a series as in 38 is an asymp-

totic expansion for F if for all γ ∈ R
n, there is a finite subset E(γ) ⊂ E

such that
F − F γ ∈ Cγ

where F γ is the sum in 38 with E replaced by E(γ).

Proposition 4. Suppose that F ∈ Cβ has an asymptotic expansion
as in 38. Then both the subset E and the polynomials Fγ are uniquely
determined.

Proof
Our Proposition clearly follows from the following lemma.

Lemma 4. Suppose that F̃ is an exponential polynomial as in 38
where F̃ ∈ Cγ. Then Fα = 0 for all γ ≻ re α.
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Proof Let U be the set of X ∈ (−∞, 0)n such that X · α 6= X · β for
all α, β ∈ E . Since E is finite, U is an open, not necessarily convex,
cone. For X ∈ U ,

G(t) = F̃ (−tX)

is an exponential polynomial on (−∞, 0] with exponents from −X · E
which belongs to C−X·γ. Since X ∈ U ,

G−X·α(t) = Fα(−tX)

for all α ∈ E . For γ ≻ re α and X ∈ (−∞, 0)n, −X ·γ > −X · re α.
Hence, G−X·α(t) ≡ 0. Our lemma follows since a polynomial which
is zero on an open subset is zero.

Let the general variable t ∈ R
n be t = (t1, . . . , tn) and let Dj =

d

dtj
. We assume that F : (−∞, 0]n → V satisfies a system of differ-

ential equations of the form

Pj(Dj)F (t) = NjF (t) + Gj(t) (41)

for 1 ≤ j ≤ n where:

1. The Pj are polynomials of degree dj > 0.

2. For 1 ≤ j ≤ n,

Nj =
k

∑

i=1

et·βi,jNij (42)

where the Nij are continuous linear operators on V and βi,j =
(β1

i,j, . . . , β
n
i,j) ∈ C

n satisfies

re βk
i,j > b > 0

where b is independent of i, j, k.

3. The Gj are exponential polynomials in t with exponents from
E1 ∈ C

n.

We factor Pj as in 21 where the αi corresponding to Pj are denoted
αj

i . We assume that for each j, the αj
i are ordered so that re αj

i ≤
re αj

i+1 for all i. Let

ai
j =

re αj
i 1 ≤ i ≤ dj

∞ i > dj

(43)
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We also let
ai = (ai

1, a
i
2, . . . , a

i
n).

Let E j
o be the set of roots of Pj and let

Eo = E1
o × . . . En

o ⊂ C
n

I = {α +
∑

j

βijkij | α ∈ Eo ∪ E1, kij ∈ N0}.

Let Λo,j
α and Λj

α be, respectively, the analogues of the operators
Λo

α and Λα from 22 and 28 defined by integration in the jth variable.
The analogs of the Λ(i) are the operators defined by

Λ
(i)
j =

i
∏

k=1

(Λj

αj
k

)

dj
∏

k=i+1

(Λj,o

αj
k

). (44)

where 1 ≤ i ≤ dj. For i > dj, we set Λ
(i)
j = Λ

(dj)
j .

Λj,o

αj
k

is defined on C∞
β for all β while Λj

αj
k

is defined on C∞
β for

βj > re αj
k. Hence Λ

(i)
j is defined on C∞

β as long as

βj > re αj
k 1 ≤ k ≤ i. (45)

We also let
∆i

j = I − Λ
(i)
j P (Dj) (46)

and

N i = Λ
(i)
1 N1 − Λ

(i)
2 ∆i

1N2 − · · · − Λ(i)
n ∆i

1∆
i
2 . . . ∆i

n−1Nn.

Note that for i ≥ dj, ∆i
j = 0.

Since on its domain, Λj
α is a two-sided inverse for (Dj − αI), for

i < dj,

∆i
j = I − Λ̃

(i)
j P̃ i

j (Dj)

where

Λ̃
(i)
j =

dj
∏

k=i+1

(Λj,o

αj
k

)

and

P̃ i
j (x) =

dj
∏

k=i+1

(x − αj
k)
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Thus P̃ i
j (Dj)∆

i
j = 0. Hence, if H ∈ C∞

β where β satisfies 45, there
are constants ckl (independent of H) such that

∆i
jH(t) =

dj
∑

k=i+1

dj−i−1
∑

m=0

ckmDm
j H(tj)eαj

k
tj . (47)

where tj = (t1, . . . , tj−1, 0, tj+1, . . . , tn). It also follows that ∆i
j is

defined on C∞
β for all β and for i < dj, ∆i

j : C∞
β → C∞

γ where

γ = (β1, . . . , βj−1, a
i+1
j , βj−1, . . . , βn) (48)

For the next lemma, let 1 = (1, 1, . . . , 1) ∈ R
n. We remind the

reader that for i > dj, ai
j = ∞. (See 43.)

Lemma 5. Let β ∈ R
n and i ∈ N be such that βj > re αj

k for
1 ≤ k ≤ i. Then N i : C∞

β → C∞
γ where γ = inf{β + b1, ai+1}.

Proof This all follows easily from the observation that Ni : C∞
β →

C∞
β+b1 along with 45, 31, and the comments following 47.

Theorem 6. Let F ∈ C∞
β satisfy 41. Then F has an asymptotic

expansion with exponents from I.

Lemma 6. Let Ej = Pj(Dj) and let β satisfy the hypothesis of
Lemma 5 with respect to i. Then on C∞

β ,

EjN
i = Ni + Λ

(i)
1 (EjN1 − E1Nj) + ∆i

1Λ
(i)
2 (EjN2 − E2Nj) + . . .

+ ∆i
1 . . . ∆i

j−1Λ
(i)
j (EjNj−1 − Ej−1Nj)

Proof For j = 1, our lemma claims that E1N
i = N1 which is clear

from E1∆
i
1 = 0 and E1Λ

(i)
1 = I. Thus we assume by induction that

our result is known for all k < j.
Using Ej∆

i
j = 0 and EjΛ

(i)
j = I, we find

EjN
i = Λ

(i)
1 EjN1 + Λ

(i)
2 ∆i

1EjN2 + · · · + Λ
(i)
j−1∆

i
1∆

i
2 . . . ∆i

j−2EjNj−1

+ ∆i
1∆

i
2 . . . ∆i

j−1Nj
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If we replace ∆i
j−1 with I − Λ

(i)
j−1Ej−1 and combine the last two

terms, we obtain

EjN
i = Λ

(i)
1 EjN1 + Λ

(i)
2 ∆i

1EjN2 + · · · + Λ
(i)
j−2∆

i
1∆

i
2 . . . ∆i

j−3EjNj−2+

∆i
1∆

i
2 . . . ∆i

j−2Nj + ∆i
1∆

i
2 . . . ∆i

j−2Λ
(i)
j−1(EjNj−1 − Ej−1Nj)

The last term on the right is as required for the lemma. The sum of
the other terms equals

Ej(Λ
(i)
1 N1 + Λ

(i)
2 ∆i

1N2 + · · · + Λ
(i)
j−2∆

i
1∆

i
2 . . . ∆i

j−3Nj−2+

Λ
(i)
j ∆i

1∆
i
2 . . . ∆i

j−2Nj)

This has the same form as that described in our lemma except that
the terms corresponding to the j − 1st variable are omitted. We
use the inductive hypothesis to simplify this expression, proving the
lemma.

Corollary 1. Let F ∈ C∞
β satisfy 41 where β satisfies the hypothesis

of Lemma 5 with respect to i. Then G = (I −N i)F is an exponential
polynomial.

Proof Since NjF = EjF − Gj, it follows that (EjNi − EiNj)F is
an exponential polynomial. Hence, form Lemma 6, for each j, Hj =
Pj(Dj)N

iF is an exponential polynomial. Let

G̃ = G − Λ
(0)
1 H1 − Λ

(0)
2 ∆0

1H2 − . . .

− Λ(0)
n ∆0

1∆
0
2 . . . ∆0

n−1Hn.

it follows easily from the following lemma that G̃ is an exponential
polynomial, proving our corollary.

Lemma 7. For all 1 ≤ i ≤ n, P (Di)G̃ = 0.

Proof Using the observations

P (Di)Λi = I

ΛiP (Di) = I − ∆i

P (Di)Hj = P (Dj)Hi

P (Di)∆i = 0
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we see

P (Di)G0 = Hi − (I − ∆0
1)Hi − (I − ∆0

2)∆
0
1Hi − . . .

− (I − ∆0
i−1)∆

0
1 . . . ∆0

i−2Hi − ∆0
1∆

0
2 . . . ∆0

i−1Hi = 0

proving the lemma.
We set

Fn =
n

∑

k=0

(N0)kG (49)

so that
F − Fn = (N0)n+1F.

Note that Fn is an exponential polynomial. It follows from Lemma 5
that for sufficiently large n, F − Fn ∈ C∞

a1 . Then F − Fn satisfies a
similar system of differential equations as F , allowing us to assume
that F ∈ C∞

a1 . In this case Gi = F − NiF ∈ C∞
a1 .

Now we repeat the preceding argument using N1 instead of N0.
This is allowed since now F , P (Di)F , NiF and Gi all belong to the

domain of Λ
(1)
i . We conclude that there is an exponential polynomial

Fn such that F − Fn ∈ C∞
a2 . We replace F by F − Fn, and continue

the argument.
Once we reach the point where F ∈ C∞

an , then the proof is finished
just as in the one variable case.

3 Invariant Operators

We begin with a few observations concerning the structure of homo-
geneous domains. We assume the notation from the introduction is
still in force. Let Q ⊂ Sc be the set of complex tangent vectors at e
of type (1, 0) i.e. Q is the Lie algebra of left invariant vector fields
which annihilate holomorphic functions. Let J : S → S be the op-
erator whose ±i eigenspaces are Q and Q respectively. Thus, J is
the complex structure on S corresponding with the identification of
S with D.
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It is known that
J : Sij → Mij

J : Zi → Zi

J : A →
∑

i

Mii

where the notation is explained below Proposition 1. Let S, M, and
Z be, respectively, the spans of the Sij, Mij, and Zij.

Since the Hermitian structure on X is invariant, it is determined
by a Hermitian product H on S. Let g = re H. Then g defines a
real scalar product on S which defines the Riemannian structure on
X. The Kähler form on X is then defined by

φ(X,Y ) = g(X, JY ).

The Kähler assumption is equivalent with the statements that φ is
J-invariant, skew-symmetric, and closed–i.e.

φ([X,Y ], Z) = φ([X,Z], Y ) + φ(X, [Y, Z]).

For X ∈ S, we define

|X| =
√

g(X,X)

Many of the results in [4] were based on the assumption that there
is a linear functional ν such that for all X and Y in S,

φ(X,Y ) =< [X,Y ], ν > (50)

The following lemma is certainly known, although we lack a reference.

Lemma 8. The functional ν described above exists.

Proof For each i we let Ei = −JAi ∈ Mii. Then

[Ai, Ei] = Ei. (51)

Let

E =
d

∑

1

Ei



3 INVARIANT OPERATORS 29

Then

JE =
d

∑

1

Ai.

It follows that
ad JE

∣

∣

S
= 0

ad JE
∣

∣

M
= I,

ad JE
∣

∣

Z
= I/2.

(52)

We define ν to be zero on Z and S and,

< M, ν >= g(M,E)

for M ∈ M. We claim that formula 50 holds. To see this, consider
first the case where X ∈ S and Y ∈ M. Then [X,Y ] ∈ M so

< [X,Y ], ν > = g([X,Y ], E)

= −φ([X,Y ], JE)

= −φ([X, JE], Y ) − φ(X, [Y, JE]) = φ(X,Y )

as desired.
The equality for X and Y in Z is similar.
For X and Y in M, we must show that φ(X,Y ) = 0. However,

φ(X,Y ) = φ([JE,X], Y )

= φ([JE, Y ], X) + φ(JE, [X,Y ])

= φ(Y,X)

which must be zero due to the skew-symmetry of φ.
It follows from the J-invariance of φ that φ is also zero on S × S

which is consistent with our definition of ν.

Let πQ be the projection to Q along Q. For each Z ∈ Q, we define
an operator M(Z) : Q → Q by

M(Z)(X) = πQ([Z,X]).

Then
▽ZX = M(Z)(X).
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(See the discussion following formula (1.7) in [4].)
Since the connection is real, it follows that

▽XZ = M(X)(Z),

where
M(X)Z = M(X)Z.

From Theorem (1.9) of [4], on Q, for Z and W in Q,

R(Z,W ) = −M∗(Z)M(W ) + M(W )M∗(Z)

− M∗(M(W )Z) − M(M(Z)W )
(53)

where M∗(Z) is the adjoint of M(Z) on Q with respect to the Her-
mitian form.

For X ∈ S, let XQ = X − iJX ∈ Q and XQ = XQ ∈ Q. Then
Q = SQ. Let A = a1Aj + · · · + adAd.

Lemma 9. For A ∈ A,

M(AQ)XQ =
1

2
(aj + ak)X

Q X ∈ Sjk + Mjk

M(AQ)XQ =
1

2
ajX

Q X ∈ Zj

Proof Let JA = M ∈
∑

i Mii. Let X ∈ Sjk and let Y = JX ∈ Mjk.
Then, since the span of the Mjk is abelian, we have (mod Q)

= [A + iM,X + iY ] − 2i[A + iM, Y ]

≡ −2i[A, Y ] = −i(aj + ak)Y

≡
1

2
(aj + ak)(X − iY )

proving the first equality for X ∈ Sij. The equality for X ∈ Mij

follows from the complex linearity of M(Z). The second equality is
a similar argument.

Proposition 5. For A ∈ A

R(AQ, AQ)XQ = −(a2
i + a2

j)X
Q X ∈ Sij + Mij

R(AQ, AQ)XQ = −a2
i X

Q X ∈ Zi
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Proof From Lemma 9, M∗(AQ) = M(AQ). Hence, our proposition
follows from formula 53 and Lemma 9.

For X ∈ (S), we let δ(X) ∈ (A) be the (A) component in the
decomposition 6. Then

δ(X) =
∑

|k|≤l

CkA
k1

1 Ak2

2 . . . Akd

d

where k = (k1, k2, . . . , kd) is a multi-index of length d and |k| =
k1 + · · · + kd. The minimum value of l for which such an inequality
holds is referred to as the A-degree of X and is denoted degA(X).

Let

Ei =
Ai

|Ai|

We identify A with R
d via the orthogonal mapping

(x1, . . . , xd) → x1E1 + · · · + xdEd.

For l ≥ degA(X) we define the symbol σl(X) to be the polynomial
on A

σl(X)(A) =
∑

|k|=l

Ckx
k1

1 xk2

2 . . . xkd

d .

(If l > degA(X), σl(X) = 0, while σl(X) is undefined if l < degA(X).)
Let ω ∈ Tgeo(X) have degree 2k. We identify Dω from formula 4

with an element of (S). Our first goal is to compute σ(Dω).

Proposition 6. Let ω ∈ Tgeo(X) have degree 2k. Then

σ2k(D
ω)(A) = 2−kω(AQ, AQ, . . . , AQ, AQ)

Proof The spaces Sij, Mij, and Zj are all mutually orthogonal.
(See [4].) Furthermore,

H(EQ
i , EQ

i ) = g(Ei, Ei) + g(JEi, JEi)

= 2g(Ei, Ei) = 2

We may choose an orthonormal basis Zi for P such that

1. Zi = 2−1/2EQ
i for 1 ≤ i ≤ d.
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2. Zi ∈ (NS)c for i > d.

Let W1,W2, . . . ,W2k ∈ P. The differential operator

f → ▽
2kf(W 1,W2, . . . ,W 2k−1,W2k)

is degree 2k with leading term

L = W 1 W2 . . . W 2k−1 W2k.

If Wi ∈ (NS)c for any i, then L ∈ (Sc)(NS)c and σ2k(L) = 0.

Hence, only those terms in 4 where all of the Zij equal EQ
ij

can con-
tribute to σ2k(D

ω).

Thus, assume that the operator L above is such that Wj = 2−1/2EQ
ij

for all j. Since JEi ∈ NS, the leading part of δ(L) is 2−kEi1Ei2 . . . Ei2k
.

Finally, from formula 4

σ2k(D
ω)(A) = 2−k

∑

i,j

ω(EQ
i1

, EQ
j1

, . . . , EQ
ik

, . . . , EQ
jk

)xi1xj1 . . . xikxjk

which is equivalent with the stated formula.
For the sake of the next proposition, we remind the reader that

νij = dimMij = dimSij and νi = dimZi.

Proposition 7. Let Dk = Dωk

where ωk is as in 3 and let A =
a1A1 + · · · + adAd. Then

σ2k(D
k)(A) = 2−k(

∑

1≤i≤j≤d

νij(a
2
i + a2

j)
k +

∑

1≤i≤d

νia
2k
i ).

Proof This follows immediately from Propositions 5 and 6.

Next we consider a general co-finite ideal I.
If I is an ideal in Igeo, then we will (without comment) set

J = (S)I

K = J + (S)NS

Note that K is an algebra since (S)NS is an ideal in (S). In the case
of Igeo, we will denote K by Kgeo and J by Jgeo.
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Now let Pol(A) be the space of polynomial functions on A. For
any subset V ⊂ (S), let

Ṽ = span C{σk(X) | X ∈ V, σk(X) defined}.

Then K̃ is an ideal in Pol(A) since, if X and Y are elements of (S)
of A-degrees k and l respectively, then

σk+l(XY ) = σk(X)σl(Y ).

Since σ factors through δ, it is clear that Ĩ is co-finite in Ĩgeo.

Proposition 8. J̃ is co-finite in Pol(A).

Proof We consider first the case where I = Igeo so that Ĩ contains
all of the elements σ2k(D

k) from Proposition 7. Let

m =
∑

i≤j

νij = dimM

f =
d

∑

1

νi = dimZ

Let Aij = a2
i + a2

j . We embed A into R
f+m using the mapping φ

where

φ(A) = (a2
1, . . . , a

2
1, a

2
2, . . . , a

2
2, . . . , a

2
d . . . , a2

d,

A11, . . . , A11, A12, . . . , A12, . . . , Add, . . . , Add)
(54)

where we only use the Aij for i ≤ j, a2
i is repeated νi times, and and

Aij is repeated νij times. Then for t = φ(A)

σ2k(D
k)(A) = tk1 + tk2 + · · · + tkf+m

Let Qk(t) be the polynomial on the right side of the above equality.
The Qk, 0 ≤ k ≤ f + m, generate the algebra of all symmetric
polynomials on R

f+m. (See [5], pp. 2-4.) Hence Ĩgeo contains all
polynomials p ◦ φ where p is an arbitrary, non-constant, symmetric
polynomial.

The elementary symmetric polynomials Sj(t) in f + m variables
are defined by the equality

f+m
∏

i=1

(x + ti) =

f+m
∑

k=0

Sf+m−k(t)x
k (55)



3 INVARIANT OPERATORS 34

Letting x = −ti in 55 shows that

(−1)f+mtf+m
i = −

f+m−1
∑

k=0

(−1)kSf+m−k(t)t
k
i (56)

Composing with φ and choosing i so that ti = Ajj = 2a2
jj shows that

a
2(f+m)
j ∈ J̃geo. Hence, the monomials an1

1 an2

2 . . . ad
nd , ni < 2(f + m),

span Pol(A)/J̃geo, proving our proposition in this case.
To prove the general case, suppose that I is a co-finite ideal of

Igeo. From 56, for all l ≥ 2(f + m), there are polynomials P l
ij such

that

al
j =

f+m−1
∑

k=0

P l
ij(S1 ◦ φ, . . . , Sm+f ◦ φ)a2k

j (57)

Since Ĩgeo/Ĩ is finite dimensional, the P l
ij(S1 ◦ φ, . . . , Sm+f ◦ φ)

span a finite dimensional subspace of Ĩgeo/Ĩ. Hence, {al
j | 1 ≤ j ≤

d, l ≥ 0} spans a finite dimensional subset mod J̃ . In particular, for
each j there is an l such that

al
j ≡

l−1
∑

1

Cka
k
j mod J̃

for some scalars Ck. Our proposition follows as before.

Corollary 2. For any homogeneous, symmetric polynomial p in f+m
variables, there is a polynomial P and a k ∈ N such that

p ◦ φ = σk(P (D1, . . . , Df+m)).

Proof Let p be homogeneous of degree q. Choose P so that

p = P (Q1, . . . , Qf+m).

Since the Qi are homogeneous of degree i,

P (t) =
∑

Cit
i

where i = (i1, . . . , if+m) ranges over a set of multi-indices such that

i1 + 2i2 + · · · + (f + m)if+m = q.
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Then,

σ2q(P (D1, . . . , Df+m)) = σ2q

(

∑

Ci(D
1)i1 . . . (Df+m)if+m

)

= P (σ2(D
1), . . . , σ2(f+m)(D

f+m))

= P (Q1 ◦ φ, . . . , Qf+m ◦ φ)

= p ◦ φ

as desired.

We grade (S) by degree. For any V ⊂ (S) we let Vl be the set
of X ∈ V with deg(X) ≤ l. We say that an element X ∈ (S) is
non-expansive if deg(X) = deg(δ(X)). Note that the product of two
non-expansive elements is non-expansive. We say that a subspace
V ⊂ (S) is non-expansive if it is spanned by a (possibly infinite) set
of non-expansive elements. It is clear from Proposition 7 that the Dk

are non-expansive, implying that Igeo is non-expansive.
We say that a not necessarily co-finite ideal I ⊂ Igeo is N -co-finite

if it satisfies the conclusion of Proposition 8. It turns out that the
general theory we will develop requires only that I be N -co-finite and
non-expansive. The ability to work in this generality is important due
to the following lemma, which allows us to replace a co-finite ideal
by a non-expansive, N -co-finite one.

Lemma 10. Let I ⊂ Igeo be a co-finite ideal. Then there is a N -co-
finite, non-expansive, ideal I1 ⊂ I.

Proof From Lemma 2, there are non-expansive elements Ek ∈ Igeo

such that
σ2k(Ek) = Sk ◦ φ

for 1 ≤ k ≤ f +m. From the co-finite condition, for each k there is a
non-zero monic polynomial Pk ∈ R[x] such that Pk(Ek) ∈ I. Let I1

be the ideal in Igeo generated (as an ideal) by the elements Pk(Ek),
1 ≤ k ≤ f + m. I1 is non-expansive since it is spanned by products
of the Pk(Ek) and Dj, both of which are non-expansive.

To see that I1 is N -co-finite, let dk = deg Pk. Note that

(Sk ◦ φ)dk = σ2kdk
(Pk(Ek)) ∈ Ĩ1.
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Hence, any polynomial in the Sk ◦ φ is equivalent to one of degree
less than

∑

dj in the Sk ◦ φ, mod Ĩ1. Our lemma follows from the
reasoning following 57.

Let
Pl = (A)l/(A)l ∩ (Jl + (S)l−1NS)

Proposition 9. Let ={X1, . . . , Xk} ⊂ (S) be a set of non-expansive
elements such that there are li such that {σli(Xi)} projects to a basis
for Pol(A)/J̃ where I is N -co-finite and non-expansive. (It is clear
that such Xi exist.) Then Bl projects to a basis of Pl for all l. Hence
B projects to a basis of P. Furthermore

(A)l ∩ (J + (S)NS) = Jl + (S)l−1NS

Proof Let X ∈ (S)l. Let lo = deg(δ(X)) ≤ l. Then there are
scalars ci, elements Bj ∈ (S), and non-expansive elements Ij ∈ I,
with deg(δ(BjIj)) = lo, such that

σlo(X) −
∑

i

ciσlo(Xi) =
∑

j

σlo(BjIj).

We may in fact choose Bj ∈ (A) since δ is zero on (S)NS.
Let Jj = BjIj, a non-expansive element. From the non-expansive

property, Xi and Jj belong to (S)l.
Let

X1 = X −
∑

i

ciXi −
∑

j

Jj.

Then X1 ∈ (S)l and δ(X1) has lower degree than δ(X).
We may repeat this argument with X1 in place of X. It follows by

induction that there are elements Jj in Jl and constants ci as above
such that δ(X1) = 0. Then X1 ∈ ((S)NS)l, proving the first part of
our proposition.

To prove the last statement, let A ∈ (J + (S)NS)l. From the
preceding argument

A =
∑

ciXi + J + Y
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where the ci are scalars, J ∈ Jl, and Y ∈ (S)NS. A ∈ J + (S)NS

implies that the ci are all 0. Hence Y = A−J belongs to ((S)NS)l =
(S)l−1NS, proving out result.

Remark: If X is a Riemannian symmetric space and I is DG(X),
then the finite dimensionality of P is known. (See the discussion in
Section 5 of [1].) The existence of a non-expansive spanning set for I
follows from the observation that the Harish Chandra homomorphism
preserves degree. The analogue of Lemma 10 follows from a similar
argument. These comments are used to prove Theorem 2 in the
Riemannian symmetric case.

4 Explicit Expansions

In this section we prove the existence and convergence of the asymp-
totic expansions. We refer the reader to §1 for our the notation.

Proposition 10. Let F be an I-harmonic function on S which satis-
fies 2 and let FA ∈ H−ω(πr) be defined by formula 11 where A ∈ A+.
Let s > 0 be given. Then for each A ∈ A+ and each γ ∈< A, E >,
there exists an unique H−ω(πr)-valued function F γ(A, t) (not depend-
ing on s) which is polynomial of bounded degree in t and a to ≥ 0
(which may depend on s) such that for all t ≥ to,

FtA =
∑

γ∈<A,E>

Fγ(A, t)eγt (58)

where the convergence is in (Hs
ω(πr))

∗. Furthermore for all t ∈ R
+,

Fγ(A, t) ∈ C−∞(πr) and the above equality is valid in the asymptotic
topology on C−∞(πr)
-valued functions.

Proof From Lemma 10 we may assume that I is non-expansive and
N -co-finite. Then Proposition 9 shows that P is finite dimensional.
Let P be decomposed as in 8.

For A ∈ A and t ∈ R, let

PA(t) =
∏

α∈Eo

(t− < A,α >)nα .
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PA is a real polynomial since the roots of P occur in conjugate pairs
with equal multiplicity. The following lemma is clear from 9 since P
has a unit.

Lemma 11. For A ∈ A, let Ã ∈ P be the projection of A. Then
PA(Ã) = 0.

It follows from the preceding lemma that

PA(A) = XA + JA

where XA ∈ (S)NS and JA ∈ J . From Proposition 9, we may take
deg XA ≤ deg PA. We may also assume that XA depends linearly on
PA(A) and thus polynomially on A. Thus XA is a sum of terms of
the form

p(A)X1X2 . . . Xl (59)

where the p are polynomials in A and each Xk belongs to either Sij or
Mij for some i ≤ j depending on k. Furthermore, since XA ∈ (S)NS,
there is at least one Xk in each term for which i < j.

Since F is annihilated by J it follows that F satisfies

PA(A)F (x) = XAF (x) (60)

where elements of the enveloping algebra are identified with left in-
variant differential operators on S.

For X ∈ (S), let X(t) = Ad (exp(tA))X. We replace x by
x(exp tA) in 60 discovering that

PA(D)FtA = XA(t)FtA (61)

where D =
d

dt
. Expanding XA in a sum of terms of the form of 59,

we find that FtA satisfies an equation of the form

PA(D)FtA =
∑

k

e<A,βk>tXA
i FtA (62)

where βk ∈ span NΣ and XA
i ∈ (S) depends polynomially on A. In

particular, A ∈ A+ implies that < A, βk > > 0.
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We interpret 62 as an H−ω(πr) valued differential equation. We
claim that in this case, the hypotheses of Theorem 5 are satisfied.
We note first that for all φ ∈ Hω(πr), F ∈ H−ω(πr), and X ∈ (S),

< πr(g
−1)φ,XF > =< πr(g

−1)φ, π∗
r(X)F >

=< πr(X
∗)πr(g

−1)φ, F >

= X(< πr(g
−1)φ, F >).

It follows from Lemma 1, p. 459 of [3] and the definition of the
H−ω(πr) topology, that if X has degree d as an element of (S) then
it has degree ≤ d as an operator on H−ω(πr).

From the example on.p 282 of [17], there are positive constants C
and r′ such that

eτ(x) ≤ C‖ Ad (x)‖r′

where ‖·‖ denotes the operator norm with respect to any conveniently
chosen norm on L. In particular, if x = exp tA

eτ(exp tA) ≤ Cer′′t

for some constant r′′. Hence, from inequalities 2 and 10,

{e−r′′tFtA | t ∈ (−∞, 0]}

is bounded in L1
r(S)∗ and, thus, in H−ω(πr).

Formula 58 now follows immediately from Theorem 5. The state-
ment about C−∞(πr) follows from Theorem 3 together with the unique-
ness of the coefficients.

Next we prove Theorem 2:

Proof (Of Theorem 2)

Let F be I-harmonic and let B1, B2, . . . , Br be a basis for A con-
tained in A+. For t ∈ (−∞, 0)n, let

GF (t) = FB(t)

where B(t) = t1B1 + t2B2 · · · + tdBd. Then letting Di =
d

dti
and

reasoning as in 62, we find

PBj(Dj)GF =
∑

k

e<B(t),βk>Xj
kGF
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where βk ∈ ∆ and Xj ∈ (S).
We consider the preceding set of equations as a C−∞(πr) valued

system. Theorem 6 shows that under asymptotic convergence

GF (t) =
∑

δ∈E1

et·δFδ(t)

where E1 ⊂ R
d and Fδ(t) depends polynomially on t.

Let A = B(s) where the si > 0. Then, under asymptotic conver-
gence,

FtA = GF (ts) =
∑

δ∈E1

et(s·δ)Fδ(ts). (63)

The uniqueness of coefficients in asymptotic expansions shows
that for the Fγ as in 58,

Fγ(A, t) =
∑

γ=s·δ

Fδ(ts)

It follows that the series 63 converges in H−ω(πr) for all t > to. From
the proof of Lemma 2, to depends continuously on A. In particular,
we may choose a value of to so that the series for t → FtA/|A| converges
for all for t > to and all A which are positive linear combinations of
the Bi. Hence, the series in question converges at t = 1 if |A| ≥ to.
For such A, we define

Fδ(A) = Fδ(s).

This finishes the proof of Theorem 2 for homogeneous domains, with
the exception of the covariance property (c). This, however, is a
simple consequence of the equality

R(exp B(s))FB(t) = FB(s+t).

The proof of 2 in the case of Riemannian symmetric spaces is
almost identical. See the remarks at the end of §2.

Remark We still need to discuss the Poisson transformation. This
however, is more or less immediate from Theorems 3 and 4. Explicitly,
let A ∈ A+. Theorem 4 allows us to construct FtA for t ≥ to using
the boundary values and the operators πj. Hence, we can construct

F = πr(exp − toA)FtoA.
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If F is harmonic, then the result will of course be independent of
the choice of A. Conversely, one might hope that if the result is
independent of A then F would be harmonic. This, however, is the
subject of future research.
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