Homework 1 Solutions

You should use the following solutions to grade your work. Give 10 points per problem. Deduct 1 point for each omitted or incorrect axiom or property. Deduct 1 point if the Assume statement is missing. Deduct 2 points for not checking the answer in Problem 1. (See the discussion following Example 1.)

Solution to 1:

Assume that x satisfies the given equality. Then

$$
\begin{aligned}
7 x+(-5) & =19 \quad \text { Def. of Subtraction } \\
(7 x+(-5))+5 & =19+5 \quad(\mathrm{~A} 0) \\
7 x+((-5)+5) & =24 \quad(\mathrm{~A} 1) \\
7 x+(5+(-5)) & =24 \quad(\mathrm{~A} 4) \\
7 x+0 & =24 \quad(\mathrm{~A} 3) \\
7 x & =24 \quad(\mathrm{~A} 2) \\
7^{-1}(7 x) & =7^{-1} 24 \quad(\mathrm{M} 0),(\mathrm{M} 3) \\
\left(7^{-1} 7\right) x & =24 \cdot 7^{-1} \quad(\mathrm{M} 1) \\
\left(7 \cdot 7^{-1}\right) x & =24 \cdot 7^{-1} \quad(\mathrm{M} 4) \\
1 x & =\frac{24}{7} \quad(\mathrm{M} 3), \text { Def. of Division } \\
x & =\frac{24}{7} \quad(\mathrm{M} 4),(\mathrm{M} 2)
\end{aligned}
$$

Conversely, if $x=\frac{24}{7}$,

$$
7 x-5=7 \frac{24}{7}-5=24-7=19
$$

showing that $x=24 / 7$ does indeed solve the equality.

Solution to 3:

2

Let x, y, z, and w be real numbers. Then

$$
\begin{align*}
(x+y)(z+w) & =x(z+w)+y(z+w) \tag{C1}\\
& =(x z+x w)+(y z+y w) \tag{D}\\
& =x z+(x w+(y z+y w)) \\
& =x z+((x w+y z)+y w) \\
& =x z+((y z+x w)+y w) \tag{A4}\\
& =x z+(y z+(x w+y w)) \\
& =(x z+y z)+(x w+y w) \tag{A1}
\end{align*}
$$

(A1) $a=x z ; b=x w ; c=y z+y w$
(A1) $a=x w ; b=y z ; c=y w$
(A1) $a=y z ; b=x w ; c=y w$
$a=x z ; b=y z ; c=x w+y w$

Solution to 5:

Let x, y, z, and w be numbers. Then

$$
\begin{aligned}
x+(y+z+w) & =x+((y+z)+w) \quad \text { (Definition 2) } \\
& =x+(y+(z+w)) \quad(\mathrm{A} 1) \quad, a=y, b=z, c=w \\
& =(x+y)+(z+w) \quad(\mathrm{A} 1) \quad, a=x, b=y, c=z+w
\end{aligned}
$$

which proves the first equality asked for.
To prove the second, we continue this chain of equalities as

$$
\begin{aligned}
(x+y)+(z+w) & =((x+y)+z)+w \quad(\text { A1 }) \quad, a= \\
& =(x+y+z)+w \quad(\text { Definition } 2)
\end{aligned}
$$

which is the second equality asked for.

Solution to 11:

$$
\begin{aligned}
2 \cdot 3 & =2 \cdot(2+1) \quad \text { Def. of } 3 \\
& =2 \cdot 2+2 \cdot 1 \quad \text { D } \\
& =4+2 \quad \text { Example } 6, \mathrm{M} 2 \\
& =4+(1+1) \quad \text { Def. of } 2 \\
& =(4+1)+1 \quad \text { A1 } \\
& =5+1 \quad \text { Def. of } 5 \\
& =6 \quad \text { Def. of } 6
\end{aligned}
$$

Solution to 12:

Suppose that

$$
c+d=0 .
$$

Then

$$
\begin{aligned}
(c+d)+(-d) & =0+(-d) \quad \mathrm{A} 0, \mathrm{~A} 3 \\
c+(d+(-d)) & =(-d)+0 \quad \mathrm{~A} 1, \mathrm{~A} 4 \\
c+0 & =-d \quad \mathrm{~A} 3, \mathrm{~A} 2 \\
c & =-d \quad \mathrm{~A} 2
\end{aligned}
$$

as desired.

