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1 Introduction

Let L be an elliptic operator on a manifold M . A function F is said to be
L-harmonic if LF = 0. It was shown by Guivarc’h [11] and Raugi [19] around
1977, that if M is a homogeneous space of a Lie group S and L commutes
with the S-action, then, under some additional technical hypotheses, the
bounded L-harmonic functions can be characterized as the Poisson integrals
of the L∞ functions on a certain homogeneous space of S against a “Poisson
measure” on S. Similar results were developed independently in the context
of general (non-homogeneous) manifolds of pinched negative curvature by D.
Sullivan [21] and M. Anderson [2] in the early 1980’s. In [7], Ewa Damek
proved an explicit (and beautiful) version of these results in the case where
S is a solvable Lie group. Our current manuscript also relies heavily on the
paper [9] of E. Damek, A. Hulanicki, and J. Zienkiewicz as well as the work
of R. Urban [22]. (For a (somewhat random) selection related work, see
A. Ancona [1], E. Damek and A. Hulanicki [8], A. Korányi and E. Stein [14],
R. Azencott and E. Wilson [3] and [4].)

Since the publication of the work of Guivarc’h and Raugi, a truly vast
body of literature studying the L-harmonic functions has appeared. The vast
majority of these works have studied bounded harmonic functions. In fact,
to our knowledge, there is no general description of a space of unbounded
harmonic functions out side of the case of a rank one symmetric space. (The
unbounded positive harmonic have also been studied.)

In this work, we provide a complete description of a space of harmonic
functions that contains all harmonic functions of “moderate growth” on a
very broad class of homogeneous Riemannian manifolds M of negative cur-
vature. Specifically, we say that a function F on M has moderate growth if
there are positive constants A and ro (depending on F ) such that

|F (x)| ≤ Aeroκ(x) (1)

for all x ∈ M where κ(x) is the Riemannian distance in M from x to the
base point xo.

The class of manifolds we study is a subclass of the class of “Heintze
Manifolds.” E. Heintze[13] proved that the complete homogeneous Rieman-
nian manifolds with negative curvature may be characterized as the set of
connected, simply connected, solvable Lie groups S satisfying

1. S = NA where N is a nilpotent, normal subgroup and A is isomorphic
with R

+.
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2. There is an element Ao in the Lie algebra A of A such that the real
part of all of the eigenvalues of ad Ao on the Lie algebra N of N are
positive.

We assume in addition that

δ(t) = Ad (exp((log t)Ao)
∣

∣

N

acts diagonally on the Lie algebra N of N . Hence, there is a basis X1, X2, . . . , Xn

of N such that for all i
δ(t)Xi = tdiXi (2)

where di > 0 and
d1 ≤ d2 ≤ · · · ≤ dn.

By an appropriate choice of A0, we may (an will) also assume that dn = 1.
We set

d =
n

∑

1

di. (3)

We note that any rank one Riemannian symmetric space will satisfy these
hypotheses. Of course, the vast majority of examples are non-symmetric.

We identify S with N ×s R
+ by means of the map

(n, t) → n expS((log t)A0).

Let R and L denote, respectively, the right and left regular representations
of S and RN and LN the corresponding regular representations of N . We
consider the differential operator L on S defined by

L = R

(

A2
o − αAo +

n
∑

1

(X2
i + ciXi)

)

= Θ2 − αΘ +
n

∑

1

(t2diX2
i + cit

diXi)

(4)

where α > 0, and, in the second equation, the Xi are considered as left-
invariant vector fields on N and where

Θ = t∂t.
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According to a result of Hebisch and Sikora [12], there is a subadditive,
smooth, homogeneous norm on N–i.e. there is a function | · | on N such that

|x| > 0 x 6= e

|δ(t)x| = t|x|

|xy| ≤ |x| + |y|

|x| = |x−1|

(5)

Instead of condition (1) on page 2, we consider the following condition
which we call “metric growth”. It follows from Lemma 3 on page 20 below
that moderate growth implies metric growth. We suspect that the converse
is also valid, although we do not require this result.

Definition 1. A function F on S has metric growth if

|F (x, t)| ≤ C(ta + tb)(1 + |x|)k (6)

where k ≥ 0 and a > b.

We let
H(a, b, k)

denote the set of all L-harmonic functions on S satisfying (6). From the
ellipticity of L, it is clear that H(a, b, k) is a Banach space under the obvious
norm.

Our main results are

1. A complete description of all functions which are L-harmonic and
“polynomial-like” . (See Definition 3 below.)

2. A “Liouville theorem” that states that an L-harmonic function satis-
fying a certain growth condition must be a polynomial-like function
which vanishes on N .

3. Asymptotic expansions of the Poisson kernel both at t = 0 and at
x = ∞.

4. A representation Theorem (the Oshima-Sekeguci theorem) that states
that a L-harmonic function F has metric growth if and only if F is
the Poisson integral (suitably defined) of a distribution over N plus a
harmonic function of polynomial type which vanishes on N .
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Remark. The majority of our results are valid (with the same proofs)
under the weaker assumption that the Xi generate N as a Lie alge-
bra. Specifically, Theorems 1, 3, the existence of the limit in Theorem 4 as
well as the statement in this theorem beginning with “Conversely,” and the
first statement in Corollary 1, all hold in this more general context. Also, we
use the Hebisch-Sikora norm only for sake of convenience; any homogeneous
gauge would suffice. The subadditivity does, however, simplify some proofs.

To discuss these results further, we need a definition. Let AN be the
automorphism group of N . Then AN is a real algebraic group and S is a
subgroup of the real algebraic group N ×s AN . Let S be the algebraic closure
of S in N ×s AN .

Definition 2. We say that a function p(x, t) on S is a polynomial if it is
a restriction of a polynomial on S to S. More concretely, then, a function
p(x, t) on S will be a polynomial on S if and only if

p(x, t) =
∑

β∈I

pβ(x)tβ (7)

where I is a finite subset of

Ñ = {
n

∑

1

midi | mi ∈ Z,mi ≥ 0} (8)

and each pβ(x) is a polynomial in the usual sense on N . We refer to pβ(x)
as the tβ-coefficient of p. The set of all polynomial functions on a particular
space X is denoted P(X).

Definition 3. Let α be as in (4) on page 3. We say that a function F on S is
polynomial-like relative to L if there are polynomial functions (in the sense
just defined) p, q, and h on S such that

F (x, t) =

{

p(x, t) + tαq(x, t) α /∈ Ñ

p(x, t) + tαq(x, t) + tα(ln t)h(x, t) α ∈ Ñ.
(9)

Finally, if p ≡ h ≡ 0, we say that F is vanishes on N .

Our first main result is the following. (See Definition 5 below for more
details.)
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Theorem 1. There is a linear isomorphism between the space of L-harmonic,
polynomial-like functions on S and P(N) × P(N). Thus the space of L-
harmonic, polynomial-like functions is infinite dimensional.

In the theory of partial differential equations, a Liouville theorem for a
linear differential operator D is a theorem that states that, under the correct
interpretation of the term “polynomial,” if DF = 0, then F is a polynomial
if and only if F grows like a polynomial.

A simple, but enlightening, example is the case where N = R, δ(t)x = tx,
and α = 1. In this case S is identifiable with the upper-half plane H+ in C

and
L = t2

(

∂2
t + ∂2

x

)

which is just the invariant Laplacian on H+. There are, of course, many non-
constant bounded harmonic functions on H+. (The Poisson integral of any
L1 function is an example.) Hence, we cannot expect a Liouville theorem in
which “polynomial” has its standard meaning. However, it can be shown that
the Liouville Theorem holds for H+ provided we only consider polynomials
p(x, t) where p(x, 0) ≡ 0. Specifically, we are saying that if F is harmonic on
H+ and satisfies an estimate of the form

|F (x, t)| ≤ C(ta + tb)(1 + |x|)k (10)

where a, b, k ∈ R
+, then

F (x, t) = tp(x, t)

for some polynomial p(x, t). An example of such a harmonic function is
F (z) = ℑ(zn).

We prove that virtually the same result is true in our more general case.
Specifically, we prove the following strong “Liouville Theorem” which does
not even require harmonicity. Here | · | any sub-additive homogeneous norm
on N , although the same result holds for any homogeneous gauge.

Theorem 2. Suppose that F is a function on S that satisfies an estimate
of the form (10) such that LF (x, t) depends polynomially on x. Then F
depends polynomially on x. If in addition LF = 0, then F is a polynomial-
like harmonic function that vanishes on N in the sense of Definition 3 on
page 5.

Remark. It can be shown that the assumption of harmonicity in the final
statement in the preceding theorem is unnecessary; if LF is polynomial in
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x, then F is of polynomial type. We do not present the proof since it re-
quires dealing with non-homogeneous equations in Section 2 which would
complicate the exposition unnecessarily.

The starting point of the proof of Theorem 2 is an idea due to Geller [10].
Geller’s idea, however, only provides a beginning. Our proof is somewhat
lengthy and complicated. In particular it makes essential use of R. Urban’s
deep results on the growth of the derivatives of the Green kernel [22], our
theory of asymptotic expansions, as well as a new asymptotic expansion of
the Euclidean Fourier transformation of a harmonic function. Our exposition
of the latter two results is self contained, although the work is motivated by
works of N. Wallach [23] and E. van den Ban and H. Schlichtkrull [5]. Similar
(but less precise) results are found in R. Penney and R. Urban [18] and R.
Penney [17].

As mentioned previously, all rank one Riemannian symmetric spaces sat-
isfy our hypotheses. If M is such a space, and L is the corresponding Laplace-
Beltrami operator, then the Oshima-Sekiguchi Theorem [16] states that a
harmonic function F on M has moderate growth if and only if F is the Pois-
son integral of a distribution over the Furstenberg boundary. It is key to
the Oshima-Sekiguchi Theorem that the Furstenberg boundary is a compact
manifold since this allows one to “integrate” an arbitrary distribution against
the Poisson kernel.

For example, consider once again the case of the Laplace-Beltrami oper-
ator on the upper-half plane R × R

+. In this case the Poisson kernel is

P (n, z) = −ℑ

(

1

z − n

)

where n ∈ R and z = x + it ∈ R×R
+. The boundary value of the harmonic

function F (z) = ℜ(zk) is f(n) = nk which will not be integrable against
P (n, z) for k ≥ 1.

We can avoid this difficulty as follows. Note that for |n| > |z|

−
1

z − n
=

∞
∑

0

zk

nk+1
.

For n 6= 0, let

Qm(n, z) = ℑ

(

m
∑

0

zk

nk+1

)

. (11)
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Then, for eacn n 6= 0, Qm(n, z) is a harmonic polynomial in z which is zero
on the real axis. Let

Pm(n, z) = P (n, z) − Qm(n, z).

From Taylor’s Theorem, for all m ∈ N there are positive scalars a and C
such that

|∂i
nPm(n, z)| ≤ C(1 + |z|)a|n|−(i+m+1).

It is easily seen that if φ is an Schwartz distribution on R whose support
does not contain 0, then there is an m ∈ N ∪ {0} such that

Pm(φ)(z) =< φ(·), Pm(·, z) >

is defined and harmonic in z. If φ has arbitrary support, then φ = φ1 + φ2

where 0 is not in the support of φ1 and φ2 has compact support containing
0. We define the “mollified” Poisson integral of φ to be

Pmol
m (φ)(z) = Pm(φ1)(z) + P (φ2)(z)

where m and Pm(φ1) are as described above and P (φ2) is the usual Poisson
integral. It is clear that Pmol

m (φ) is a harmonic function.
Of course, Pmol

m (φ) is not uniquely defined; it depends on both the choice
of m and the choice of φ1 and φ2. However, it is easily seen (see Proposition 1
on page 11 below) that Pmol

m (φ)(z) is uniquely determined modulo harmonic
polynomials with null boundary value, i.e. if P̃mol

m′ (φ) is another mollified
Poisson integral of φ resulting from possibly different choices of the φi and
of m, then

P̃mol
m′ (φ)(z) = Pmol

m (φ)(z) + h(z)

where h is a harmonic polynomial on H+ which is identically 0 on R. The
Oshima-Sekiguchi Theorem on the unit disk is equivalent with the statement
that a harmonic function F on the upper-half plane has metric growth if
and only if F = Pmol

m (φ) + h for some Schwartz distribution φ on R and a
harmonic polynomial h on H+ where h is zero on the real axis.

In this work we prove that the analogous result holds in our context.
Specifically, it follows from work of E. Damek [7] that the space of bounded L-
harmonic functions is in one-to-one correspondence with L∞(N). Explicitly,
there is a C∞ function P on S/(R+) = N (the Poisson kernel function for L)
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such that every bounded harmonic function F may be written as a Poisson
integral as

F (x, t) =

∫

S/(R+)

f((x, t)n)P (n) dn

=

∫

N

f(n)P (δ(t−1)(x−1n))t−d dn

= f ∗ P̃t(x)

≡ P (f)(x, t)

(12)

where dn is Haar measure on N and

P̃t(n) = P (t−1n−1t)t−d = P̃ (n, t)

f(n) = lim
t→0+

F (n, t) a.e.
(13)

(Here d is as in (3) on page 3.)
Conversely the Poisson integral of any f ∈ L∞(N) is a bounded L-

harmonic function on S such that for a.e. n ∈ N ,

f(n) = lim
t→0+

P (f)(n, t).

One of our main results generalizes the expansion (11). Recall that a
function p on N −{0} is said to be δ(t)-homogeneous of homogeneous degree
β if for all t ∈ R

+

p(δ(t)x) = tβp(x).

Note that then for all x ∈ N − {0}

|p(x)| = |x|βp(δ(|x|−1)x) ≤ C|x|β

where C = sup|u|≤1 |p(u)| and | · | is any homogeneous gauge–e.g. the Hebisch
and Sikora norm from (5).

In the following result, Ñ is as defined in (8) on page 5. If I = (i1, i2, . . . , in)
is a multi-index we define

‖I‖ =
n

∑

j=1

djij

XI = X i1
1 X i1

1 . . . X i1
1 .

(14)

Theorem 3. There is a sequence Hβ(n, x, t) ∈ C∞((N − {0}) × N × R
+)

indexed by Ñ, which is uniquely defined by the following properties:
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1. For each β ∈ Ñ and each n ∈ N − {0}, Hβ(n, x, t) is a polynomial in
(x, t) (in the sense of Definition 7 on page 5) which satisfies

Hβ(n, δ(s)x, st) = sβHβ(n, x, t)

Hβ(δ(s)n, x, t) = s−β−d−αHβ(n, x, t)

2. For each β ∈ Ñ and each n ∈ N − {0}, tαHβ(n, x, t) is
L-harmonic in (x, t).

3. For µ ∈ Ñ, let

Pµ(n, x, t) = P̃ (nx, t) − tαQµ(n, x, t)

where
Qµ(n, x, t) =

∑

β<µ

Hβ(n, x, t).

Then, for all β ∈ Ñ and each milti-index I

|R(XI)Pµ(n, x, t)|

≤ C(ta + tb)(1 + |x|)τ |n|−d−α−µ−‖I‖
(15)

for |n| ≥ 1 where a, b, τ ∈ R.

Theorem 3 allows us to define a “mollified Poisson integral” for any
Schwartz distribution f on N . It follows from Lemma 7 on page 31 be-
low that the following semi-norms for p, k ∈ N∪ {0}, are finite on S(N) and
define the Schwartz topology on S(N):

‖η‖p,k = sup{(1 + |x|)−k|RN(XI)η(x)| | |I| ≤ p}. (16)

Let f ∈ S ′(N). Then there are p and k such that

| < f(·), η(·) > | ≤ C‖η‖p,k

for all η ∈ S(N). Hence, f extends continuously to the space Sp,k(N) con-
sisting of all functions η such that ‖η‖p,k < ∞.

Let φ ∈ C∞
c (N) be supported in {|n| ≤ 2} and satisfy

0 ≤φ(n) ≤ 1

φ(n) = 1, |n| ≤ 1
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Let
φ̃ = 1 − φ.

From Theorem 3, for µ ≥ k and (x, t) ∈ S,

n → φ̃(n)Pµ(n−1, x, t) ∈ Sp,k(N).

Definition 4. Let φ and φ̃ be described above. Let f ∈ S ′(N) and let p and k
be such that f ∈ S ′

p,k(N). Let µ be chosen as above. We define the mollified
Poisson integral of f by

Pmol
µ,φ (f)(x, t) =< f(·), φ̃(·)Pµ((·)−1, x, t) > + < f(·), φ(·)P̃ ((·)−1x, t) > .

It is clear from Theorem 3 that for f ∈ S ′
p,k(N) and µ > k, Pmol

µ,φ (f)
is a harmonic function of metric growth. The mollified Poisson integral, of
course, depends on µ and φ. However, the following simple result shows that
it is is well defined, modulo harmonic, polynomial-like functions that vanish
on N .

Proposition 1. Let f ∈ S ′(N). Then for all (β, ψ) chosen in the same
manner as (µ, φ) above, there is a polynomial (in the sense of Definition 2
on page 5) h(x, t) where tαh(x, t) is L-harmonic, such that

Pmol
β,ψ (f)(x, t) = Pmol

µ,φ (f)(x, t) + tαh(x, t).

Proof Note that φ̃ − ψ̃ = −(φ − ψ) which has compact support. Hence

Pmol
µ,φ (f)(x, t) − Pmol

µ,ψ (f)(x, t)

=< (φ̃ − ψ̃)(·)(P̃ ((·)−1x, t) − tαQµ((·)−1, x, t)), f >

+ < (φ − ψ)(·)P̃ ((·)−1x, t), f >

= tα < (φ − ψ)(·)Qµ((·)−1, x, t), f >

which is a harmonic function of the form of tαh(x, t) where h is a polynomial.
Also, for β > µ, let

Qβ,µ(n, x, t) = Qβ(n, x, t) − Qµ(n, x, t).

Then

Pmol
β,φ (f)(x, t) = Pmol

µ,φ (f)(x, t) − tα < f(·), φ(·)Qβ,µ((·)−1, x, t) > .
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The term on the right is again a harmonic function of the form of tαh(x, t)
where h is a polynomial. This proves the proposition.

Let F be a harmonic function of metric growth. It follows from Lemma 7
on page 31 below that for all t ∈ R

+, F (·, t) may be considered as a Schwartz
distribution on N . We prove the following Oshima-Sekiguchi type theorem.
See Definition 3 for the terminology.

Theorem 4. Let F be an L-harmonic function of metric growth. Then for
each t ∈ R

+,
lim

t→0+
F (·, t) = f(·) (17)

exists in S ′(N).
Furthermore, for any choice of (µ, φ) as described above, there is a polynomial-

like harmonic function tαh(x, t) on S that vanishes on N such that

F (x, t) = Pmol
µ,φ (f)(x, t) + tαh(x, t). (18)

Conversely, for any distribution f ∈ S ′(N) and any polynomial-like harmonic
function tαh(x, t) which vanishes on N , the above formula defines an L-
harmonic function of metric growth for which

lim
t→0+

F (·, t) = f(·)

in S ′(N).

Remark. We commented that in the case of the upper half-plane, the preced-
ing theorem is equivalent with the Oshima-Sekiguchi Theorem on the unit
disk. The same remains true in the case of a rank-one symmetric space,
although we do not present a proof. We conjecture that there is a com-
pactification of S for which the above theorem implies that the L-harmonic
functions of metric growth are precisely the Poisson integrals of distributions
over an appropriate boundary. We have, in fact, proved such a result in
the case that S is meta-abelian and algebraic: i.e. all of the di are rational
numbers and N is abelian. Such a result is desirable in that it eliminates the
ambiguity in defining the Poisson integral expressed in Proposition 1. We
will discuss these ideas in depth at a later time.

We note the following interesting corollary of the preceding theorem.
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Corollary 1. Every f ∈ S ′(N) is the boundary value of an L-harmonic
function F (x, t) of metric growth in the sense that in S ′(N)

lim
t→0+

F (·, t) = f(·).

F is uniquely determined by f modulo harmonic polynomial-like functions
which vanish on N .

A sketch of the proof of Theorem 4 is as follows. We provide the details
in Section 5.

1. We use the theory of asymptotic expansions to prove the existence of
the limit (17). (Corollary 8 on page 39.)

2. Let F̃ = F − Pmol
µ,φ (f). We show that limt→0+ F̃ (·, t) = 0 in S ′(N).

3. We show that in fact, F̃ satisfies the hypotheses of our Liouville The-
orem (Theorem 2 on page 6); hence F̃ is a polynomial-like function
which vanishes on N , proving Theorem 4.

1.1 Notational Conventions:

1. We use upper case Roman letters to denote Lie groups and the corre-
sponding upper case script letter to denote the Lie algebra.

2. We use the exponential mapping to identify N and N–i.e. we assume
that N = N where N is given the Campbell-Hausdorff product.

3. RN and LN denote, respectively, the right and left regular representa-
tions of N .

4. Throughout this work symbols such as “C”, “Ci”, “C ′”, etc. represent
generic constants whose values can change from line to line.

5. The meaning of “‖ · ‖” is “local” and will vary depending on context.
We will attempt to clarify the meaning in any situation where confusion
might arise.

6. The symbol | · | always denotes a subadditive semi-norm on N–i.e. a
function satisfying (5) on page 4.
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7. The set Ñ defined by (8) on page 5.

8. Any summation in which the summation index is a lowercase Greek
letter is always a summation over some subset of Ñ.

9. The symbols di, 1 ≤ i ≤ n, represent the scalars defined in (2) on
page 3 and d =

∑

di. We assume (with out loss of generality) that
dn = 1.

10. The symbol “α” always refers to the number from equation (4) on
page 3.

11. If I = (i1, i2, . . . , in) is a multi-index, then ‖I‖ and XI are defined
in (14) on page 9 while |I| = i1 + i2 + · · · + in.

The significance of d is that for integrable functions f on N

∫

N

f(x) dx =

∫

N

f(δ(t)x)td dx.

It is an important consequence of this equality that there is a finite mea-
sure ν on {|x| = 1} such that

∫

N

f(x) dx =

∫ ∞

0

∫

|u|=1

f(δ(t)u)td−1 dν(u)dt. (19)

2 Formal Harmonic Functions

In this section we study formal series of the form

F (·, t) =
∞

∑

i=0

tαiAαi
(·) (20)

where α0 < α1 < . . . , αi < . . . and Aαi
∈ S ′(N), Aαi

6= 0. We wish to find
conditions under which such a series satisfies LF = 0 where L is as in (4)
on page 3. Actually, instead of S ′(N) we may use any A(N ) module V , in
which case we suppress x, writing F (t) instead of F (·, t) and Aαi

in place of
Aαi

(·). As the reader will certainly note, our discussion is modeled on the
classical Frobenius theory of ODEs with regular singularities at 0.
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Substituting (20) into LF = 0 and equating like powers of t yields the
recursion relation

αk(αk − α)Aαk
= −

n
∑

i=1

X2
i Aαk−2di

−
n

∑

i=1

ciXiAαk−di

(If β 6= αj for some j, we set Aβ = 0.)
We say that Aαj

is used in the computation of Aαk
if αk ∈ αj + Ñ.

Intuitively, this means that in using the recursion relation to compute Aαk
,

we will eventually need to know Aαj
. For αk given, let j be the smallest

index for which Aαj
is used in the computation of Aαk

. From the recursion
relation, αj(αj − α) = 0 so either αj = 0 or αj = α. Hence

αk ∈ Ñ ∪ (α + Ñ)

showing that we can express the expansion (20) in the more explicit form

F (t) =
∑

β∈Ñ

tβFβ + tα
∑

β∈Ñ

tβGβ. (21)

Our first result is:

Proposition 2. Suppose that the formal series (20) satisfies LF = 0. Then
F is expandable as a series of the form of (21) where each of the two sum-
mations on the right is L-harmonic. In this case the coefficients satisfy (22)
and (23) below.

Proof If (α+Ñ)∩Ñ = ∅, then the coefficients in (21) are unique. Substitution
into LF = 0 and equating coefficients of like powers of t yields the recursion
relations

(β + α)βGβ = −
n

∑

i=1

X2
i Gβ−2di

−
n

∑

i=1

ciXiGβ−di (22)

and

β(β − α)Fβ = −
n

∑

i=1

X2
i Fβ−2di

−
n

∑

i=1

ciXiFβ−di (23)

from which the result follows.
If (α+ Ñ)∩ Ñ 6= ∅, then the coefficients in (21) will not be unique and the

above recursion relations might not hold. Notice, however, that if none of
the αj in (20) equal α, then for each j, A0 is used in computing Aαj

. Hence,
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αj ∈ Ñ for all k, showing that we may combine the second sum in (21) with
the first, in which case our result follows trivially.

If there is a value jo such that αjo
= α, we set

G0 = Aα.

We then define Gβ for β > 0, β ∈ Ñ, inductively by (22). This is possible
since for β 6= 0, (β + α)β 6= 0.

It is clear that as a formal series, under this definition, the term on the
right in (21) is harmonic. In this case

F̃ (t) = F (t) − tα
∑

β∈Ñ

tβGβ

is a harmonic series where the coefficient of tα in (20) on page 14 vanishes.
From the comments immediately following (23), F̃ may be expressed as a
sum of the form of (21) where the terms involving Gβ vanish. The Fβ are
uniquely determined by F0 from (23). Our result follows.

Conversely, given an element G0 ∈ V, we may use (22) to define coeffi-
cients Gβ which may be summed as on the right in (21) on page 15 to yield
a harmonic series G(t). It follows that for any given G0 ∈ V, there is a
harmonic series G(t) of the form of the sum on the right in (21) on page 15.
Similarly, if α /∈ Ñ, the Fβ may also be defined for all β and are uniquely
determined. Hence we have the following result:

Proposition 3. If α /∈ Ñ then for any given elements F0 and G0 in V, the
relations (22) and (23) may be solved to yield a unique harmonic series (21)
on page 15.

If α ∈ Ñ, the situation is somewhat more complicated. At β = α, there
will be no solution to (23) unless the term on the right is zero. The simplest
way for this to happen is to have Fσ = 0 for all σ < α, which produces a
series having the form of the sum on the right in (21). Hence, we obtain
nothing new in this fashion. In order to find a second class of solutions, we
are forced to introduce logarithmic terms. Hence, we assume a solution of
the form

F (t) =
∑

β∈Ñ

tβFβ + (ln t)tα
∑

β∈Ñ

tβHβ (24)
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where Fα = 0.
We substitute (24) into LF = 0 and equate coefficients of both the loga-

rithmic and the power terms, finding

(β + α)βHβ = −
n

∑

i=1

X2
i Hβ−2di

−
n

∑

i=1

ciXiHβ−di

β(β − α)Fβ = −(2β − α)Hβ−α

−
n

∑

i=1

X2
i Fβ−2di

−
n

∑

i=1

ciXiFβ−di
.

(25)

We claim that for F0 given, these relations have a unique solution satisfy-
ing Fα = 0. In fact, for β < α, Hβ−α = 0 so the second equation determines
Fβ for all β < α. For β = α, the second equation uniquely determines H0.
The first equation then determines Hβ for all β > 0, from which the remain-
ing Fβ may be determined using the second equation again. We have proved
the following result.

Proposition 4. Suppose that α ∈ Ñ and that F0 and G0 are given elements
of V. Then there is unique harmonic series of the form

F (t) =
∑

β∈Ñ

tβ(Fβ + tα(ln t)Hβ) + tα
∑

β∈Ñ

tβGβ (26)

where Fα = 0, the Fβ and Hβ are determined by (25), and the Gβ are deter-
mined by (22). Furthermore, each of the above sums is, by itself, a harmonic
series.

The following definition uses the preceding propositions.

Definition 5. For (F0, G0) ∈ V ×V let P (F0, G0)(t) = F (t) where F (t) is the
formal harmonic series defined in Proposition 3 on page 16 (α /∈ Ñ) or in
Proposition 4 on page 17 (α ∈ Ñ). We call P the “Poisson transformation.”

Corollary 2. Suppose that F (t) is a formal harmonic series for which F0 =
0. Then

F (t) = tα
∑

β∈Ñ

tβGβ.



2 FORMAL HARMONIC FUNCTIONS 18

Proof This follows from P (F0, G0)(t) = F (t).
We say that an element q ∈ V is nilpotent if there is an m such that

Y1Y2 . . . Ymq = 0

for all sequences Y1, . . . , Ym of m elements of N . The space of nilpotent
elements is denoted P(N ) due to the following lemma.

Lemma 1. Let V = S ′(N) with the A(N) action defined by either the right
or the left regular representations. Then P(V) is the space P(N) of all poly-
nomials on N .

Proof
This result is true for any nilpotent group, homogeneous or not. However,

the proof is particularly simple in our homogeneous case since any polynomial
function on N may be written as a finite sum of homogeneous polynomials
and the Xi from the basis (2) on page 3 decrease the homogeneous degree of
a homogeneous polynomial. Hence, the polynomials are nilpotent elements.

Conversely, suppose that f ∈ S ′(N) is nilpotent. Let Xn be the last basis
element form the basis (2) on page 3. Then Xm

n f = 0 implies that f is a
polynomial in xn. Hence, we may write

f(x, xn) =

p
∑

k=0

xk
nfk(x)

where x = (x1, x2, . . . , xn−1) and the fi are distributions on R
n−1. It is easily

seen that fp may be identified with a nilpotent distribution on N/(RXn).
By induction, fp may be assumed to be a polynomial in x. We replace f by
f − xp

nfp and repeat this argument as many times as necessary to prove that
f is a polynomial.

We say that a V-valued function on R
+ is a polynomial if it is described

by a formula such as (7) on page 5 where the pβ are elements of P(V). We
then define the notion of polynomial-like just as in Definition 3 on page 5.
The following result, which is a simple consequence of the above discussion,
provides a complete characterization of the polynomial-like harmonic func-
tions.

Theorem 5. The Poisson transformation P from Definition 5 on page 17 de-
fines a bijection between P(V)×P(V) and the space of all V-valued polynomial-
like harmonic functions.
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There is a sense in which the formal series (21) on page 15 and (26) on
page 17 converge to F asymptotically under appropriate assumptions. See
Theorem 7 on page 36 below.

3 Riemannian Metric.

Let ω be a scalar product on S. For g ∈ S, we identify the tangent space
Tg(S) with S using the left-invariant vector fields. Then ω may be considered
as a left invariant Riemannian structure on S. Conversely, any left-invariant
Riemannian structure arises in this manner.

We wish to estimate
τ(g) = eκ(g).

where κ(g) = d(g, e) is the Riemannian distance to e.
It follows from the left invariance of the metric that

τ(x) = τ(x−1)

τ(xy) ≤ τ(x)τ(y).
(27)

Lemma 2. There is an a > 0 such that for all t ∈ R
+, τ((0, t)) ≤ ta + t−a.

Proof It suffices to assume t ≥ 1. Let γ : (1, t) → S be defined by

γ(r) = (0, r) ∈ N × R
+.

For g ∈ S, let λg : S → S be left translation by g. Then

γ′(r) =
1

r

d

ds

∣

∣

s=1
γ(rs)

γ′(r) =
1

r

d

ds

∣

∣

s=1
(λ(0,r)(γ(s))

=
1

r
λ∗

(0,r)

d

ds

∣

∣

s=1
γ(s)

=
1

r
Ao.

Hence, from the left invariance of the metric,

l(γ) =

∫ t

1

ωγ(r)(γ
′(r), γ′(r))

1

2 dr

= ‖Ao‖

∫ t

1

r−1 dr

= ‖Ao‖ log t.
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where ‖ · ‖ is the ω-norm. Hence

d((0, t), (0, 1)) ≤ ‖Ao‖ log t

which implies our lemma.

Lemma 3. There are positive scalars C, a, and b such that

τ(n, t) ≤ C(1 + |n|)b(ta + t−a).

Proof If |n| ≤ 1, from (27),

τ(n, t) ≤ τ(n, 0)τ(0, t)

and our lemma follows from Lemma 2 and the compactness of
{|n| ≤ 1}.

For n ≥ 1, write
n = δ(|n|−1)u

where |u| = 1. Then

(n, t) = (0, |n|−1)(u, t)(0, |n|).

Hence, from Lemma 2 and (27),

τ(n, t) ≤ (|n|a + |n|−a)2τ(u, t).

Our lemma now follows from the |n| ≤ 1 case.

4 The Poisson Kernel

4.1 Asymptotic Expansion of P̃ (x, t)

The proof of Theorem 3 on page 9 involves combining an asymptotic expan-
sion with a homogeneous Taylor expansion. In this section we present the
asymptotic expansion.

According to Theorem (5.1), p. 144 of [9], for each multi-index I there is
a constant C such that

|RN(XI)P (x)| ≤ C(1 + |x|)−d−α−‖I‖. (28)
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Proposition 5. In formula (28) we may replace LN(XI) by RN(XI).

Proof From (28),

|RN(XI)(P ◦ δ(t−1))(x)| = t−‖I‖|(RN(XI)P )(δ(t−1)(x))|

≤ Ct−‖I‖(1 + t−1|x|)−d−α−‖I‖

= Ctd+α(t + |x|)−d−α−‖I‖

≤ Ctd+α|x|−d−α−‖I‖

(29)

Hence, for |x| ≥ 1,

|RN(XI)(P ◦ δ(t−1))(x)| ≤ Ctd+α (30)

Conversely, suppose that we know that the above inequality holds for all
t ∈ R

+, but only for 1 ≤ |x| ≤ 2. We claim that inequality (28) follows.
To see this note that it suffices to prove (28) for |x| ≥ 1. Then there is an
n ∈ N ∪ {0} such that 2n ≤ |x| ≤ 2n+1. Hence 1 ≤ |δ(2−n)x| ≤ 2 and

|RN(XI)P (x)| = |(RN(XI)P ) ◦ δ(2n)(δ(2−n)(x))|

= 2−n‖I‖|RN(XI)(P ◦ δ(2n))(δ(2−n)(x))|

≤ 2−n‖I‖C2−n(d+α)

= C2d+α+‖I‖(2n+1)−d−α−‖I‖

≤ C ′|x|−d−α−‖I‖

proving (28).
By similar reasoning, it suffices to prove that for 1 ≤ |x| ≤ 2

|LN(XI)(P ◦ δ(t−1))(x)| ≤ Ctd+α.

for all t ∈ R
+. This, however, is simple. For each i there are polynomials

pi
j(x) such that

LN(Xi) =
∑

j≥i

pi
j(x)RN(Xj).

More generally, we may write

LN(XI) =
∑

|J |=|I|

pJ(x)RN(XJ). (31)
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Our inequality for 1 ≤ |x| ≤ 2 follows from (29) and the fact that the pJ are
bounded on 1 ≤ |x| ≤ 2.

It follows from Proposition 9 and formula (13) on page 9 that

|RN(XI)P̃ (x, t)| = t−d−‖I‖|(LN(XI)P )(δ(t−1)x−1)|

≤ Ctα(1 + |δ(t−1)x−1|)−(d+α+‖I‖)t−d−α−‖I‖

= Ctα(t + |x|)−(d+α+‖I‖)

(32)

Corollary 3. Suppose that I is a multi-index such that m ≤ |I| ≤ 2m where
m ∈ N. Then if either t−1|x| ≤ 1 or |x| ≥ 1,

|t‖I‖RN(XI)P̃ (x, t)| ≤ tαξ(t)md1|x|−(d+α+md1)

where
ξ(t) = t + t2/d1 .

Proof Note that since for all i, d1 ≤ di ≤ dn = 1,

d1|I| ≤ ‖I‖ ≤ |I|. (33)

Hence ‖I‖ ∈ [d1m, 2m]. For |x| ≥ 1, our corollary follows from (31). If
t−1|x| ≤ 1, we note that

(t + |x|)−(d+α+‖I‖) ≤ |x|−(d+α+‖I‖)

= t−(d+α+‖I‖)(t−1|x|)−(d+α+‖I‖)

≤ t−(d+α+‖I‖)(t−1|x|)−(d+α+d1m)

= td1m−‖I‖|x|−(d+α+d1m)

from which our lemma follows.

The main result of this section is the following:

Theorem 6. There is a a sequence Pβ ∈ C∞(N −{0}) indexed by Ñ, where
each Pβ is δ(t)-homogeneous of degree −β − d − α, such that for all µ ∈ Ñ

P̃ (x, t) = tα
∑

β<µ

tβPβ(x) + RAsy
µ (x, t) (34)

where for all multi-indecies I

|RN(XI)RAsy
µ (x, t)| ≤ Ctαξ(t)µ|x|−(d+α+µ+‖I‖) (35)

if either t|x|−1 ≤ 1 or |x| ≥ 1. Furthermore, the Pβ are unique.
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Proof
Throughout this proof, we assume, without further comment, that either

t|x|−1 ≤ 1 or |x| ≥ 1. In particular, x 6= 0.

For β ≥ 0, let Λβ be the operator on functions on S defined by

Λβ(f)(t, x) = tβ
∫ t

0

s−β−1f(s, x) ds. (36)

This integral exists provided |f(x, t)| ≤ K(x)tγ where γ − β > 0, in which
case Λβ is a right inverse for Θ − β. In this case

|Λβ(f)(x, t)| ≤ C K(x)tγ (37)

for the same K(x). It is important to note also that for γ > β, tγ is an
eigenfunction for Λβ. We note the following simple proposition.

Proposition 6. If Θ(Θ − α)f is in the domain of Λ0Λα then there are
f1, f2 ∈ R such that

Λ0Λα(Θ(Θ − α))f(t) = f(t) + fo + tαf1

Proof This follows from

Θ(Θ − α) (f − Λ0ΛαΘ(Θ − α)f) = 0.

Let

N0 =
n

∑

1

(t2diX2
i + cit

diXi). (38)

From Corollary 3 on page 22, with m = 1,

|N0P̃ (x, t)| ≤ tαCξ(t)d1|x|−d1−d−α. (39)

Hence G = Λ0ΛαN0P̃ is defined. Furthermore, from (37), estimate (39) holds
with G(x, t) in place of N0P̃ (x, t).

We apply Λ0Λα to both sides of LF = 0 and use Proposition 6, concluding
that

(I + Λ0ΛαN0)P̃ (x, t) = a(x) + P0(x)tα. (40)

Furthermore, from inequality (39) (applied to G) and (32) on page 22,

0 = a(x) + lim
t→0+

P̃ (x, t) = a(x).

Hence a ≡ 0.
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Lemma 4. For all s ∈ R
+,

P0(δ(s)x) = s−α−dP0(x).

Proof
From formula (13) on page 9

P̃ (δ(s)x, st) = s−dP̃ (x, t).

From (40) and (39),

P0(δ(s)x) = lim
t→0+

t−αP̃ (δ(s)x, t)

= lim
t→0+

(st)−αP̃ (δ(s)x, st)

= s−d−αP0(x)

proving the lemma.

Let

Qm(x, t) = t−α

m
∑

k=0

(−1)k(Λ0ΛαN0)
k[P0(x)tα]

= t−α

m
∑

k=0

(−1)k(Λ0ΛαN0)
k(I + Λ0ΛαN0)P̃ (x, t)

= t−α
(

I + (−1)m(Λ0ΛαN0)
m+1

)

P̃ (x, t)

(41)

Note that
Nk

0 =
∑

k≤|I|≤2k

C(k, I)t‖I‖XI . (42)

Since t‖I‖ is an eigenfunction for Λ0Λα for each I, we see that

(Λ0ΛαN0)
k[P0(x)tα] =

∑

k≤|I|≤2k

C̃(k, I)tα+‖I‖XIP0(x).

From Lemma 4, XIP0 is δ(t)-homogeneous of homogeneous degree −d−α−
‖I‖. We set

Pm
β (x) =

m
∑

k=0

∑

‖I‖=β

(−1)kC̃(k, I)XIP0(x).
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The first equality in (41) together with (33) on page 22 shows that

Qm(t, x) =
∑

β≤2m

tβPm
β (x). (43)

Let
R̃Asy

m (x, t) = P̃ (x, t) − tαQm(x, t).

The third equality in (41) shows

R̃Asy
m (x, t) = ±(Λ0ΛαN0)

m+1P̃ (x, t) (44)

From Corollary 3 on page 22 , formula (42) (with k = m + 1), and the
fact that Xi commutes with both tdi and Λ0Λα, we find that for all I

|RN(XI)R̃Asy
m (x, t)| ≤ Ctαξ(t)d1(m+1)|x|−(d+α+d1(m+1)+‖I‖) (45)

If β ≥ (m + 1)d1 then, from the homogeneity of Pm
β , we may include

tα+βPm
β (x) in the remainder RAsy

m (x, t) in formula (34) on page 22, showing
that in the sum (43) we may may restrict the sum to β < d1(m + 1). This
proves formula (35) on page 22 in the case that µ = d1(m + 1). The general
case follows by choosing an m ∈ N for which d1(m + 1) ≥ µ and applying
what was just proved, transferring appropriate terms to the remainder. We
temporarily denote the coefficients in (34) by P µ

β . (It will follow from the
uniqueness that they are independent of µ.)

To prove the uniqueness of the P µ
β , it suffices to note the following lemma

that follows from a simple induction argument. (We include the logarithmic
terms for later purposes.) A similar argument shows that the P µ

β are, in fact,
independent of µ.

Lemma 5. Suppose that bβ and cβ are sequences of scalars indexed by Ñ for
which an estimate of the form

|
∑

β<µ

tβ(bβ + cβ ln t)| < Ctµ| ln t|

holds for t ∈ (0, 1). Then bβ = cβ = 0 for all β < µ.

For later purposes, we note the following corollary, which is an immediate
consequence of (44).

Corollary 4. Let notation be as in Theorem 6 on page 22. Then

|RN(XI)Θ(Θ − α)RAsy
µ (x, t)| ≤ Ctαξ(t)µ|x|−(d+α+µ+‖I‖)
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4.2 Taylor Expansion of P̃ (nx, t)

In this section, we discuss the homogeneous Taylor expansion of P̃ (nx, t) in
x. First we note the following fundamental result:

Lemma 6. For all multi-indecies I there are a, b ∈ R such that

|RN(XI)P̃ (nx, t)| ≤ C(tα + t−(d+‖I‖))(1 + |x|)d+α+‖I‖(1 + |n|)−(d+α+‖I‖).

Proof
From from (32) on page 22, it suffices to show that

tα(1 + |n|)d+α+‖I‖(t + |nx|)−(d+α+‖I‖)

≤ C(tα + t−(d+‖I‖))(1 + |x|)d+α+‖I‖.

If either |n| ≤ 2|x| or |n| ≤ 1, this follows from t + |nx| ≥ t and, in the
|n| ≤ 2|x| case, also 1 + |n| ≤ 1 + 2|x|.

If |n| ≥ 2|x| and |n| ≥ 1, the reverse triangle inequality implies t+ |nx| ≥
|n|/2. Our lemma follows from

(1 + |n|)d+α+‖I‖

(

|n|

2

)−(d+α+‖I‖)

≤ 4d+α+‖I‖

The following result describes the homogeneous Taylor expansion of P̃ .

Proposition 7. There is a sequence functions pβ(n, x, t) which are C∞ in
(n, t) and polynomial in x, indexed by Ñ, such that for all µ ∈ Ñ,

P̃ (nx, t) =
∑

β<µ

pβ(n, x, t) + RTay
µ (n, x, t) (46)

where for all multi-indecies I, there positive scalars b, c, and τ > µ such that

|RN(XI)nR
Tay
µ (n, x, t)|

≤ C(tα + t−c)(|x|µ + |x|τ )(1 + |n|)−(µ+d+α+‖I‖).
(47)

(The subscript on RN(XI)n indicates that this operator acts in the n-variable.)
Furthermore, the pβ satisfy

pβ(n, δ(s)x, st) = sβpβ(n, x, t)

pβ(δ(s)n, x, st) = t−d−α−βpβ(n, x, t).
(48)
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Proof
Assume for the moment that µ = d1m where m ∈ N.
For f an integrable function on R

+, let

Intrf(t) =

∫ t

0

f(r) dr.

(The subscript denotes the variable of integration.)
It is easily seen that if h ∈ C∞(R) then, for all m ∈ N,

h(r) −
m

∑

k=0

h(k)(0)

k!
rk = (Intr)

m(∂m
r h)(r).

Let f ∈ C∞(Rm). By applying the preceding equality at r = 1 to the function
g(r) = f(rx), we obtain the multi-variable Taylor expansion

f(x) =
m

∑

|I|<m

∂If(0)

|I|!
xI + RTay

m (x) (49)

where
RTay

m (x) = (Intr)
m(∂m

r f(rx))|r=1. (50)

We apply this with f(x) = P̃ (nx, t). Note that

∂r|r=0h(n(rx)) =
∑

xiRN(Xi)h(n).

Hence, from (49),

P̃ (nx, t) =
∑

|I|<m

RN(XI)P̃ (n, t)

|I|!
xI + R̃Tay

m (n, x, t). (51)

We divide the sum (51) into two sums, the first containing those terms
where ‖I‖ < µ = d1m. For each β ∈ Ñ, β < µ, we define the summands
in (46) by

pβ(n, x, t) =
∑

‖I‖=β

RN(XI)P̃ (n, t)

|I|!
xI . (52)

It is clear that pβ(n, x, t) is a polynomial in x which satisfies the homogeneity
conditions (48).



4 THE POISSON KERNEL 28

From (33) on page 22, |I| = m implies that ‖I‖ ∈ [µ,m]. Suppose that
‖I‖ ≥ µ and |I| < m. Then ‖I‖ < m and from Lemma 6 on page 26

|RN(XI)P̃ (n, t)| ≤ C(tα + t−(d+m))(1 + |n|)−(µ+d+α).

Also, since xI is δ(t)-homogeneous of degree ‖I‖,

|xI | ≤ C|x|‖I‖ ≤ C(|x|µ + |x|m).

Hence, the terms in the sum (51) corresponding to β ≥ µ may be incorporated
into the remainder.

To estimate the remainder we write

(∂r)
mP̃ (n(rx), t) =

(

∑

|I|=m

xIRN(XI)[RN(rx)P̃ ]
)

(n, t)

=
∑

|I|=m

xI [RN( Ad ((rx)−1)(XI))P̃ ](n(rx), t)
(53)

Since
Ad (δ(s)x)(δ(s)(Xi)) = δ(s)( Ad (x)(Xi))

we see that
Ad (x)(Xi) =

∑

j≥i

pi,j(x)Xj

where the pi,j(x) are δ(s)-homogeneous polynomials of homogeneous degree
dj − di. More generally

Ad (x)(XI) =
∑

‖J‖ ≥ ‖I‖

|J| = |I|

pI,J(x)XJ

where the pI,J(x) are δ(s)-homogeneous polynomials of homogeneous degree
‖J‖ − ‖I‖.

We replace x by (rx)−1 = −rx, then substitute the above expression
into (53). We find that

(∂r)
mP̃ (n(rx), t) =

∑

|J |=m

qJ(rx)(RN(XJ)P̃ )(n(rx), t) (54)
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where qJ(x) is δ(s)-homogeneous of degree ‖J‖ ∈ [µ,m] in x. Hence, from
Lemma 6 on page 26 and the homogeneity of the qJ , for r ∈ [0, 1],

|(∂r)
mP̃ (n(rx), t)|

≤ C(|x|µ + |x|m)(tα + t−(d+m))(1 + |x|)m+d+α(1 + |n|)−(µ+d+α)

≤ C(tα + t−(d+m))(|x|µ + |x|τ )(1 + |n|)−(µ+d+α)

where τ > µ.
More generally, if we replace P̃ (n(rx), t) in (54) with

RN(XK)nP̃ (n(rx), t) and repeat the same reasoning, we find that a similar
estimate holds with µ in the exponent of (1 + |n|) replaced by µ + ‖K‖.
Estimate (47) on page 26 then follows from (50).

For later purposes, we note the following corollary which follows from the
observation that since P̃ is harmonic

Θ(Θ − α)P̃ (x, t) = −N0P̃ (x, t).

together with formulas (50) and (54). We leave the details to the reader.

Corollary 5. Let notation be as in Proposition 7. Then there are positive
scalars a, b, c, and τ > µ such that

|Θ(Θ − α)RN(XI)nR
Tay
µ (n, x, t)|

≤ C(ta + t−c)(|x|µ + |x|τ )(1 + |n|)−(µ+d+α+‖I‖).

4.3 Proof of Theorem 3 on page 9.

From formula (52) on page 27 the coefficients in the homogeneous Taylor
expansion of P (nx, t) are

pβ(n, x, t) =
∑

‖I‖=β

RN(XI)P̃ (n, t)

|I|!
xI .

We substitute the asymptotic expansion (34) for P̃ (n, t), obtaining a sum
over I and γ of terms the form

RN(XI)Pγ(n)

|I|!
xItα+γ.
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Note that by hypothesis |n| ≥ 1 so the hypotheses of Theorem 6 are fulfilled.
We set

Hβ(n, x, t) =
∑

‖I‖+γ=β

RN(XI)Pγ(n)

|I|!
xItγ

so that Hβ satisfies the first homogeneity condition in Theorem 3. Note
also that from Theorem 6 on page 22, RN(XI)Pγ(n) is δ(t)-homogeneous of
degree −‖I‖ − γ − d − α in n, showing that Hβ also satisfies the second
homogeneity condition.

We need to estimate

Pµ(n, x, t) = P̃ (nx, t) − tα
∑

β<µ

Hβ(n, x, t)

= P̃ (nx, t) −
∑

β<µ

pβ(n, x, t)

+
∑

‖I‖<µ

RN(XI)P̃ (n, t)

|I|!
xI − tα

∑

‖I‖+γ<µ

RN(XI)Pγ(n)

|I|!

But
RN(XI)P̃ (n, t)

|I|!
xI − tα

∑

γ<µ−‖I‖

RN(XI)Pγ(n)

|I|!
xItγ

=
xI

|I|!
RN(XI)RAsy

µ−‖I‖(n, t)

Hence,

Pµ(n, x, t) = RTay
µ (n, x, t) +

∑

‖I‖<µ

xI

|I|!
RN(XI)RAsy

µ−‖I‖(n, t) (55)

where RTay
µ is as in Proposition 7 on page 26. The estimate (15) on page 10

follows from (47) on page 26 and (35) on page 22.
To prove the uniqueness of the Hβ, suppose that H̃β is a second sequence

satisfying the conclusions of Theorem 3 on page 9. Then from Theorem 3,
for fixed x, t and, µ ∈ Ñ,

|
∑

β<µ

(Hβ(n, x, t) − H̃β(n, x, t))| ≤ C(1 + |n|)−d−α−µ
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We replace n by δ(s−1)n where s ∈ (0, 1). It then follows from the homo-
geneity of the Hβ in n together with Lemma 5 on page 25, with t replaced
by s, that Hβ − H̃β ≡ 0, proving the uniqueness.

Finally, we must prove the harmonicity of each the Hβ(n, x, t) in (x, t).
For this, we note that

|LQµ(n, x, t)| = |L(P̃ (nx, t) − Qµ(n, x, t))|

= |LPµ(n, x, t)|

≤ C(x, t)(1 + |n|)−d−α−µ

where we used (55) and Corollaries 5 on page 29 and 4 on page 25 in the last
estimate. It follows similarly to the proof of the uniqueness of the Hβ that
for each β < µ, LHβ(n, x, t) ≡ 0, finishing our proof.

5 Boundary Values.

5.1 C∞ asymptotic expansions

Suppose F is a L-harmonic function on S which satisfies condition (6) on
page 4. We initially replace F with a function with better regularity prop-
erties.

Lemma 7. Let ‖ · ‖ be the Euclidean norm on N = N . Then

‖x‖ ≤ C(|x|d1 + |x|)

|x| ≤ C ′(‖x‖1/d1 + ‖x‖)

Proof Since all homogeneous gauges are comparable, we may replace | · | with
| · |∞ where

|x|∞ = sup
i

|xi|
1/di .

Similarly, we may replace ‖ · ‖ with ‖ · ‖∞ where

‖x‖∞ = sup
i

|xi|.

There is a j such that
|xj|

1/dj = |x|∞.
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For this j,
|xj|

di/dj ≥ |xi|

for all i. Since d1 ≤ di ≤ 1, it follows that

‖x‖∞ ≤ C(|x|d1

∞ + |x|∞)

proving the first inequality. The proof of the second is similar and left to the
reader.

It follows that ‖ · ‖p,k in (16) on page 10 defines the Schwartz class on N .
For η ∈ S(N) let

Fη(x, t) =

∫

η(y)F (y−1x, t). (56)

Lemma 8. Let F be a L-harmonic function on S which satisfies condition (6)
on page 4. For each multi-index I, there is a scalar C such that

|LN(XI)Fη(x, t)| ≤ C‖η‖|I|,k+d+1(t
a + tb)(1 + |x|)k

where k, a, and b are as in condition (6).

Proof Since
LN(XI)Fη = FLN (XI)η

it suffices to assume that XI = 1. It follows from condition (6) that

|Fη(x, t)| ≤ A(ta + tb)

∫

|η(y)|(|y−1x| + 1)k dy.

We estimate the integrand in several cases:

Case 1: |y| ≥ 1
Suppose first that |x| ≥ 1. In this case

(|y−1x| + 1)k

|x|k|y|k
≤

(|y| + |x| + 1)k

|x|k|y|k

≤ 3k.

Hence, for |x| ≥ 1,
∫

|y|≥1

|η(y)|(|y−1x| + 1)k dy

≤ C|x|k‖η‖0,k+d+1

∫

|y|≥1

|y|k|(1 + |y|)−k−d−1 dy.
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The integral is finite due to (19) on page 14.
On the other hand, for |x| ≤ 1,

∫

|y|≥1

|η(y)|(|y−1x| + 1)k dy ≤

∫

N

(|y| + 2)k|η(y)| dy.

which is estimated similarly.

Case 2: |y| ≤ 1.
In this case,

∫

|y|≤1

|η(y)|(|y−1x| + 1)k dy ≤ (|x| + 2)k

∫

|y|≤1

|η(y)| dy.

which we estimate as before. Our lemma follows by summing the results of
Case 1 and Case 2.

We (temporarily) replace F with Fη. Hence we assume

|LN(XI)F (x, t)| ≤ Cκ|I|(t
a + tb)(1 + |x|)k

where κ|I| = ‖η‖|I|,k+d+1 for some η ∈ S(N). Our arguments will involve
replacing the above inequality with sharper inequalities of a similar form.
We will eventually need to understand the continuity properties with respect
to η of our constructions. We say that a given scalar is “ independent of κ”
if it is independent of the function κ. Thus, any scalar that requires a value
of κI in its definition will not be independent of κ. In the discussion below,
unless stated otherwise, we are stating that all of the scalars are independent
of κ.

For all I,

RN(XI) =
∑

‖J‖ ≥ ‖I‖

|J| = |I|

pJ(x)LN(XJ)

where pJ(x) are δ(t)-homogeneous polynomials of homogeneous degree ‖J‖−
‖I‖. From (33) on page 22, ‖J‖ ≤ |I|. It follows that

|RN(XI)F (x, t)| ≤ Cκ|I|(t
a + tb)(1 + |x|)k′

(57)

where a and b are as in condition (6) and k′ = k + |I| − ‖I‖ .
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We make use of the operators Λβ which were defined in (36) on page 23
as well as the following operators

Λ1
β(f)(t, x) = tβ

∫ t

1

s−β−1f(s, x) ds.

Then Λ1
β is a right inverse for Θ − β. Furthermore, for all ǫ > 0,

Λ1
β(tγ) =

{

C1t
β + C2t

γ γ 6= β

Ctβ ln t γ = β
(58)

Hence, if |f(x, t)| ≤ C(x)tγ then, for all ǫ > 0,

|Λ1
β(f(x, t)| ≤ C(x)Cǫ(t

β + tγ−ǫ + tγ+ǫ) (59)

for the same C(x), where ǫ can be chosen to be 0 if β 6= γ.
Throughout the following discussion, k represents a generic constant which,

like C, may change from like to line. Typically, k will depend on at least I.

Proposition 8. Suppose that F is an L-harmonic function for which in-
equality (57) holds. Then an inequality of the form of (57) holds for some
0 ≤ a < b where κ|I| is replaced by κ|I|+p for some p which is independent of
I and k′ is replaced by a value k which may depend on I.

Proof
We assume with out loss of generality that b > α.
Applying Λ1

0Λ
1
α to both sides of LF = 0 and using the appropriate ana-

logue of Proposition 6 on page 23 shows that

(I + Λ1
0Λ

1
αN0)F = F̃0(x) + F̃1(x)tα. (60)

where N0 is defined in (38) on page 23.
It follows from (57) and (59) with β = α, together with b > α, that all

sufficiently small ǫ > 0

|Λ1
α(tdiXiF )(x, t)| ≤ Cǫκ1(t

α + ta+di−ǫ + tb+di)(1 + |x|)k.

Hence, choosing ǫ < d1/4, using (59) with β = 0 in the second inequality,

|(Λ1
αN0)F (x, t)| ≤ Cκ2(t

α + ta+ 3

4
d1 + tb+2)(1 + |x|)k

|(Λ1
0Λ

1
αN0)F (x, t)| ≤ Cκ2(1 + tα + ta+d1/2 + tb+2)(1 + |x|)k

≤ Cκ2(1 + ta+d1/2 + tb+2)(1 + |x|)k.

(61)
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Thus from (60) and (57)

|F̃0(x) + tαF̃1(x)| ≤ Cκ2(1 + ta + tb+2)(1 + |x|)k.

By choosing specific values of t, it follows that for i = 1, 2

|F̃i(x)| ≤ Cκ2(1 + |x|)k. (62)

More generally, inequality (57) with I general, together with (60), says that

|RN(XI)F̃i(x)| ≤ Cκ|I|+2(1 + |x|)k. (63)

We multiply both sides of (60) by RN(XI), solve for RN(XI)F , and repeat
the argument leading to inequality (61) finding

|RN(XI)F (x, t)| ≤ Cκ|I|+2(1 + ta+d1/2 + tb+2)(1 + |x|)k.

Hence (57) holds with a replaced by a′ = min{a + d1/2, 0}, b replaced by
b + 2, and κ|I| replaced by κ|I|+2. Repeating this argument as many times as
necessary, shows that (57) holds for some a ≥ 0 and some k, and κ|I| replaced
by κ|I|+p proving the lemma.

Corollary 6. Under the hypotheses of Proposition 8

lim
t→0+

F (x, t) = F0(x)

exists. Furthermore, for all multi-indecies I

|RN(XI)(F (x, t) − F0(x))| ≤ Cκ|I|+p(t
a + tb)(1 + |x|)k

for some k and some b > a > 0 where a, b, and p are independent of I.

Proof
Let Λβ be as in (36) on page 23. From Proposition 8, (Λ0Λ

1
αN0)F is

defined and, from (59) and (37) on page 23, satisfies

|RN(XI)(Λ0Λ
1
αN0)F (x, t)|

≤ Cκp+|I|+2(t
α + ta+ 3

4
d1 + tb+2)(1 + |x|)k.

(64)

Applying Λ0Λ
1
α to both sides of LF = 0 and using the appropriate ana-

logue of Proposition 6 on page 23

(I + Λ0Λ
1
αN0)F = F0(x) + G̃0(x)tα. (65)
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where
|RN(XI)F0(x)| ≤ Cκp+|I|+2(1 + |x|)k

|RN(XI)G̃0(x)| ≤ Cκp+|I|+2(1 + |x|)k.

Thus

|RN(XI)(F (x, t) − F0(x))| = |RN(XI)(G̃0(x)tα − Λ0Λ
1
αN0F )|

≤ Cκp+2(t
α + ta+ 3

4
d1 + tb+2)(1 + |x|)k.

This proves the corollary.
The following is the main result of this subsection.

Theorem 7. Suppose that F is an L-harmonic satisfying (57) on page 33.
Then for all β ∈ Ñ, there are uniquely defined functions Fβ, Gβ and Hβ in
C∞(N) such that for all µ ∈ Ñ and all multi-indecies I

|RN(XI)(F (x, t) − Qµ(x, t))|

≤ Cκ|I|+p(t
µ ln t + tb)(1 + |x|)k

(66)

where

Qµ(x, t) =

{

∑

β<µ tβFβ(x) + tα+βGβ(x) α /∈ Ñ
∑

β<µ tβFβ(x) + tα+β((ln t)Hβ(x) + Gβ(x)) α ∈ Ñ.

and p, and b > µ are independent of I (but not necessarily of µ). Further-
more, if Tβ is either Fβ, Gβ ot Hβ then

|RN(XI)Tβ(x)| ≤ Cκ|I|+p(1 + |x|)k. (67)

Also, the relations (22) and (23) on page 15 and (25) on page 17 are satisfied.
Finally, F is uniquely determined by F0 and G0.

Proof From Proposition 8 we may assume that in (57) on page 33, a ≥ 0,
provided we replace κ|I| with κp+|I|.

For m ∈ N, we define

Q̃m =
m

∑

i=0

(−1)i(Λ0Λ
1
αN0)

i(F0 + G̃0t
α)

where F0 and G̃0 are as in (65). It is clear from (58) on page 34 that Q̃m(x, t)
has an expansion of the form (9) on page 5 where p(x, t), q(x, t), and h(x, t)
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depend polynomially on t (in the sense of Definition 2) and the coefficients
pβ(x), qβ(x), and hβ(x) of tβ in p(x, t), q(x, t) and h(x, t) satisfy an estimate
of the form of (67). (We are not claiming, however, that these terms depend
polynomially on x.)

The reasoning that resulted in equation (45) on page 25 shows that

F (x, t) − Q̃m(x, t) = (−1)m(Λ0Λ
1
αN0)

m+1F (x, t) (68)

We apply (59) on page 34 with β = α and (37) on page 23 with β = 0,
finding that for some b > α and all sufficiently small ǫ > 0

|F (x, t) − Q̃m(x, t)| ≤ Cǫκp+2m+2(t
α + ta+(m+1)d1−ǫ + tb)(1 + |x|)k.

Hence, by choosing m so that d1(m + 1) > α and ǫ < a + (m + 1)d1 − α, we
see that

|F (x, t) − Q̃m(x, t)| ≤ Cκp′(t
α + tb)(1 + |x|)k

where b > α and p′ = p + 2m + 2. More generally, the same argument shows

|RN(XI)
(

F (x, t) − Q̃m(x, t)
)

| ≤ Cκp′+|I|(t
α + tb)(1 + |x|)k (69)

Let H = F − Q̃m. Then

LH = −LQ̃m (70)

which is polynomial-like in t.
Note that (69) implies that N0H is in the domain of Λ0Λα. Applying

Λ0Λα to both sides of (70) and using Proposition 6 on page 23 shows that

(I + Λ0ΛαN0)H(x, t) = Z(x, t) (71)

where Z(x, t) is again polynomial-like in t where Λ0 and Λα are defined
by (36) on page 23.

It also follows from (69) that

|RN(XI)Z(x, t)| ≤ Cκp′+2+|I|(t
α + tb)(1 + |x|)k. (72)

Hence N0Z is also in the domain of Λ0Λα. Let

Hq =

q
∑

i=0

(−1)i(Λ0ΛαN0)
iZ.
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Clearly, Hq is also polynomial-like in t.
Reasoning as in formula (41) on page 24, we see

H − Hq = (−1)q(Λ0ΛαN0)
q+1Z.

Reasoning as in the proof of (45) on page 25, and using (57) on page 33, we
see that for some p and some b > d1(q + 1)

|H(x, t) − Hq(x, t)| ≤ Cκp(t
d1(q+1) + tb)(1 + |x|)k.

Choose q so that d(q + 1) > µ. Write Hq in the form of (9) on page 5
where p(x, t), q(x, t), and h(x, t) depend polynomially on t and then expand
each of these terms in a finite sum of the form in Definition 3 on page 5. We
may omit any terms where β ≥ µ without effecting the validity of (66) on
page 36. The existence of the desired expansion follows. The uniqueness of
the coefficients follows from Lemma 5 on page 25.

Next we show that the relations (22) and (23) on page 15 and (25) on
page 17 are satisfied. Notice that

(Θ − α)ΘΛ0ΛαN0 = N0

Hence, from (68),

Θ(Θ − α)(H − Hq) = (−1)qN0(Λ0ΛαN0)
qZ

where Z is as in (71). It follows from this and (72) that for some b > d1(q+1)
all sufficiently small ǫ > 0

|L(F − Q̃m − Hq)(x, t)| ≤ Cǫ(t
d1(q+1)−ǫ + tb)(1 + |x|)k.

Choose q and ǫ so that d1(q +1)− ǫ > µ. Since LF = 0, this implies that the
coefficients of tβ in the expansion of L(Qµ + Hq) in powers of t must vanish
for β < µ. This implies that the desired recursion relations hold.

Finally, from Propositions 3 and 4 on page 17, the coefficients in the
asymptotic expansion are uniquely determined by F0 and G0. If both of
these terms are zero, then F vanishes to infinite order at 0, showing that F
extends to a C∞ function on N × R which is zero on N × R

−. Theorem 2
of [6] shows that then F ≡ 0, finishing our theorem.

Corollary 7. Suppose that F satisfies the hypotheses of Theorem 7 and that
F (t, x) is a polynomial in x of degree at most m for all t ∈ R

+. Then F (t, x)
is polynomial-like in the sense of Definition 2.
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Proof It follows from Corollary 6 on page 35 that F0(x) is a polynomial
of degree at most m. Then, from Theorem 5 on page 18, P (F0, 0) is a
polynomial-like harmonic function. Let

G(t, x) = F (t, x) − P (F0, 0)(t, x).

Then G satisfies the same assumptions as F as well as G(0, x) = 0. It follows
that G = P (0, G0) where

G0(x) = lim
t→0

t−αG(t, x).

Hence, G0(x) is a polynomial as well. It then follows that G(t, x) is polynomial-
like, proving the result.

5.2 Distributional asymptotic expansions

Finally, we drop our assumption that F satisfies (57) on page 33, assuming
only that F is a L-harmonic function on S which satisfies condition (6) on
page 4. It follows from Lemma 7 on page 31 that for each t ∈ R

+, F (·, t)
defines an element of S ′(N). In fact, for η ∈ S(N),

< F (·, t), η(·) >= Fη∗(0, t)

where Fη is defined in (56) on page 32 and

η∗(x) = η(x−1).

The following is immediate from Corollary 6 on page 35 applied to Fη(0, t).

Corollary 8. Suppose that F is a L-harmonic function on S which satisfies
condition (6) on page 4. Then

lim
t→0+

F (·, t) = F0(·)

exists in S ′(N), where F0 ∈ S ′(N).

A similar argument proves the following distributional version of Theo-
rem 7. Specifically, < Fβ(·), η(·) >, < Gβ(·), η(·) >, and
< Hβ(·), η(·) > are, respectively, (F ∗

η )β(0), (G∗
η)β(0), and (H∗

η )β(0).
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Theorem 8. Suppose that F is a L-harmonic function on S which satisfies
condition (6) on page 4. Then for all β ∈ Ñ, there are uniquely defined
Schwartz distributions Fβ, Gβ, and Hβ on N such that for all µ ∈ Ñ and all
multi-indecies I and all η ∈ S(N)

| < F (·, t) − Qµ(·, t), η(·) > | ≤ C(tµ ln t + tb)‖η‖p,k+d+1 (73)

where

Qµ(·, t) =

{

∑

β<µ tβFβ(·) + tα+βGβ(·) α /∈ Ñ
∑

β<µ tβFβ(·) + tα+β((ln t)Hβ(·) + Gβ(·)) α ∈ Ñ.

p, and b > µ are independent of I and ‖·‖p,k+d+1 is as in (56) on page 32.(But
p will typically depend on µ.) Furthermore, the relations (23) and (22) on
page 15 and (25) on page 17 are satisfied. Finally, F is uniquely determined
by F0 and G0.

6 Liouville Theorem

6.1 Liouville Theorem: b < −α − 4

In this section we prove the following “Liouville Theorem”. Here χL = χ(0,1]

and χR = χ[1,∞).

Theorem 9. Assume that F is L-harmonic and satisfies

|F (x, t)| ≤ C(tαχL(t) + tbχR(t))(1 + |x|)k (74)

where b < −α − 4. Then F ≡ 0.

We prove that F is a polynomial-like function in the sense of Definition 3
on page 5. It then follows trivially from the above inequality that F ≡ 0.
An approximate identity argument implies that we may assume that F = Fη

where Fη is defined in (56) on page 32. Hence, from Lemma 8 on page 32, we
may assume that inequality (57) on page 33 holds with a = α and b < −α−4.

Lemma 9. For i = 1, 2,

|ΘiF (x, t)| ≤ C(tαχL(t) + tb+2χR(t))(1 + |x|)k

for some k.
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Proof
Let Λβ be as in (36) on page 23. Applying Λ0Λα to both sides of LF = 0

and using Proposition 6 on page 23 we see

(I + Λ0ΛαN0)F = F0(x) + G̃0(x)tα.

where N0 is defined in (38) on page 23. Hence

ΘF = −ΛαN0F + αG̃0(x)tα

from which the desired estimate for ΘF on (0, 1] follows. The estimate for
Θ2F on (0, 1] follows from

Θ2F = αΘF − N0F.

To prove the desired estimate on [1,∞) we repeat the preceding argument
with Λβ replaced by

Λ∞
β = −tβ

∫ ∞

t

s−β−1f(s, x) ds.

In this case, the term corresponding to G̃0 above vanishes due to (57). Our
lemma follows from (57) and the fact that the highest power of t occurring
in the definition of N0 is t2.

It follows from Corollary 7 on page 38, that to prove that F (x, t) is
polynomial-like, it suffices to prove that F (x, t) depends polynomially on x.
For the proof, we recall an argument of Geller [Gel]. From Lemma 1 on
page 18, we wish to show that

RN(XI)F = 0

whenever |I| is sufficiently large.
This in turn is equivalent with showing that

< F,RN(XI)φ >= 0

for all sufficiently large I and all φ ∈ C∞
c (S) where < ·, · > is defined by

integration agains right-invariant Haar measure on S–i.e.

< f, h >=

∫

N×R+

f(x, t)h(x, t) t−1dxdt
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and dx is Haar measure on N .
We show that for |I| sufficiently large, there is a C∞ function ψI such

that
LtψI = RN(XI)φ

where

Lt = Θ2 + αΘ +
n

∑

1

(t2diX2
i − cit

diXi).

With luck, it should follow that

< F,RN(XI)φ > =< F,LtψI >

=< LF, ψI >= 0.
(75)

In light of inequality (74) (or rather the version (57) on page 33 that contains
RN(XI)) and Lemma 9, this computation will be valid provided for p =
0, 1, 2,

|tp diRN(Xp
i )ψI(x, t)| ≤ C(χL(t) + tα+2χR(t))(1 + |x|)−k−d−1

|ΘpψI(x, t)| ≤ C(χL(t) + tαχR(t))(1 + |x|)−k−d−1.
(76)

We prove the existence of ψI in Corollary 10 on page 45 below using
some recent results of R. Urban [22] concerning the Green’s function for a
class of operators that includes Lt. A Green’s function for Lt is a function
G ∈ C∞(S \ {(0, 1)}) ∩ L1

loc(S) for which

LtG = δ(0,1)

as a distribution, where functions are identified with distributions using right
invariant Haar measure on S. The modular function for right-invariant Haar
measure on S is

χ(n, t) = t−d.

We define

f ∗ h(x) =

∫

S

f(g)h(g−1x)χ(g) dg

where dg is right-invariant Haar measure. (Note that χ(g)dg is left-invariant
Haar measure.) Since Lt is left invariant, it is easily seen that for all φ ∈
C∞

c (S),
Lt(φ ∗ G) = φ.

In [22], Urban proved the following result.
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Theorem 10 (R. Urban). There exists a Green’s function G for Lt which
satisfies the following conditions:

For every compact neighborhood U of (0, 1) in S and for all multi-indecies
I and all k ∈ N ∪ {0} there is a constant C such that

|ΘkRN(XI)G(x, t)| ≤

{

C(|x| + t)−‖I‖−d−αtα (x, t) ∈ (Q1 ∪ U)c,

C (x, t) ∈ Q1 \ U .
(77)

where Qǫ = {|x| ≤ ǫ} × {0 < t ≤ ǫ} and d =
∑n

1 dj.

Remark. Theorem 10 implies that for all ǫ > 0, RN(XI)G(x, t) is uniformly
bounded on Qǫ\U . Hence, we may replace Q1 by Qǫ in the second inequality.

We require a slight variant on Urban’s Theorem.

Proposition 9. Theorem 10 holds with LN(XI) in place of RN(XI).

Proof The proof is very similar to that of Proposition 5 on page 21 so
we omit many details. We may assume, without loss of generality, that
U ⊂ {|x| ≤ 1}×R

+. On {|x| ≤ 1}×R
+, the result follows from Theorem 10

together with equation (31) on page 21. Hence we may assume |x| ≥ 1, in
which case we are attempting to prove the first inequality.

Let σ(s)(x, t) = (δ(s)x, st). From the reasoning in the proof of Propo-
sition 5 on page 21 it suffices to show that on {1 ≤ |x| ≤ 2} × R

+, for all
s ≥ 1,

|LN(XI)Θk(G ◦ σ(s))(x, t)| ≤ CIs
−d(|x| + t)−d−α−‖I‖tα.

This, however, follows from Theorem 10 together with equation (31) on
page 21.

Corollary 9. Let φ ∈ C∞
c (S) and let ψI = (RN(XI)φ) ∗ G. Then there is a

τ > 0 such that

|ψI(x, t)| ≤

{

C(|x| + t)−‖I‖−d−αtα (x, t) ∈ (Qτ ∪ U)c,

C (x, t) ∈ Qτ \ U .
(78)

Proof
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We may assume with loss of generality that (0, 1) ∈ supp φ. Let φ̃(x, t) =
t−dφ(x, t). Then

ψI(x, t) =

∫

RN(XI)φ̃(y, u)G((y, u)−1(x, t))
dydu

u

=

∫

RN(XI)φ̃(y, u)G(δ(u−1)(y−1x), u−1t)
dydu

u

=

∫

φ̃(y, u)u−‖I‖LN(XI)G(δ(u−1)(y−1x), u−1t)
dydu

u

=

∫

φ̃(y, u)u−‖I‖LN(XI)G((y, u)−1(x, t))
dydu

u

There are ǫ > 0 and τ > 0 such that

(supp φ)Q1 ⊂ Qτ

(supp φ)−1Qτ ⊂ Qǫ.

We set
U1 = (supp φ)U .

Then
(supp φ)−1U c

1 ⊂ U c

(supp φ)−1Qc
τ ⊂ Qc

1.

Hence
(supp φ)−1 (Qτ \ U1) ⊂ Qǫ \ U

(supp φ)−1 (Qτ ∪ U1)
c ⊂ (Q1 ∪ U)c

Hence, from Corollary 9, along with the remark following Theorem 10, for
(x, t) ∈ Qτ \ U1,

|ψI(x, t)| ≤C

∫

supp φ

|φ̃(y, u)|u−‖I‖dydu

u

= C ′

while for (x, t) ∈ (Qτ ∪ U1)
c,

|ψI(x, t)|

≤ C

∫

supp φ

|φ̃(y, u)|u−‖I‖(u−1|y−1x| + u−1t)−‖I‖−d−αtαu−α dydu

u

= C

∫

supp φ

|φ̃(y, u)|ud−1(|y−1x| + t)−‖I‖−d−αtα dydu

≤ C ′(|x| + t)−‖I‖−d−αtα
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Our proposition follows.

Corollary 10. For ‖I‖ > k + 1, the function ψI(x, t) defined above satisfies
the inequalities (76) on page 42.

Proof On U , the desired inequalities are automatic from the compactness
of U and the fact that ψI is C∞. If p = 0 in the inequalities (76), then the
desired inequalities off of U are trivial consequences of Corollary 9. Finally,
note that t‖J‖RN(XJ) is left invariant on S. Hence for φ ∈ C∞

c (S),

t‖J‖RN(XJ)(φ ∗ G) = φ ∗ (t‖J‖RN(XJ)G)

Θk(φ ∗ G) = φ ∗ (ΘkG)

Our result follows by repeating the reasoning from Corollary 9, replacing
G with either t‖J‖RN(XJ)G or ΘkG as needed and using Theorem 10 on
page 43.

This finishes the proof of Theorem 9.

6.2 The general Liouville Theorem.

In this section we prove Theorem 2 on page 6. Specifically, we assume

LF (x, t) = H(x, t)

where H(x, t) depends polynomially on x and F satisfies the estimate (10)
on page 6. By replacing F with Fη where Fη is as in (56) on page 32, we
may assume that for all multi-indecies I,

|RN(XI)F (x, t)| ≤ C(tαχL(t) + tbχR(t))(1 + |x|)k (79)

where b is independent of I but k may depend on I. (See the discussion
of (57) on page 33.)

There is a “trick” that allows us to assume that H = 0. Let

Z = span {Xi | di = 1}.

Then Z is a δ(t)-invariant central subgroup of N . By F (x, y, t) we mean the
function on N × Z × R

+ defined by

F (x, y, t) = F (xy, t).
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For (x, t) ∈ S, let
F∧(x, ·, t) = F (x, ·, t)∧ (80)

where “ ∧ ” denotes the (Euclidean) distributional Fourier transformation on
Z which is an element of S ′(Z∗). Let ξ be the variable in Z∗. From (79),
(LF )∧ is a tempered distribution in ξ supported at ξ = 0.

Let φ ∈ C∞
c (Z∗) be supported in I(c, d) where c > 0 and

I(c, d) = {ξ ∈ Z∗ | c < ‖ξ‖ < d} (81)

and ‖ · ‖ is the Euclidean norm on Z∗. Let

G(x, t) =

∫

Z

φ∨(y)F (xy−1, t) dy

so that
G∧(x, ξ, t) = φ(ξ)F∧(x, ξ, t).

Then (LG)∧ = 0. Hence, G is L-harmonic.
Using Theorem 9 on page 40, we will prove the following:

Proposition 10. Suppose that F is an L-harmonic function such that RN(XI)F
satisfies the estimate (79) where C and k may depend on I. Suppose also
that F∧ is supported in I(c, d) where c > 0. Then F ≡ 0.

We claim that Proposition 10 implies Theorem 2. To see this, note that
it follows that the function G above is zero for all choices of φ. Hence F∧ is
supported at ξ = 0, showing that F (x, y, t) depends polynomially on y. Let

N ′ = span {Xi | di < 1}.

For (x, y, t) ∈ N ′ × Z × R
+, write

F (x, y, t) =
∑

|I|≤m

FI(x, t)yI .

where I ranges over the set of multi-indecies of length equal to the dimension
nz of Z and the coordinates in Z are defined by the Xi basis. We identify
N/Z with N ′. The FI define functions on S1 = S/Z = N ′ × R

+.
From the Campbell-Hausdorff Theorem, together with the centrality of

Z, we may express the product on N in terms of the product on N/Z = N ′

as
(x, y)(x1, y1) = (xx1, y + y1 + πZ (p( ad x)(x1)) + R(x, x1))
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where p(·) is a polynomial function on ad (N), πZ is the projection onto Z
in the decompositions N = N ′ + Z, and

‖R(x, x1)‖ ≤ C(x)‖x1‖
2.

It follows that for Xi ∈ N ′ and f ∈ C∞(N),

RN(Xi)f(x, y) = RN1
(Xi)f(x, y) + df(πz(p( ad x)(Xi))

= RN1
(Xi)f(x, y) +

nz
∑

j=1

qj
i (x1, . . . , xi−1)∂yj

where the qj
i are polynomials. In particular, for (x, y, t) ∈ N ′ × Z × R

+,

(LF )(xy, t) = L1Fm(x, y, t) mod (C∞(N1) ⊗ (span |J |<m{y
J}).

where
Fm(x, y, t) =

∑

|I|=m

yIFI(x, t)

and L1 is the operator on S1 defined by equation (4) on page 3 where now
the summation is only over the indecies for which di < 1.

Since LF , by hypothesis, is polynomial in (x, y), the same must be true
for L1Fm. It follows by induction on the dimension of S that we may assume
that Fm is polynomial on N1. We replace F by F ′ = F − Fm. Then F ′

satisfies the same assumptions as F and is of total degree at most m−1 in y.
We may assume by induction on the degree of F in y that F ′ also depends
polynomially on x, proving the polynomial dependence of F . Thus, our
proof of Theorem 2 will be complete, once we have proved Proposition 10 on
page 46. (Note that the last statement in Theorem 2 follows from Corollary 7
on page 38.)

6.3 Asymptotics as t → ∞.

In this section we assume that F is an L-harmonic function that satisfies the
estimate (79).

We may eliminate the first order ∂t terms in L with a change of dependent
variable. Let F̃ (x, t) = t1−sF (x, t) where

s =
1 + α

2
>

1

2
.
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Then, as the reader can check, L̃F̃ = 0 where

L̃ = t2∂2
t + s(1 − s) +

n
∑

1

(t2diX2
i + cit

diXi). (82)

Division by t2 shows
(L0 + Q)F̃ = 0

where
L0 = ∂2

t + s(1 − s)t−2 +
∑

di=1

X2
i ,

Q =
∑

di<1

t−ǫiX2
i +

n
∑

1

t−τiciXi,

ǫi = 2 − 2di > 0, τi = 2 − di > 0.

(83)

Then F̃ satisfies an inequality of the form of (79) where α is replaced by s
and b > s.

Notice that

1. For large t the coefficients of Xi and X2
i in Q become small.

2. t2L0 is essentially the Laplace-Beltrami operator on the upper-half hy-
perspace in R

nz+1.

This suggests analyzing L̃ as a perturbation of L0 for large t.
We work with the Fourier transform F̃∧ which is defined via formula (80)

on page 46. Then F̃∧ is (L∧
0 + Q)-harmonic where

L∧
0 = ∂2

t + s(1 − s)t−2 − ‖ξ‖2.

and ‖ · ‖ is the Euclidean norm on Z∗. Replacing t by (2‖ξ‖)−1t transforms
L∧

0 into

(2‖ξ‖)2

(

∂2
t −

1

4
+

s(1 − s)

t2

)

.

The operator in parentheses is the Whittaker operator with the parameter
k = 0 and m = s − 1/2 = α/2. (Equation (1.6.2), p. 9 of [20]). From p.
50-51 of [20], equations (3.5.3) and (3.5.10), the null space of the Whittaker
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operator is spanned by the following two functions

Ms(t) =
Γ(2s)

Γ(s)2
tse−t/2

∫ 1

0

e−ut[u(1 − u)]s−1 du

Ws(t) =
1

Γ(s)
tse−t/2

∫ ∞

0

e−ut[u(1 + u)]s−1 du.

(84)

where the integrals exist for s > 0.
Following Lang [15], p. 291-293, we let

Ks(ξ, t) =
Γ(s)

Γ(2s)
Ms(2‖ξ‖t)

Js(ξ, t) = Ws(2‖ξ‖t)

(85)

Then Ks(ξ, t) and Js(ξ, t) are L∧
0 -harmonic functions such that

lim
t→0+

t−sKs(ξ, t) =
Γ(2s)

Γ(s)
(2‖ξ‖)s

lim
t→0+

ts−1Js(ξ, t) =
Γ(2s − 1)

Γ(s)
(2‖ξ‖)1−s.

(86)

(See (89) and (91) below for the computation of the limits.)
For f ∈ C∞

c ((Z∗ \ {0}) × R
+), let Λ±f be defined by

Λ+f(ξ, t) = (2‖ξ‖)−1Js(ξ, t)

∫ t

0

Ks(ξ, u)f(ξ, u) du

Λ−f(ξ, t) = (2‖ξ‖)−1Ks(ξ, t)

∫ ∞

t

Js(ξ, u)f(ξ, u) du

(87)

According to the first boxed equation on p. 291 of Lang [15],

Λ = Λ+ + Λ−

is a right inverse for L∧
0 on C∞

c ((R \ {0}) × R
+).

In order to define Λ± on distributions, we need asymptotics for the deriva-
tives of Ms and Ws at both t = 0 and t = ∞. The following results are known.
We provide proofs for the convenience of the reader.
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Lemma 10. For s > 0, the following limits exist.

W n
s,0 = lim

t→0
ts+n−1∂n

t Ws(t)

W n
s,∞ = lim

t→∞
et/2∂n

t Ws(t)

Mn
s,0 = lim

t→0
tn−s∂n

t Ms(t)

Mn
s,∞ = lim

t→∞
e−t/2∂n

t Ms(t).

Proof
From (84) on page 49, with v = ut, du = t−1dv,

∂n
t

(

t−set/2Ws(t)
)

=
(−1)n

Γ(s)

∫ ∞

0

e−utus+n−1(1 + u)s−1 du

=
(−1)n

Γ(s)
t−s−n

∫ ∞

0

e−vvs+n−1(1 +
v

t
)s−1 dv

=
(−1)n

Γ(s)
t−2s+1−n

∫ ∞

0

e−vvs+n−1(t + v)s−1 dv

(88)

Hence

lim
t→0

t2s−1+n∂n
t

(

t−set/2Ws(t)
)

=
(−1)nΓ(2s − n − 1)

Γ(s)

lim
t→∞

ts+n∂n
t

(

t−set/2Ws(t)
)

=
(−1)nΓ(s + n)

Γ(s)

(89)

The first equation implies, in particular, the existence the first limit in
Lemma 10.

From Leibnitz’s rule

∂n
t

(

t−set/2Ws(t)
)

=
n

∑

k=0

(

n
k

)

(Ckt
−s−(n−k) + . . . )et/2∂k

t Ws(t) (90)

where “. . . ” indicates a finite linear combination of {tj} where j > −s− (n−
k). We multiply (90) by t2s−1+n and let t → 0+, finding from (89) that

(−1)nΓ(2s − n − 1)

Γ(s)
=

n
∑

k=0

(

n
k

)

Ck lim
t→0

(

ts+k−1∂k
t Ws(t)

)

.
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The nth limit in the above sum exists provided all of the preceding n − 1
limits exist. Thus, the existence of all of the limits follows by induction on
n.

For the limit as t → ∞, we reason similarly, writing (90) as

∂n
t

(

t−set/2Ws(t)
)

=
n

∑

k=0

(

n
k

)

(Ckt
−s + . . . )et/2∂k

t Ws(t)

where now “. . . ” indicates a finite linear of the form Cjt
j where j < −s. Our

result follows as before by multiplying the above equation by ts and applying
the n = 0 case.

For Ms, we note that from (84) on page 49

∂n
t

(

t−set/2Ms(t)
)

= (−1)n Γ(2s)

Γ(s)2

∫ 1

0

e−utus+n−1(1 − u)s−1 du

= (−1)n Γ(2s)

Γ(s)2
t−n−s

∫ t

0

e−vvs+n−1(1 −
v

t
)s−1 dv

These two equations imply, respectively, that

lim
t→0

∂n
t

(

t−se−t/2Ms(t)
)

=
Γ(2s)(−1)n

Γ(s)2
B(s + n, s)

= (−1)n Γ(2s)Γ(s + n)

Γ(s)Γ(2s + n)

lim
t→∞

tn+s∂n
t

(

t−se−t/2Ms(t)
)

= (−1)n Γ(2s)Γ(s + n)

Γ(s)2

(91)

where B is the beta function. The latter equality implies in particular the
existence of

lim
t→∞

ts∂n
t

(

t−se−t/2Ms(t)
)

.

Our result follows using Leibnitz’s rule and induction just as before.

Corollary 11. For all compact subsets K of Z∗ \ {0} there is a C > 0 such
that for ξ ∈ K,

|∂n
ξ (Ks(ξ, t))| ≤ C

(

tsχL(t) + e‖ξ‖tχR(t)
)

|∂n
ξ (Js(ξ, t))| ≤ C

(

t1−sχL(t) + e−‖ξ‖tχR(t)
)

.
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Suppose that t → f(·, t) is a mapping of R
+ into the space of distributions

on Z∗ \ {0}. We define

<Λ+f(·, t), φ(·) >

=

∫ t

0

< f(·, u), (2‖ · ‖)−1Js(·, t)Ks(·, u)φ(·) > du

<Λ−f(·, t), φ(·) >

=

∫ ∞

t

< f(·, u), (2‖ · ‖)−1Ks(·, t)Js(·, u)φ(·) > du.

(92)

provided the integrals exist and define distributions on Z∗ \ {0}.
For φ ∈ C∞

c (Z∗) and 0 < c < d let

‖φ‖m,c,d = sup{|∂Jφ(ξ)|ξ ∈ I(c, d), 0 ≤ |J | ≤ m} (93)

where I(c, d) is as in (81) on page 46. A distribution φ that is continuous in
‖ · ‖m,c,d for some m is supported in I(c, d). Conversely, a distribution which
is supported in a compact subset of I(c, d) is continuous in ‖ · ‖m,c,d for some
m.

Definition 6. Let t → f(x, ·, t) be a set of mappings of R
+ into the set of

distributions on Z∗\{0} indexed by a parameter x ∈ Λ and let M : Λ×R
+ →

R
+. We say that f(x, ·, t) is uniformly bounded by M(x, t) on I(c, d) where

c > 0 if there exist c < c′ < d′ < d and a constant C such that for all
φ ∈ C∞

c (Z∗ \ {0})

| < f(x, ·, t), φ(·) > | ≤ CM(x, t)‖φ‖m,c′,d′ (94)

where C, c′, d′ and k are all independent of φ and t.

Lemma 11. Suppose t → f(·, t) be a mapping of R
+ into the set of distri-

butions on Z∗ \ {0} that is uniformly bounded by M(t) = taχL(t) + tbχR(t)
on I(c, d) where c > 0 where a > −s − 1. Then, the integrals in (92) exist
and define elements of D′(Z∗).

Proof
From Corollary 11, and inequality (94), the first integrand

in (92) is bounded by a function of the form

C(t1−sχL(t) + e−ctχR(t))

·(us+aχL(u) + ubeduχR(u))‖φ‖m,c,d

(95)
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while the second integrand is bounded by

C(tsχL(t) + edtχR(t))

·(u1−s+aχL(u) + ube−cuχR(u))‖φ‖m,c,d.
(96)

Proposition 11. Suppose that t → f(·, t) satisfies the hypotheses of Lemma 11
where a > s − 2. Then Λ±f also satisfies the hypotheses of Lemma 11 with
a replaced by s.

Proof
We first note that a+s > 2s−2 ≥ −1 since s ≥ 1

2
. Hence, the hypotheses

of Lemma 11 are fulfilled.
We need to show that for φ ∈ C∞

c (Z∗) there is an m ∈ N, and 0 < c <
c′′ < d′′ < d such that

| < Λ±f(·, t), φ(·) > | ≤ C
(

tsχL(t) + tbχR(t)
)

‖φ‖m,c′′,d′′ . (97)

By hypothesis there are c < c′ < d′ < d for which inequality (94) on page 52
holds. In particular, f(·, t) is supported in I(c′, d′) for all t.

We let c′′ and d′′ be any numbers satisfying c < c′′ < c′ and
d′ < d′′ < d. Let φo ∈ C∞

c (I(c′′, d′′)) equal 1 on I(c′, d′). Then,

< Λ±f(·, t), φ(·) >=< Λ±f(·, t), φoφ(·) > .

Hence, in establishing (97), we may assume that φ ∈ C∞
c (I(c′′, d′′)).

Case 1: 0 < t ≤ 1.
From (95),

< Λ+f(·, t), φ(·) > ≤ Ct1−s‖φ‖m,c′,d′

∫ t

0

us+a du

= C
t2+a

s + a − 1
‖φ‖m,c′,d′

≤ C ′ts‖φ‖m,c′′,d′′

as desired.
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We also note that from (96)

< Λ−f(·, t), φ(·) >

≤ Cts‖φ‖m,c′,d′

(
∫ 1

t

u1−s+a du +

∫ ∞

1

ube−cu du

)

= Cts‖φ‖m,c′,d′(t
2−s+a + K)

≤ C ′ts‖φ‖m,c′′,d′′ .

Case 2: 1 < t < ∞.
This case is somewhat subtler than Case 1 since in formulas (87) on

page 49, we must show that the exponential growth of Ks(ξ, t) is precisely
canceled by the exponential decay of Js(ξ, t). If f(ξ, t) is a function, this is
accomplished using a point wise estimate on the integrand. In the case of
a distribution, we make use of the fact that every distribution is obtained
by differentiating a function. We note also that it is sufficient to prove the
boundedness condition for all sufficiently large t.

Let f∧(x, t) be the Fourier transformation of f(ξ, t) in ξ. From the bound-
edness condition (94) on page 52 applied to φ(ξ) = e−ix·ξ, f∧(x, t) is C∞ in
(x, t) and satisfies

|f∧(x, t)| ≤ C(1 + ‖x‖2)m/2(taχL(t) + tbχR(t)).

For n > 1
2
(nz + m), n ∈ N, where nz = dim Z, let

g∧(x, t) = (1 + ‖x‖2)−nf∧(x, t)

g(ξ, t) = (g∧)∨(ξ, t)

Then g is continuous in ξ and satisfies

‖g(·, t)‖∞ ≤ C(taχL(t) + tbχR(t))

(1 −
∑

i

∂2
ξi
)ng(ξ, t) = f(ξ, t) (98)

where the last equality is in the sense of distributions.
From (96), Corollary 11 on page 51, the Fubini theorem, and the assump-
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tion on supp φ,

| <Λ−f(·, t), φ(·) > |

= |

∫ ∞

t

∫ ∞

−∞

g(ξ, u)(1 −
∑

i

∂2
ξi
)n

(

(2‖ξ‖)−1Ks(ξ, t)Js(ξ, u)φ(ξ)
)

dξdu|

≤ C‖φ‖m,c′′,d′′

∫

c′′<‖ξ‖<d′′
e‖ξ‖t

∫ ∞

t

ube−‖ξ‖u dudξ.

Our result follows from Lemma 12 below.
The reasoning for Λ+ is similar. Let to ≥ max{−2c−1b, 1}. We split the

first integral in (92) on page 52 into the sum of an integral over [0, to] and
an integral over [to, t]. We express f as in (98) and estimate the integrals as
before using (95) on page 52. From Corollary 11 on page 51, the first integral
decays exponentially as t → ∞. The analysis of the second integral follows
from Lemma 13 below. We leave the details to the reader.

Lemma 12. For t ∈ R
+, t ≥ 2b ‖ξ‖−1,

∫ ∞

t

e−‖ξ‖uub du < 2‖ξ‖−1e−‖ξ‖ttb.

Proof
Let to > t be given. From the Cauchy Mean Value Theorem applied in

the t variable, there is a C ∈ (t, to) such that
∫ to

t
e−‖ξ‖uub du

(e−‖ξ‖uub
∣

∣

to

t

)
=

−e−‖ξ‖CCb

‖ξ‖e−‖ξ‖CCb − be−‖ξ‖CCb−1

=
C

−‖ξ‖C + b

Note that for t > b‖ξ‖−1, the denominator in the last fraction is negative
and e−t‖ξ‖tb is decreasing. Hence the above formula implies

∫ to

t

e−‖ξ‖uub du ≤
C

‖ξ‖C − b
e−‖ξ‖ttb < 2‖ξ‖−1tbe−t/2

proving the lemma.

Lemma 13. Let t > to ≥ −2‖ξ‖−1b where to ∈ R
+. Then

∫ t

to

e‖ξ‖uub du < 2‖ξ‖−1e‖ξ‖ttb.
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Proof As in the proof of Lemma 12

∫ t

to

e‖ξ‖uub du =
C

‖ξ‖C + b

(

e‖ξ‖ttb − e‖ξ‖totbo
)

for some C ∈ (to, t). Furthermore, our assumptions on to imply that e‖ξ‖ttb is
increasing on (to, t) and that the fraction on the right of the above equality
is less than 2‖ξ‖−1, proving our lemma.

We require one additional lemma before proving Proposition 10:

Lemma 14. Suppose that t → f(·, t) is a C∞ mapping into the space of
distributions on Z∗ \ {0} which satisfies the hypotheses of Lemma 11 on
page 52 where a = s. Suppose also that

L∧
0 f(·, t) = 0.

Then there are unique distributions a(·) and b(·) supported in I(c, d) such
that

f(·, t) = a(·)Ks(·, t) + b(·)Js(·, t).

Proof Let
F̃ (x, t) =< f(·, t), ei(·)x >

be the inverse Fourier transform of f(·, t). Then L0F̃ = 0. Let F = ts−1F̃ .
Then

(Θ2 − αΘ +
nz
∑

i=1

t2∂2
i )F (x, t) = 0. (99)

Furthermore, from our hypotheses,

|F (x, t)| ≤ C
(

tsχL(t) + tbχR(t)
)

(1 + |x|)k.

Hence F satisfies condition (6) on page 4 relative to the group Z ×s R
+.

It follows from Corollary 8 on page 39 that

lim
t→0+

F (·, t) = a∨(·)

exists in S ′(Z∗). Let
a(·) = (a∨)∧(·)

be the distributional Fourier transform of a(·).
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Since the Fourier transformation is continuous on S ′(Z∗),

lim
t→0+

ts−1f(·, t) = a(·).

Hence for φ ∈ C∞
c (Z∗),

| < a(·), φ(·) > | ≤ C‖φ‖m,c,d

for some C > 0.
Let

g(·, t) = f(·, t) −
Γ(s)

Γ(2s − 1)
(2‖ · ‖)s−1Js(·, t)a(·)

where Js is as in (85) on page 49. Then g is L∧
0 harmonic and from (86) on

page 49
lim

t→0+
ts−1g(·, t) = 0

Let G be constructed from g in precisely the same manner as F was
constructed from f . Then G satisfies the differential equation (99) as well as

lim
t→0+

G(·, t) = 0.

It now follows from Corollary 8 on page 40 and Corollary 2 on page 17 that

lim
t→0+

t−αG(·, t) = b∨(·)

exists in S ′(Z∗). Then, reasoning as above, we see that b(·) = (b∨)∧(·) is
supported in I(c, d).

Finally, from (85) on page 49 and the first equation in (91) on page 51,

h(·, t) = g(·, t) −
Γ(s)

Γ(2s − 1)
(2‖ · ‖)s−1Ks(·, t)b(·)

is an L∧
0 harmonic function. It is easily seen by forming the Fourier trans-

formation as above and applying Theorem 8 on page 40 and formula (86) on
page 49, that h ≡ 0, proving our lemma.
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6.4 Proof of Proposition 10 on page 46.

Let notation be as in Section 6.3 and let F satisfy the hypotheses of Propo-
sition 10 on page 46. Thus F is an L-harmonic function satisfying the esti-
mate (79) on page 45 such that F̃∧(x, ·, t) is a distribution which is supported
in I(c, d). By decreasing c and enlarging d if necessary, we may assume that
F̃∧(x, ·, t) is supported in I(c′, d′) where c < c′ < d′ < d and c′ and d′ are
independent of (x, t). We will prove that under these conditions, F satisfies
the hypotheses of Proposition 9 on page 40, proving Proposition 10.

Lemma 15. For all multi-indecies I, RN(XI)F̃∧(x, ·, t) is uniformly bounded
on I(c, d) by M(t) where

M(t) = (tsχL(t) + tb
′

χR(t))(1 + |x|)k. (100)

where b′ = b + 1 − s.

Proof There are c < c′ < d′ < d such that F̃∧(x, ·, t) is supported in I(c′, d′).
Let c < c′′ < c′ and d < d′′ < d′ be arbitrary. In proving that an estimate of
the form of (94) on page 52 holds, we may assume that supp φ ⊂ I(c′′, d′′).
(See the proof of Proposition 11 on page 53.) From the definition of the
Fourier transform, (79) on page 45, and the subadditive property of | · |, we
see

| < RN(XI)F̃∧(x, ·, t), φ(·) > |

= |

∫

Z

t1−sRN(XI)F (xy, t)(φ)∨(y) dy|

≤ Ct1−s(tαχL(t) + tbχR(t))(1 + |x|)k

∫

Z

(1 + |y|)k|(φ)∨(y)| dy.

Since 1 − s + α = s, our lemma follows.
Lemma 15, together with Lemma 11 on page 52, implies that for each x,

F̃∧(x, ·, ·) is in the domain of Λ.

Lemma 16.
F̃∧(x, ·, t) = ΛL∧

0 F̃∧(x, ·, t).

Proof
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Since Λ is a right inverse for L∧
0 , F̃∧ − ΛL∧

0 F̃∧ is L∧
0 harmonic. Hence,

from Lemma 14 on page 56,

F̃∧(x, ·, t) = ΛL∧
0 F̃∧(x, ·, t) + a(x, ·)Ks(·, t) + b(x, ·)Js(·, t). (101)

where Js and Ks are as in (85) on page 49 and, a(x, ·) and b(x, ·) are distri-
butions supported in I(c, d).

It follows from the above equality, Lemma 15, Proposition 11 on page 53
and (86) on page 49 that

0 = lim
t→0+

ts−1(a(x, ·)Ks(·, t) + b(x, ·)Js(·, t))

= b(x, ·)
Γ(2s − 1)

Γ(s)
(2‖ · ‖)1−s

showing that b ≡ 0.
Next we show that a ≡ 0 as well, which will finish the proof of the lemma.

From 83 on page 48,

ΛL∧
0 F̃∧(x, ·, t) =

−
∑

di<1

Λ
(

t−ǫiX2
i F̃∧(x, ·, t)

)

−
n

∑

1

Λ
(

t−τiciXiF̃
∧(x, ·, t)

)

.
(102)

The smallest possible exponent in the above sum is −ǫ1 = 2d1 − 2 > −2 and
the largest is −τn = −1. It follows from Proposition 11 on page 53 that the
above expression is uniformly bounded on I(c, d) by

(tsχR(t) + tb
′−1χR(t))(1 + |x|)k. (103)

Hence, from (101), a(x, ·)Ks(·, t) is uniformly bounded on I(c, d) for t ≥ 1
by tb

′
(1 + |x|)k.

Let φ(ξ, t) ∈ C∞
c (I(c, d)) satisfy

t → ‖φ(·, t)‖m,c,d ≤ M (104)

for t ≥ 1 where M is some scalar and m is as in Definition 6 on page 52
relative to f(x, ·, t) = a(x, ·)Ks(·, t). It follows that for t ≥ 1,

| < a(x, ·), Ks(·, t)φ(·, t) > | ≤ C(1 + |x|)ktb
′

.
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We will show that if a 6≡ 0, there is a choice of φ(·, t) such that the expres-
sion on the left grows at least exponentially in t, which is a contradiction. In
fact, if a(x, ·) 6≡ 0, then < a(x, ·), ψo(·) >6= 0 for some ψo ∈ C∞

c (I(c, d)). Let

φ(ξ, t) = ectKs(ξ, t)
−1ψo(ξ).

We claim that
lim
t→∞

‖φ(·, t)‖m,c,d = 0

so that φ(ξ, t) satisfies (104). In fact, it is easily seen by mathematical
induction that for any differentiable function f on an open subset of R,

∂k
t (

1

f
) =

pk(f, ∂tf, . . . , ∂k
t f)

fk+1

where pk(xo, x1, . . . , xk) is a polynomial of total degree at most k. From the
second equation in (91) on page 51 with n = 0,

Ms(t) ≥ Cet/2

for t ≥ 1 and some C 6= 0, while from Lemma 10 on page 49

∂k
t Ms(t) ≤ C ′et/2

on the same set. It follows that

et/2∂k
t (Ms(t))

−1

is bounded on [1,∞). Our claim follows from this and the definition of K(ξ, t)
(formula (85) on page 49).

Also
< a(x, ·), Ks(·, t)φ(·, t) > = ect < a(x, ·), ψo(·) >

which grows exponentially in t. Our lemma follows.
It follows from the preceding lemma and (102), that F̃∧(x, ·, t) is uni-

formly bounded on I(c, d) by the function M(t) from (103). Repeating this
argument as many times as necessary shows that F̃∧(x, ·, t) is uniformly
bounded on I(c, d) by an expression such as (100) where b′ < −s − 4. By
taking the inverse Fourier transform, it follows that F satisfies the hypotheses
of Theorem 9 on page 40, proving Proposition 10.
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7 Proof of Theorem 4

We complete the proof sketch given on page 13. The first step is Corollary 8
on page 39. For the second, it suffices to show the following proposition.

Proposition 12. Let f ∈ S ′(N) and let µ and φ be chosen as described in
Definition 4 on page 11. Then in S ′(N)

lim
t→0+

Pmol
µ,φ (f)(·, t) = f(·).

Proof
Let F (x, t) = Pmol

µ,φ (f)(x, t). From Corollary 8 on page 39 and Theorem 8
on page 40, it suffices to show that the first term F0 of the asymptotic
expansion of F is f . If f ∈ C∞

c (N) this is clear since, in this case, Definition 4
on page 11 implies that

Pmol
µ,φ (f)(x, t) = P (f)(x, t) + tα < Qµ((·)−1, x, t), φ(·)f(·) >

where P (f) is the standard Poisson integral of f . Hence

lim
t→0+

Pmol
µ,φ (f)(x, t) = lim

t→0+
P (f)(x, t) = f(x).

The general case follows from a density argument together with the ob-
servations that

1. For each µ ≥ k, are real numbers (a, b,m) such that f → Pmol
µ,φ (f)(x, t)

is continuous as a mapping of S ′
p,k(N) into the space H(a, b,m) which

is defined below (6) on page 4.

2. For β ∈ Ñ, the mapping of H(a, b,m) into S ′(N) defined by F → Fβ,
where Fβ is as in Theorem 8, is continuous as a map into S ′(N).

The continuity of the above maps is easily seen either from the closed
graph theorem or directly from the proofs of their existence.

For the third step of our proof, recall that we set F̃ = F −Pmol
µ,φ (f). From

step 2 in the proof, the F̃0 term in F̃ ’s asymptotic expansion in Theorem 8
vanishes. It then follows from Corollary 2 on page 17 that this expansion
contains only the G̃β terms. Let η ∈ C∞

c (N) and let F̃η is defined in (56) on
page 32. The asymptotic expansion of F̃η will also contain only (G̃η)β terms.
It then follows from Theorem 7 on page 36 that

|F̃η(x, t) − tα(G̃0)η(x)| ≤ C(tµ + tb)(1 + |x|)k (105)



REFERENCES 62

for some b > µ > α where k, b, and µ are independent of η. Thus

|F̃η(x, t)| ≤ C(tα + tb)(1 + |x|)k.

Then, from Theorem 2 on page 6, F̃η(x, t) is a polynomial-like function that
vanishes on N–i.e.

F̃η(x, t) = tα
∑

I,β

Cη
I,βxItβ

where the sum is finite. Furthermore, from (105), in this sum ‖I‖ ≤ k and
β ≤ b. Taking a limit where η ranges over an approximate identity shows that
F̃ (x, t) is a polynomial-like harmonic function that vanishes on N , proving
our theorem.
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[14] A. Korányi and E. Stein. Fatou’s theorem for generalized half-planes.
Ann. Scient. Ec. Norm. Sup. Pisa, 22:107–112, 1968.

[15] S. Lang. Sl2(R). Addison-Wesley, 1975.

[16] T. Oshima and J. Sekiguchi. Eigenspaces of invariant dierential opera-
tors on an affine symmetric space. Inven.Math., 57:1–81, 1980.

[17] R. Penney. Van den Ban-Schlichtkrull-Wallach asymptotic expansions
on non-symmetric domains. Ann. of Math., 158:711–768, 2003.

[18] R. Penney and R. Urban. Unbounded harmonic functions on homo-
geneous manifolds of negative curvature. Colloquium Mathematicum,
91:99–121, 2002.

[19] A. Raugi. Fonctions harmoniques sur les groupes localment compact a
base denombrable. Bull. Soc. Math. France, Mémoire, 54:5–118, 1977.
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