
MA 301 Practice Test 4, Spring 2006

(1) State the “official” definition of “limx→a f(x) = L.”
(2) Suppose that f(x) and g(x) are both continuous at x = a.

Prove that h(x) = f(x)g(x) is also continuous at x = a.
You may use the product theorem for limits of functions from
Chapter 10.

Solution:

lim
x→a

h(x) = lim
x→a

(f(x)g(x))

= (lim
x→a

f(x))(lim
x→a

g(x)) Product Theorem

= f(a)g(a) = h(a) Continuity of f and g

Since limx→a h(x) = h(a), h is continuous at x = a.

(3) Use a δ-ε argument to prove the following limit statements:

(a) lim
x→2

3x

x+ 1
= 2

(b) lim
x→2

1

x2
=

1

4
(c) lim

x→1
(x2 + 3) = 4

(d) lim
x→1

1

x2 + 3
=

1

4

(e) lim
x→0

1

1− x
= 1

(f) lim
x→1

1√
3 + x

=
1

2

Solutions:

(a):

Scratch Work: Let ε > 0 be given. We want∣∣ 3x

x+ 1
− 2
∣∣ < ε∣∣x− 2

x+ 1

∣∣ = |x− 2| 1

|x+ 1|
< ε

1



2

Assume that x = 2±1 so that 1 < x < 3 and 2 < x+1 < 3.
Then

|x− 2|
∣∣ 1

x+ 1

∣∣ < 1

2
|x− 2|

This will be < ε if |x− 2| < 2ε.

Our Proof: Let ε > 0 be given and let δ = min{1, 2ε}.
Assume that 0 < |x− 2| < δ. Then from the scratch work∣∣ 3x

x+ 1
− 2| < ε,

proving the limit statement.

(b):

Scratch Work: Let ε > 0 be given. We want∣∣ 1

x2
− 1

4
| < ε∣∣x2 − 4

4x2
∣∣ = |x− 2| |x+ 2|

4x2
< ε

Assume that x = 2± 1. Then

1 < x < 3

1 < x2 < 9

4 < 4x2 < 36

3 < x+ 2 < 5

Then

|x− 2| |x+ 2|
4x2

<
5

4
|x− 2|

This will be < ε if |x− 2| < 4
5
ε.

Our Proof: Let ε > 0 be given and let δ = min{1, 4
5
ε}.

Assume that 0 < |x− 2| < δ. Then from the scratch work∣∣ 1

x2
− 1

4

∣∣ < ε,

proving the limit statement.
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(c):

Scratch Work: Let ε > 0 be given. We want∣∣(x2 + 3)− 4| < ε∣∣(x− 1)(x+ 1)
∣∣ = |x− 1| |x+ 1| < ε

Assume that x = 1± 1 so that 0 < x < 2. Then

1 < x+ 1 < 3

Then

|x− 1| |x+ 1| < 3|x− 1|
This will be < ε if |x− 1| < 1

3
ε.

Our Proof: Let ε > 0 be given and let δ = min{1, 1
3
ε}.

Assume that 0 < |x− 1| < δ. Then from the scratch work

|(x2 + 3)− 4| < ε,

proving the limit statement.

(d):

Scratch Work: Let ε > 0 be given. We want∣∣ 1

x2 + 3
− 1

4

∣∣ < ε∣∣ 1− x2

4(x2 + 3)

∣∣ = |x− 1| |1 + x|
4(x2 + 3)

< ε

Assume that x = 1± 1 so that 0 < x < 2. Then

0 < x < 2

1 < 1 + x < 3

0 < x2 < 4

3 < x2 + 3 < 7

12 < 4(x2 + 3) < 28

Hence

|x− 1| |1 + x|
4(x2 + 3)

<
3

12
|x− 1|

This will be < ε if |x− 1| < 4ε.
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Our Proof: Let ε > 0 be given and let δ = min{1, 4ε}.
Assume that 0 < |x− 1| < δ. Then from the scratch work∣∣ 1

x2 + 3
− 1

4

∣∣ < ε,

proving the limit statement.

(e):

Scratch Work: Let ε > 0 be given. We want∣∣ 1

1− x
− 1
∣∣ < ε∣∣ x

1− x
∣∣ = |x| 1

|1− x|
< ε

If we assume that x = 0± 1 we get

−1 < x < 1

1 > −x > −1

2 > 1− x > 0

We cannot have 0 in the denominator. Hence, we assume
instead that x = 0± .5. Then

−.5 < x < .5

.5 > x > −.5
−.5 < −x > .5

.5 > 1− x > 1.5

Hence

|x| 1

|1− x|
<

1

.5
|x|

This will be < ε if |x| < .5ε.

Our Proof: Let ε > 0 be given and let δ = min{.5, .5ε}.
Assume that 0 < |x− 0| < δ. Then from the scratch work∣∣ 1

1− x
− 1| < ε,

proving the limit statement.

(f):
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Scratch Work: Let ε > 0 be given. We want∣∣ 1√
3 + x

− 1

2

∣∣ < ε

∣∣2−√3 + x

2
√

3 + x

∣∣ < ε

|2−
√

3 + x| |2 +
√

3 + x|
(2
√

3 + x) |2 +
√

3 + x|
< ε

|1− x| 1

(2
√

3 + x) |2 +
√

3 + x|
< ε

Assume that x = 1± 1 so that

0 < x < 2

3 < 3 + x < 5
√

3 <
√

3 + x <
√

5

2 +
√

3 < 2 +
√

3 + x < 2 +
√

5

2
√

3 < 2
√

3 + x < 2
√

5

Then

|1− x| 1

(2
√

3 + x) |2 +
√

3 + x|
< |1− x| 1

(2
√

3)(2 +
√

3)

This will be < ε if |x− 1| < (2
√

3)(2 +
√

3)ε.

Our Proof: Let ε > 0 be given and let δ = min{1, (2
√

3)(2 +√
3)ε}. Assume that 0 < |x − 1| < δ. Then from the scratch

work ∣∣ 1√
3 + x

− 1

2
| < ε,

proving the limit statement.
(4) Assume that limx→a f(x) = 2. Use a δ-ε argument to prove:

(a) lim
x→a

2

f(x) + 2
=

1

2

(b) lim
x→a

√
f(x) + 2 = 2

(c) lim
x→a

f(x)2 = 4

(d) lim
x→a

3f(x)

f(x) + 1
= 2
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Solutions:

(a):

Scratch work: Let ε > 0 be given. We want∣∣ 2

f(x) + 2
− 1

2

∣∣ < ε

|2− f(x)|
2|f(x) + 2|

<ε

|f(x)− 2| 1

2|f(x) + 2|
<ε

The term on the left is our “gold” since it becomes small as
x approaches a. The other term is our “trash” which we will
bound. Specifically, we reason that for all x sufficiently close
to a, f(x) = 2± 1. Thus, for such x,

1 < f(x) < 3

3 < f(x) + 2 < 5

6 < 2|f(x) + 2| < 10

Hence

|f(x)− 2| 1

2|f(x) + 2|
<

1

6
|f(x)− 2|

This is < ε if |f(x) − 2| < 6ε, which is true for all x
sufficiently close to a.

Proof: Let ε > 0 be given and choose δ1 > 0 so that

|f(x)− 2| < 1

for 0 < |x− a| < δ1.
Choose δ2 > 0 such that

|f(x)− 2| < 2ε

for 0 < |x − a| < δ2. Let δ = min{δ1, δ2}. From the scratch
work, 0 < |x− a| < δ implies that∣∣ 2

f(x) + 2
− 1

2

∣∣ < ε

proving the limit statement.

(b):
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Scratch work: Let ε > 0 be given. We want∣∣√f(x) + 2− 2
∣∣ < ε

|(
√
f(x) + 2− 2)(

√
f(x) + 2 + 2)|√

f(x) + 2 + 2
< ε

|f(x)− 2|√
f(x) + 2 + 2

< ε

The numerator is our “gold” since it becomes small as x
approaches a. The other term is our “trash” which we will
bound. Specifically, we reason that for all x sufficiently close
to a, f(x) = 2± 1. Thus, for such x,

1 < f(x) < 3

3 < f(x) + 2 < 5
√

3 <
√
f(x) + 2 <

√
5

2 +
√

3 <
√
f(x) + 2 + 2 < 2 +

√
5

Hence

|f(x)− 2|√
f(x) + 2 + 2

<
1

2 +
√

3
|f(x)− 2|

This is < ε if |f(x)− 2| < (2 +
√

3)ε, which is true for all
x sufficiently close to a.

Proof: Let ε > 0 be given and choose δ1 > 0 so that

|f(x)− 2| < 1

for 0 < |x− a| < δ1.
Choose δ2 > 0 such that

|f(x)− 2| < (2 +
√

3)ε

for 0 < |x − a| < δ2. Let δ = min{δ1, δ2}. From the scratch
work, 0 < |x− a| < δ implies that∣∣√f(x) + 2− 2

∣∣ < ε

proving the limit statement.

(c):
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Scratch work: Let ε > 0 be given. We want∣∣f(x)2 − 4
∣∣ < ε

|f(x)− 2| |f(x) + 2| <ε

The term on the left is our “gold” since it becomes small as
x approaches a. The other term is our “trash” which we will
bound. Specifically, we reason that for all x sufficiently close
to a, f(x) = 2± 1. Thus, for such x,

1 < f(x) < 3

3 < f(x) + 2 < 5

Hence

|f(x)− 2| |f(x) + 2| < 5 |f(x)− 2|

This is < ε if |f(x) − 2| < ε/5, which is true for all x
sufficiently close to a.

Proof: Let ε > 0 be given and choose δ1 > 0 so that

|f(x)− 2| < 1

for 0 < |x− a| < δ1.
Choose δ2 > 0 such that

|f(x)− 2| < ε/5

for 0 < |x − a| < δ2. Let δ = min{δ1, δ2}. From the scratch
work, 0 < |x− a| < δ implies that∣∣f(x)2 − 4

∣∣ < ε

proving the limit statement.

(d):

Scratch work: Let ε > 0 be given. We want∣∣ 3f(x)

f(x) + 1
− 2
∣∣ < ε

|f(x)− 2|
|f(x) + 1|

<ε

|f(x)− 2| 1

|f(x) + 1|
<ε
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The term on the left is our “gold” since it becomes small as
x approaches a. The other term is our “trash” which we will
bound. Specifically, we reason that for all x sufficiently close
to a, f(x) = 2± 1. Thus, for such x,

1 < f(x) < 3

2 < f(x) + 1 < 4

Hence

|f(x)− 2| 1

|f(x) + 1|
<

1

2
|f(x)− 2|

This is < ε if |f(x) − 2| < 2ε, which is true for all x
sufficiently close to a.

Proof: Let ε > 0 be given and choose δ1 > 0 so that

|f(x)− 2| < 1

for 0 < |x− a| < δ1.
Choose δ2 > 0 such that

|f(x)− 2| < 2ε

for 0 < |x − a| < δ2. Let δ = min{δ1, δ2}. From the scratch
work, 0 < |x− a| < δ implies that∣∣ 3f(x)

f(x) + 1
− 2
∣∣ < ε

proving the limit statement.

(5) Find a value of a for which the following function is continuous
at x = 2.

f(x) =
{x+ a x < 2

x2 x ≥ 2

Solution:

f(2) = 4

lim
x→2+

f(x) = lim
x→2+

x2 = 4

lim
x→2−

f(x) = lim
x→2−

x+ a = 2 + a

Hence, f(x) will be continuous at x = 2 if and only if 2+a = 4;
hence a = 2.
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(6) Prove that there is a point (x, y) at which the graphs of y = ex

and y = 2 cos x cross. What theorem are you using?

Solution:
The graphs cross at (x, y) if and only if ex = 2 cos x which

is the same as ex − 2 cosx = 0. Let

g(x) = ex − 2 cosx.

Then g(0) = e0−2 cos 0 = −1 while g(π/2) = eπ/2−2 cosπ/2 =
eπ/2. Since g(0) < 0 and g(π/2) > 0, it follows from the
Intermediate Value Theorem that there is an x between 0 and
π/2 such that g(x) = 0, proving that the graphs cross.

(7) Suppose that f is continuous at every x in [0, 1] and that for
all x in this interval, 0 ≤ f(x) ≤ 1. Prove that there is an
x ∈ [0, 1] such that f(x) = x2.

Solution: Let

g(x) = f(x)− x2.
Then

g(0) = f(0)− 02 = f(0) ≥ 0.

If f(0) = 0 then f(0) = 02 so there is an x such that f(x) = x2.
Hence we may assume that g(0) > 0.

Also

g(1) = f(1)− 12 = f(1)− 1 ≤ 0.

If f(1) = 1 then f(1) = 12 so there is an x such that f(x) = x2.
Hence we may assume that g(1) < 0.

Since g(0) > 0 and g(1) < 0, it follows from the Interme-
diate Value Theorem that there is an x between 0 and 1 such
that g(x) = 0; hence there is an x such that f(x) = x2.

(8) Prove Theorem 3 on p. 180 of the notes:

Theorem 3 (Sequence). Let f(x) be continuous at a and
let xn be a sequence such that limn→∞ xn = a. Then

lim
n→∞

f(xn) = f(a).

Proof: See the proof of Theorem 3, on p. 180.


