MA 301 Practice Test 4, Spring 2006
(1) State the “official” definition of “lim, ., f(z) = L.”

(2) Suppose that f(x) and g(x) are both continuous at z = a.
Prove that h(z) = f(x)g(x) is also continuous at = = a.
You may use the product theorem for limits of functions from

Chapter 10.

Solution:

lim h(x) = lim(f(x)g(x))
= (il_rf}l f(x))(al;l_rg g(x)) Product Theorem
= f(a)g(a) = h(a) Continuity of f and g

Since lim,_,, h(x) = h(a), h is continuous at = = a.

(3) Use a d-e argument to prove the following limit statements:
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Solutions:

(a):

Scratch Work: Let € > 0 be given. We want

3z
}x+1—2}<€
r+1 |z + 1]



Assume thatx =2+1 sothatl <x <3 and2 < x+1 < 3.
Then

|x—2|\x1 P 1x—2|

This will be < € if |v — 2| < 2e.

Our Proof: Let ¢ > 0 be given and let 6 = min{l, 2¢}.
Assume that 0 < |z — 2| < §. Then from the scratch work

‘ 3x
r+1

proving the limit statement.

—2| <eg,

(b):
Scratch Work: Let € > 0 be given. We want
1
‘ﬁ — —| <€
x? — \x + 2\

Assume thatm =241. Then
l<zxz <3

I—\—ﬂ

l<z2<9

4 < 42% < 36
3<x+2<5

Then
\x + 2\

|z — 2| W—ﬂ

4
This will be < € if |x — 2| < ze.

Our Proof: Let ¢ > 0 be given and let § = min{1, 7¢}.
Assume that 0 < |z — 2| < §. Then from the scratch work

1
‘ﬁ——‘<€

proving the limit statement.



(c):

Scratch Work: Let € > 0 be given. We want
[(2®+3)—4] <e
(@ =D(z+1)|=lz-1||z+1] <e
Assume that x =1+ 1 so that 0 < x < 2. Then
I<zr+1<3

Then
|z — 1] | + 1| < 3|z — 1]
This will be < € if |[x — 1| < ze.

Our Proof: Let € > 0 be given and let § = min{l,%e}.
Assume that 0 < |x — 1| < 0. Then from the scratch work

(@ +3) — 4] < e,

proving the limit statement.

(d):
Scratch Work: Let € > 0 be given. We want
1 1
}a:2 +3 Z‘ <€
‘ 1 — a2 ‘:|$_1| 11+ z|
4(x% + 3) 4(x% + 3)
Assume that x =141 so that 0 < x < 2. Then
O0<xr <2
I<l+z<3
0<az’<4
3<a?+3<7
12 < 4(2* + 3) < 28
Hence 14l ;
x
]x—1|m<ﬁ|x—1\

This will be < € if |x — 1] < 4e.



Our Proof: Let € > 0 be given and let § = min{l, 4e}.
Assume that 0 < |z — 1| < §. Then from the scratch work

{ 1 1
243 4
proving the limit statement.

(e):

Scratch Work: Let € > 0 be given. We want
‘ 1
11—z

—1‘<e
T 1
|m‘:|x|m<e
If we assume that x =0+ 1 we get
—-l<z<1
1>—-2>-1
2>1—2>0

We cannot have 0 in the denominator. Hence, we assume
instead that x = 0+ .5. Then
—H<r<.d
D> >-—.5
—H<—x>.5
HD>1—ax>1.5

Hence
T
11—z .5

This will be < € if |x| < .Be.

|z]

Our Proof: Let ¢ > 0 be given and let 6 = min{.5, .5¢}.
Assume that 0 < |z — 0] < §. Then from the scratch work

| 1
11—z
proving the limit statement.

— 1] <e,

(f):



Scratch Work: Let € > 0 be given. We want

‘ 2\/3+x
12— v3+z||124+ V3 + x| .
(2v3 4+ 2) |2+ V3 + x|

1
e AT
Assume that t =1+ 1 so that
0<xr <2
3<3+x <5

\/§<\/3+x<\/5
24+4V3<2+V3+z<2+V5
W3 <2/3+ 1 <2V5

Then
1 1

1 -al e ECET =<l (2V3)(2+V3)
This will be < € if |z — 1| < (2v/3)(2 + V3)e.

Our Proof: Let e > 0 be given and let § = min{1, (2v/3)(2 +
V3)e}. Assume that 0 < |z — 1| < 6. Then from the scratch
work

1 1
-] <
‘\/3+x 2| ©

proving the limit statement.

(4) Assume that lim, ,, f(x) = 2. Use a d-¢ argument to prove:
2 1
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Solutions:

(a):

Scratch work: Let € > 0 be given. We want
o3
flx)+2 2
2 — f(2)|
2[f(z) + 2|
1
x) — 2| m=————— <e

The term on the left is our “gold” since it becomes small as
x approaches a. The other term is our “trash” which we will
bound. Specifically, we reason that for all x sufficiently close
toa, f(x) =2+ 1. Thus, for such x,

1< f(z)<3
3< f(r)+2<5
6 <2|f(x)+2] <10

<€

Hence

@) =2l gy < o) =2

This is < € if |f(x) — 2| < 6¢, which is true for all x
sufficiently close to a.

Proof: Let € > 0 be given and choose d; > 0 so that

[f(z) —2[ <1
for 0 < |z —al| < ¢;.

Choose 65 > 0 such that

|f(z) — 2| < 2
for 0 < |z —a] < d5. Let § = min{0;,d2}. From the scratch
work, 0 < |z — a] < ¢ implies that

2 1
{f(a:)+2_§‘ =€

proving the limit statement.

(b):



Scratch work: Let € > 0 be given. We want

‘\/f(x)—i- —2‘ <€
(F@ T2 -9/ T2+ _
V@) +2+2
f@ -2
Vf(x)+2+2

The numerator is our “gold” since it becomes small as x
approaches a. The other term is our “trash” which we will
bound. Specifically, we reason that for all x sufficiently close
toa, f(x) =2+ 1. Thus, for such x,

1< f(x)<3
3< flx)+2<5

V3<flz)+2<V5
24 V3 < Vflx)+2+2<2+V5

Hence
f@-2 1,
Vi@ +2+2  2+V3

This is < € if |f(z) — 2| < (2 + V/3)e, which is true for all

x sufficiently close to a.

(z) = 2|

Proof: Let ¢ > 0 be given and choose d; > 0 so that
[f(x) —2[ <1

for 0 < |z —al < 4;.
Choose 6 > 0 such that

1f(z) = 2| < (24 V3)e

for 0 < |z —a| < d3. Let 6 = min{dy,d2}. From the scratch
work, 0 < |x — a] < ¢ implies that

V@) +2-2] <e

proving the limit statement.

(c):



Scratch work: Let € > 0 be given. We want
|f(z)* —4| <e
|f(z) = 2| f(z) + 2| <e

The term on the left is our “gold” since it becomes small as
x approaches a. The other term is our “trash” which we will
bound. Specifically, we reason that for all x sufficiently close
to a, f(x) =2+ 1. Thus, for such z,

1< f(z)<3
3< f(r)+2<5
Hence
|f(x) = 2[|f(2) + 2| <5[f(z) — 2|

This is < e if |f(x) — 2| < €/b, which is true for all x
sufficiently close to a.

Proof: Let € > 0 be given and choose d; > 0 so that

[f(x) =2 <1

for 0 < |z —al < 4.
Choose d5 > 0 such that

|[f(x) = 2| <¢€/5

for 0 < |z —a| < d2. Let § = min{dy,dp}. From the scratch
work, 0 < |z — a| < § implies that

‘f(x)2—4| <€

proving the limit statement.

(d):
Scratch work: Let € > 0 be given. We want
-2\ <

T+t A=

|f(z) —2|

[f(x)+1]
1
[f(@)+1]

<€
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The term on the left is our “gold” since it becomes small as
x approaches a. The other term is our “trash” which we will
bound. Specifically, we reason that for all x sufficiently close
toa, f(x) =2+ 1. Thus, for such x,

1< f(z)<3
2< flx)+1<4

Hence

1 1
\f(x)—z\m<§!f(x)—2!

This is < € if |f(x) — 2| < 2¢, which is true for all x
sufficiently close to a.
Proof: Let € > 0 be given and choose d; > 0 so that
|f(z) =2 <1

for 0 < |z —al < 4;.
Choose 6 > 0 such that

|f(z) = 2] < 2e
for 0 < |z —a| < d2. Let 6 = min{dy,d>}. From the scratch
work, 0 < |z — a| < § implies that

3
flx)+1
proving the limit statement.

Find a value of a for which the following function is continuous
at x = 2.

r+a x<2
Solution:
f(2) =4
li = li 2=4
)= g e
lim f(z) = lim z+a=2+a
T2~ T2~

Hence, f(x) will be continuous at z = 2 if and only if 24-a = 4;
hence a = 2.
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(6)

Prove that there is a point (z,y) at which the graphs of y = e”
and y = 2cos x cross. What theorem are you using?

Solution:

The graphs cross at (x,y) if and only if e* = 2 cosz which
is the same as e —2cosx = 0. Let

g(x) =e" —2cosz.

Then g(0) = e*~2cos 0 = —1 while g(7/2) = e™/?~2cos /2 =
e™?. Since g(0) < 0 and g(7/2) > 0, it follows from the
Intermediate Value Theorem that there is an x between 0 and
7/2 such that g(x) = 0, proving that the graphs cross.
Suppose that f is continuous at every x in [0, 1] and that for
all z in this interval, 0 < f(z) < 1. Prove that there is an
x € [0,1] such that f(z) = 22

Solution: Let

Then
9(0) = £(0) = 0 = f(0) > 0.
If f(0) = 0 then f(0) = 02 so there is an z such that f(z) = 2.

Hence we may assume that ¢g(0) > 0.
Also

g(1) = f(1) - 1*=f(1) -1 <0.
If f(1) = 1 then f(1) = 12 so there is an x such that f(z) = 2.
Hence we may assume that g(1) < 0.

Since ¢(0) > 0 and g(1) < 0, it follows from the Interme-
diate Value Theorem that there is an x between 0 and 1 such
that g(z) = 0; hence there is an z such that f(z) = 2.

Prove Theorem 3 on p. 180 of the notes:

THEOREM 3 (Sequence). Let f(x) be continuous at a and
let x,, be a sequence such that lim,_,. x, = a. Then

lim f(z,) = f(a).
n—oo
Proof: See the proof of Theorem 3, on p. 180.



