MA 301 Practice Test 4, Spring 2006

(1) State the "official" definition of " $\lim _{x \rightarrow a} f(x)=L$."
(2) Suppose that $f(x)$ and $g(x)$ are both continuous at $x=a$. Prove that $h(x)=f(x) g(x)$ is also continuous at $x=a$. You may use the product theorem for limits of functions from Chapter 10.

Solution:

$$
\begin{aligned}
\lim _{x \rightarrow a} h(x) & =\lim _{x \rightarrow a}(f(x) g(x)) \\
& =\left(\lim _{x \rightarrow a} f(x)\right)\left(\lim _{x \rightarrow a} g(x)\right) \quad \text { Product Theorem } \\
& =f(a) g(a)=h(a) \quad \text { Continuity of } f \text { and } g
\end{aligned}
$$

Since $\lim _{x \rightarrow a} h(x)=h(a), h$ is continuous at $x=a$.
(3) Use a $\delta-\epsilon$ argument to prove the following limit statements:
(a) $\lim _{x \rightarrow 2} \frac{3 x}{x+1}=2$
(b) $\quad \lim _{x \rightarrow 2} \frac{1}{x^{2}}=\frac{1}{4}$
(c) $\lim _{x \rightarrow 1}\left(x^{2}+3\right)=4$
(d) $\quad \lim _{x \rightarrow 1} \frac{1}{x^{2}+3}=\frac{1}{4}$
(e) $\quad \lim _{x \rightarrow 0} \frac{1}{1-x}=1$
(f) $\quad \lim _{x \rightarrow 1} \frac{1}{\sqrt{3+x}}=\frac{1}{2}$

Solutions:

(a):

Scratch Work: Let $\epsilon>0$ be given. We want

$$
\begin{aligned}
\left|\frac{3 x}{x+1}-2\right| & <\epsilon \\
\left|\frac{x-2}{x+1}\right| & =|x-2| \frac{1}{|x+1|}<\epsilon
\end{aligned}
$$

Assume that $x=2 \pm 1$ so that $1<x<3$ and $2<x+1<3$.
Then

$$
|x-2|\left|\frac{1}{x+1}\right|<\frac{1}{2}|x-2|
$$

This will be $<\epsilon$ if $|x-2|<2 \epsilon$.

Our Proof: Let $\epsilon>0$ be given and let $\delta=\min \{1,2 \epsilon\}$. Assume that $0<|x-2|<\delta$. Then from the scratch work

$$
\left|\frac{3 x}{x+1}-2\right|<\epsilon
$$

proving the limit statement.

(b):

Scratch Work: Let $\epsilon>0$ be given. We want

$$
\begin{aligned}
& \left|\frac{1}{x^{2}}-\frac{1}{4}\right|<\epsilon \\
& \left|\frac{x^{2}-4}{4 x^{2}}\right|=|x-2| \frac{|x+2|}{4 x^{2}}<\epsilon
\end{aligned}
$$

Assume that $x=2 \pm 1$. Then

$$
\begin{aligned}
& 1<x<3 \\
& 1<x^{2}<9 \\
& 4<4 x^{2}<36 \\
& 3<x+2<5
\end{aligned}
$$

Then

$$
|x-2| \frac{|x+2|}{4 x^{2}}<\frac{5}{4}|x-2|
$$

This will be $<\epsilon$ if $|x-2|<\frac{4}{5} \epsilon$.

Our Proof: Let $\epsilon>0$ be given and let $\delta=\min \left\{1, \frac{4}{5} \epsilon\right\}$. Assume that $0<|x-2|<\delta$. Then from the scratch work

$$
\left|\frac{1}{x^{2}}-\frac{1}{4}\right|<\epsilon
$$

proving the limit statement.
(c):

Scratch Work: Let $\epsilon>0$ be given. We want

$$
\begin{aligned}
\left|\left(x^{2}+3\right)-4\right| & <\epsilon \\
|(x-1)(x+1)| & =|x-1||x+1|<\epsilon
\end{aligned}
$$

Assume that $x=1 \pm 1$ so that $0<x<2$. Then

$$
1<x+1<3
$$

Then

$$
|x-1||x+1|<3|x-1|
$$

This will be $<\epsilon$ if $|x-1|<\frac{1}{3} \epsilon$.

Our Proof: Let $\epsilon>0$ be given and let $\delta=\min \left\{1, \frac{1}{3} \epsilon\right\}$. Assume that $0<|x-1|<\delta$. Then from the scratch work

$$
\left|\left(x^{2}+3\right)-4\right|<\epsilon,
$$

proving the limit statement.
(d):

Scratch Work: Let $\epsilon>0$ be given. We want

$$
\begin{aligned}
\left|\frac{1}{x^{2}+3}-\frac{1}{4}\right| & <\epsilon \\
\left|\frac{1-x^{2}}{4\left(x^{2}+3\right)}\right| & =|x-1| \frac{|1+x|}{4\left(x^{2}+3\right)}<\epsilon
\end{aligned}
$$

Assume that $x=1 \pm 1$ so that $0<x<2$. Then

$$
\begin{aligned}
0 & <x<2 \\
1 & <1+x<3 \\
0 & <x^{2}<4 \\
3 & <x^{2}+3<7 \\
12 & <4\left(x^{2}+3\right)<28
\end{aligned}
$$

Hence

$$
|x-1| \frac{|1+x|}{4\left(x^{2}+3\right)}<\frac{3}{12}|x-1|
$$

This will be $<\epsilon$ if $|x-1|<4 \epsilon$.

Our Proof: Let $\epsilon>0$ be given and let $\delta=\min \{1,4 \epsilon\}$. Assume that $0<|x-1|<\delta$. Then from the scratch work

$$
\left|\frac{1}{x^{2}+3}-\frac{1}{4}\right|<\epsilon,
$$

proving the limit statement.
(e):

Scratch Work: Let $\epsilon>0$ be given. We want

$$
\begin{aligned}
\left|\frac{1}{1-x}-1\right| & <\epsilon \\
\left|\frac{x}{1-x}\right| & =|x| \frac{1}{|1-x|}<\epsilon
\end{aligned}
$$

If we assume that $x=0 \pm 1$ we get

$$
\begin{aligned}
-1 & <x<1 \\
1 & >-x>-1 \\
2 & >1-x>0
\end{aligned}
$$

We cannot have 0 in the denominator. Hence, we assume instead that $x=0 \pm .5$. Then

$$
\begin{aligned}
-.5 & <x<.5 \\
.5 & >x>-.5 \\
-.5 & <-x>.5 \\
.5 & >1-x>1.5
\end{aligned}
$$

Hence

$$
|x| \frac{1}{|1-x|}<\frac{1}{.5}|x|
$$

This will be $<\epsilon$ if $|x|<.5 \epsilon$.

Our Proof: Let $\epsilon>0$ be given and let $\delta=\min \{.5, .5 \epsilon\}$. Assume that $0<|x-0|<\delta$. Then from the scratch work

$$
\left|\frac{1}{1-x}-1\right|<\epsilon
$$

proving the limit statement.
(f):

Scratch Work: Let $\epsilon>0$ be given. We want

$$
\begin{aligned}
\left|\frac{1}{\sqrt{3+x}}-\frac{1}{2}\right| & <\epsilon \\
\left|\frac{2-\sqrt{3+x}}{2 \sqrt{3+x}}\right| & <\epsilon \\
\frac{|2-\sqrt{3+x}||2+\sqrt{3+x}|}{(2 \sqrt{3+x})|2+\sqrt{3+x}|} & <\epsilon \\
|1-x| \frac{1}{(2 \sqrt{3+x})|2+\sqrt{3+x}|} & <\epsilon
\end{aligned}
$$

Assume that $x=1 \pm 1$ so that
$0<x<2$
$3<3+x<5$
$\sqrt{3}<\sqrt{3+x}<\sqrt{5}$
$2+\sqrt{3}<2+\sqrt{3+x}<2+\sqrt{5}$

$$
2 \sqrt{3}<2 \sqrt{3+x}<2 \sqrt{5}
$$

Then

$$
|1-x| \frac{1}{(2 \sqrt{3+x})|2+\sqrt{3+x}|}<|1-x| \frac{1}{(2 \sqrt{3})(2+\sqrt{3})}
$$

This will be $<\epsilon$ if $|x-1|<(2 \sqrt{3})(2+\sqrt{3}) \epsilon$.

Our Proof: Let $\epsilon>0$ be given and let $\delta=\min \{1,(2 \sqrt{3})(2+$ $\sqrt{3}) \epsilon\}$. Assume that $0<|x-1|<\delta$. Then from the scratch work

$$
\left|\frac{1}{\sqrt{3+x}}-\frac{1}{2}\right|<\epsilon,
$$

proving the limit statement.
(4) Assume that $\lim _{x \rightarrow a} f(x)=2$. Use a $\delta-\epsilon$ argument to prove:
(a) $\quad \lim _{x \rightarrow a} \frac{2}{f(x)+2}=\frac{1}{2}$
(b) $\quad \lim _{x \rightarrow a} \sqrt{f(x)+2}=2$
(c) $\lim _{x \rightarrow a} f(x)^{2}=4$
(d) $\quad \lim _{x \rightarrow a} \frac{3 f(x)}{f(x)+1}=2$

Solutions:

(a):

Scratch work: Let $\epsilon>0$ be given. We want

$$
\begin{array}{r}
\left|\frac{2}{f(x)+2}-\frac{1}{2}\right|<\epsilon \\
\frac{|2-f(x)|}{2|f(x)+2|}<\epsilon \\
|f(x)-2| \frac{1}{2|f(x)+2|}<\epsilon
\end{array}
$$

The term on the left is our "gold" since it becomes small as x approaches a. The other term is our "trash" which we will bound. Specifically, we reason that for all x sufficiently close to $a, f(x)=2 \pm 1$. Thus, for such x,

$$
\begin{aligned}
1<f(x) & <3 \\
3<f(x)+2 & <5 \\
6<2|f(x)+2| & <10
\end{aligned}
$$

Hence

$$
|f(x)-2| \frac{1}{2|f(x)+2|}<\frac{1}{6}|f(x)-2|
$$

This is $<\epsilon$ if $|f(x)-2|<6 \epsilon$, which is true for all x sufficiently close to a.

Proof: Let $\epsilon>0$ be given and choose $\delta_{1}>0$ so that

$$
|f(x)-2|<1
$$

for $0<|x-a|<\delta_{1}$.
Choose $\delta_{2}>0$ such that

$$
|f(x)-2|<2 \epsilon
$$

for $0<|x-a|<\delta_{2}$. Let $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$. From the scratch work, $0<|x-a|<\delta$ implies that

$$
\left|\frac{2}{f(x)+2}-\frac{1}{2}\right|<\epsilon
$$

proving the limit statement.
(b):

Scratch work: Let $\epsilon>0$ be given. We want

$$
\begin{aligned}
|\sqrt{f(x)+2}-2| & <\epsilon \\
\frac{|(\sqrt{f(x)+2}-2)(\sqrt{f(x)+2}+2)|}{\sqrt{f(x)+2}+2} & <\epsilon \\
\frac{|f(x)-2|}{\sqrt{f(x)+2}+2} & <\epsilon
\end{aligned}
$$

The numerator is our "gold" since it becomes small as x approaches a. The other term is our "trash" which we will bound. Specifically, we reason that for all x sufficiently close to $a, f(x)=2 \pm 1$. Thus, for such x,

$$
\begin{aligned}
1<f(x) & <3 \\
3<f(x)+2 & <5 \\
\sqrt{3}<\sqrt{f(x)+2} & <\sqrt{5} \\
2+\sqrt{3}<\sqrt{f(x)+2}+2 & <2+\sqrt{5}
\end{aligned}
$$

Hence

$$
\frac{|f(x)-2|}{\sqrt{f(x)+2}+2}<\frac{1}{2+\sqrt{3}}|f(x)-2|
$$

This is $<\epsilon$ if $|f(x)-2|<(2+\sqrt{3}) \epsilon$, which is true for all x sufficiently close to a.

Proof: Let $\epsilon>0$ be given and choose $\delta_{1}>0$ so that

$$
|f(x)-2|<1
$$

for $0<|x-a|<\delta_{1}$.
Choose $\delta_{2}>0$ such that

$$
|f(x)-2|<(2+\sqrt{3}) \epsilon
$$

for $0<|x-a|<\delta_{2}$. Let $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$. From the scratch work, $0<|x-a|<\delta$ implies that

$$
|\sqrt{f(x)+2}-2|<\epsilon
$$

proving the limit statement.
(c):

Scratch work: Let $\epsilon>0$ be given. We want

$$
\begin{array}{r}
\left|f(x)^{2}-4\right|<\epsilon \\
|f(x)-2||f(x)+2|<\epsilon
\end{array}
$$

The term on the left is our "gold" since it becomes small as x approaches a. The other term is our "trash" which we will bound. Specifically, we reason that for all x sufficiently close to $a, f(x)=2 \pm 1$. Thus, for such x,

$$
\begin{array}{r}
1<f(x)<3 \\
3<f(x)+2<5
\end{array}
$$

Hence

$$
|f(x)-2||f(x)+2|<5|f(x)-2|
$$

This is $<\epsilon$ if $|f(x)-2|<\epsilon / 5$, which is true for all x sufficiently close to a.

Proof: Let $\epsilon>0$ be given and choose $\delta_{1}>0$ so that

$$
|f(x)-2|<1
$$

for $0<|x-a|<\delta_{1}$.
Choose $\delta_{2}>0$ such that

$$
|f(x)-2|<\epsilon / 5
$$

for $0<|x-a|<\delta_{2}$. Let $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$. From the scratch work, $0<|x-a|<\delta$ implies that

$$
\left|f(x)^{2}-4\right|<\epsilon
$$

proving the limit statement.
(d):

Scratch work: Let $\epsilon>0$ be given. We want

$$
\begin{aligned}
&\left|\frac{3 f(x)}{f(x)+1}-2\right|<\epsilon \\
& \frac{|f(x)-2|}{|f(x)+1|}<\epsilon \\
&|f(x)-2| \frac{1}{|f(x)+1|}<\epsilon
\end{aligned}
$$

The term on the left is our "gold" since it becomes small as x approaches a. The other term is our "trash" which we will bound. Specifically, we reason that for all x sufficiently close to $a, f(x)=2 \pm 1$. Thus, for such x,

$$
\begin{array}{r}
1<f(x)<3 \\
2<f(x)+1<4
\end{array}
$$

Hence

$$
|f(x)-2| \frac{1}{|f(x)+1|}<\frac{1}{2}|f(x)-2|
$$

This is $<\epsilon$ if $|f(x)-2|<2 \epsilon$, which is true for all x sufficiently close to a.

Proof: Let $\epsilon>0$ be given and choose $\delta_{1}>0$ so that

$$
|f(x)-2|<1
$$

for $0<|x-a|<\delta_{1}$.
Choose $\delta_{2}>0$ such that

$$
|f(x)-2|<2 \epsilon
$$

for $0<|x-a|<\delta_{2}$. Let $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$. From the scratch work, $0<|x-a|<\delta$ implies that

$$
\left|\frac{3 f(x)}{f(x)+1}-2\right|<\epsilon
$$

proving the limit statement.
(5) Find a value of a for which the following function is continuous at $x=2$.

$$
f(x)=\left\{\begin{array}{l}
x+a \quad x<2 \\
x^{2} \quad x \geq 2
\end{array}\right.
$$

Solution:

$$
\begin{aligned}
f(2) & =4 \\
\lim _{x \rightarrow 2^{+}} f(x) & =\lim _{x \rightarrow 2^{+}} x^{2}=4 \\
\lim _{x \rightarrow 2^{-}} f(x) & =\lim _{x \rightarrow 2^{-}} x+a=2+a
\end{aligned}
$$

Hence, $f(x)$ will be continuous at $x=2$ if and only if $2+a=4$; hence $a=2$.
(6) Prove that there is a point (x, y) at which the graphs of $y=e^{x}$ and $y=2 \cos x$ cross. What theorem are you using?

Solution:

The graphs cross at (x, y) if and only if $e^{x}=2 \cos x$ which is the same as $e^{x}-2 \cos x=0$. Let

$$
g(x)=e^{x}-2 \cos x .
$$

Then $g(0)=e^{0}-2 \cos 0=-1$ while $g(\pi / 2)=e^{\pi / 2}-2 \cos \pi / 2=$ $e^{\pi / 2}$. Since $g(0)<0$ and $g(\pi / 2)>0$, it follows from the Intermediate Value Theorem that there is an x between 0 and $\pi / 2$ such that $g(x)=0$, proving that the graphs cross.
(7) Suppose that f is continuous at every x in $[0,1]$ and that for all x in this interval, $0 \leq f(x) \leq 1$. Prove that there is an $x \in[0,1]$ such that $f(x)=x^{2}$.

Solution: Let

$$
g(x)=f(x)-x^{2} .
$$

Then

$$
g(0)=f(0)-0^{2}=f(0) \geq 0 .
$$

If $f(0)=0$ then $f(0)=0^{2}$ so there is an x such that $f(x)=x^{2}$. Hence we may assume that $g(0)>0$.

Also

$$
g(1)=f(1)-1^{2}=f(1)-1 \leq 0 .
$$

If $f(1)=1$ then $f(1)=1^{2}$ so there is an x such that $f(x)=x^{2}$. Hence we may assume that $g(1)<0$.

Since $g(0)>0$ and $g(1)<0$, it follows from the Intermediate Value Theorem that there is an x between 0 and 1 such that $g(x)=0$; hence there is an x such that $f(x)=x^{2}$.
(8) Prove Theorem 3 on p. 180 of the notes:

Theorem 3 (Sequence). Let $f(x)$ be continuous at a and let x_{n} be a sequence such that $\lim _{n \rightarrow \infty} x_{n}=a$. Then

$$
\lim _{n \rightarrow \infty} f\left(x_{n}\right)=f(a) .
$$

Proof: See the proof of Theorem 3, on p. 180.

