MA 301 Test 3, Spring 2006
All answers must be justified. Simply stating an answer is not worth any credit.
(1) Question 1: Study for Test 4..

State the "official" definition of " $\lim _{x \rightarrow a} f(x)=L$." 10 pts
(2) Assume that it is given that $y=f(x)$ is increasing on $[0,5]$ and decreasing on $[5, \infty)$. (See the figure below for a possible graph of f.) Let $a_{n}=f(n)$ and $s=\sum_{1}^{\infty} a_{n}$.
(a) Find a specific value of n, a and b such that the following inequality is guaranteed to hold. Choose both n and a as large as possible and b as small as possible, consistent with the information provided. Justify your answer with a diagram. You may either use the figure below or draw your own.

$$
a_{1}+a_{2}+\cdots+a_{n}<\int_{a}^{b} f(x) d x
$$

Figure 1

(b) Find a specific value of n and a such that the following inequality is guaranteed to hold. Choose a and n as small as possible, consistent with the information provided. Justify your answer with a diagram. You may either use the
figure below or draw your own.

$$
s-s_{n}<\int_{a}^{\infty} f(x) d x
$$

Figure 2

(3) Question 3: Study for Test 4..

Prove that $Z=\frac{1}{\sqrt{1+\sqrt{2}}}$ is irrational. You may assume that $\sqrt{2}$ is irrational. You MAY NOT use Proposition 1 from Chapter

10 pts 10 pts

5 pts

10 pts

10 pts
9.
(4) Write a sum that expresses s to within $\pm 10^{-3}$ where

$$
s=\sum_{1}^{\infty} \frac{2}{(2 n+1)^{3}} .
$$

(5) Write a sum that expresses s within $\pm 10^{-3}$ where

$$
s=\sum_{1}^{\infty} \frac{2}{(2 n+1)^{3}+17 \ln (n+2)+5} .
$$

(6) Prove, using M, that the following series diverges.

$$
\sum_{1}^{\infty} \frac{1}{\sqrt{n+3}}
$$

(7) Is the following series convergent or divergent? Prove your answer.

$$
\sum_{1}^{\infty} \frac{\ln n}{n^{1.1}+1}
$$

(8) For which values of $p, p \geq 0$, is the following series:
(a) Divergent?
(b) Conditionally convergent?
(c) Absolutely convergent?

You must justify all of your answers.

$$
\sum_{1}^{\infty}(-1)^{n} \frac{\sqrt{n^{5}+1}}{n^{p}+2}
$$

(9) What is the set of x for which the following series converges? You need not prove your answer. However, you should explain your reasoning.

$$
\sum_{1}^{\infty} \frac{\ln n}{2^{n}(n+1)} x^{n}
$$

(10) Question 10: Study for Test 4.

Find an explicit one-to-one correspondence between the set of odd integers and the integers that are multiples of 3 .

Various Results From The Text

Proposition (1, p.89). If $\lim _{n \rightarrow \infty} a_{n} \neq 0$, then $\sum_{1}^{\infty} a_{n}$ cannot converge.

Theorem (1, p.89). Suppose $a_{n}>0$ for all n and $f(x)$ is an integrable, decreasing function on $[0, \infty)$ such that $a_{n}=f(n)$ for all $n \in \mathbb{N}$. Then

$$
s-s_{n} \leq \int_{n}^{\infty} f(x) d x
$$

Theorem (2, p.89). Suppose $a_{n}>0$ for all n and $f(x)$ is an integrable, decreasing function on $[0, \infty)$ such that $a_{n}=f(n)$ for all $n \in \mathbb{N}$. Then $s=\sum_{1}^{\infty} a_{n}$ exists if there is a k such that

$$
\int_{k}^{\infty} f(x) d x<\infty
$$

Theorem (3, p.91). The following series converges for all $p>1$.

$$
\begin{equation*}
\sum_{1}^{\infty} \frac{1}{n^{p}} \tag{1}
\end{equation*}
$$

Remark 1: The series in Theorem 3 above diverges if $p \leq 1$.
Theorem (4, p.94). Suppose $a_{n}>0$ for all n and $f(x)$ is an integrable, decreasing function on $[0, \infty)$ such that $a_{n}=f(n)$ for all $n \in \mathbb{N}$. Then

$$
s_{n} \geq \int_{1}^{n+1} f(x) d x
$$

Theorem (5, p. 95). Suppose that $0 \leq a_{n} \leq b_{n}$ for all n. Then $\sum_{1}^{\infty} a_{n}$ will converge if $\sum_{1}^{\infty} b_{n}$ converges.

Theorem (6, p. 96). Suppose that in Theorem 5 above, the sum of the first $N b_{n}$ approximates $\sum_{1}^{\infty} b_{n}$ to within $\pm \epsilon$. Then the same will be true for a_{n} : i.e. the sum of the first $N a_{n}$ will approximate $\sum_{1}^{\infty} a_{n}$ to within $\pm \epsilon$.

Theorem (7, p. 98). Let x be a real number. Then the series on the right side of the following equality converges if, and only if, $|x|<1$. Furthermore, when it converges, it converges to the stated value.

$$
\frac{1}{1-x}=1+x+x^{2}+\cdots+x^{n}+\ldots
$$

Remark 2: $\sum_{1}^{\infty} a_{n}$ converges if and only if there is an N such that $\sum_{N}^{\infty} a_{n}$ converges.

Theorem (1, p. 111). Let a_{n} be a sequence of real numbers. Then $\sum_{1}^{\infty} a_{n}$ will converge if $\sum_{1}^{\infty}\left|a_{n}\right|$ converges.

Theorem (2, p. 114). Suppose that a_{n} is a positive, decreasing sequence where $\lim _{n \rightarrow \infty} a_{n}=0$. Then

$$
s=\sum_{1}^{\infty}(-1)^{n} a_{n}
$$

converges. Furthermore

$$
\left|s-s_{n}\right|<a_{n+1}
$$

