
MA 301 Test 3, Spring 2005
TA grades: 1,3,4,5,7

Prof. Grades 2,6,8,9,10

(1) Question 1: Study for Test 4..
State the “official” definition of “limx→a f(x) = L.”

0, 5, 9 or 10 pts. The 9 pts. is if they omit 0 < |x − a|.
10 pts

Definition 1. We say that

lim
x→a

f(x) = L

provided that for all numbers ǫ > 0 there is a number δ > 0
such that

|f(x) − L| < ǫ

for all x satisfying 0 < |x − a| < δ.

(2) Assume that it is given that y = f(x) is increasing on [0, 5]
and decreasing on [5,∞). (See the figure below for a possible
graph of f .) Let an = f(n) and s =

∑∞
1

an. 10 pts
(a) Find a specific value of n, a and b such that the following

inequality is guaranteed to hold. Choose both n and a

as large as possible and b as small as possible, consistent
with the information provided. Justify your answer with
a diagram. You may either use the figure below or draw
your own.

a1 + a2 + · · · + an <

∫ b

a

f(x) dx

Solution:

a1 + a2 + a3 + a4 ≤
∫

5

1

f(x) dx

For the figure draw 5 rectangles of width 1 with their
left edges beginning at x = 1, 2, 3, 4 respectively and
extending up to the curve. The above inequality is true
because the rectangles have their top edges below the
curve since f is increasing over [0, 5].
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Figure 1

(b) Find a specific value of n and a such that the following
inequality is guaranteed to hold. Choose a and n as
small as possible, consistent with the information pro-
vided. Justify your answer with a diagram. You may
either use the figure below or draw your own.

s − sn <

∫ ∞

a

f(x) dx

Solution:

s − s5 ≤
∫ ∞

5

f(x) dx

For the figure draw rectangles of width 1 with their right
edges beginning at x = 6, 7, 8, 9, 10, . . . and extending
up to the curve. The sum of the areas of these rectan-
gles is s − s5. The above inequality is true because the
rectangles have their top edges below the curve since f

is decreasing over [5,∞).
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(3) Question 3: Study for Test 4..
Prove that Z = 1√

1+
√

2
is irrational. You may assume that

√
2 is irrational. You MAY NOT use Proposition 1 from

Chapter 9. 10 pts

Solution: Assume that Z is rational. 2 pt

Then Z = p
q

where p and q are integers 2 pt. It must be

stated somewhere in the solution that p and q are integers.

with q 6= 0. Then

p

q
=

1
√

1 +
√

2
2 pts.

q

p
=

√

1 +
√

2

q2

p2
= 1 +

√
2

q2 − p2

p2
=

√
2 2 pts.
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Since q2 − p2 and p2 are both integers2 pts., we conclude
that

√
2 is rational, which is nonsense. Hence Z must be

irrational.
(4) Write a sum that expresses s to within ±10−3 where10 pts

s =
∞

∑

1

2

(2n + 1)3
.

Solution:

According to Theorem 1,

s − sn <

∫ ∞

n

2

(2x + 1)3
dx

=
1

2(2n + 1)2

4 pts., -2 if they miss evaluate integral

This will be less than 10−3 provided

1

2(2n + 1)2
< 10−3

2(2n + 1)2 > 103

2n + 1 >

(

103

2

)1/2

n >
1

2

(

103

2

)1/2

− 1

2
= 10.68

4 pts. They may have the wrong answer for the integral. As

long as they attempt to solve for n they get these points.

Hence

s =
11

∑

1

2

(2n + 1)3
± 10−3.

2 pts.

(5) Write a sum that expresses s within ±10−3 where5 pts

s =
∞

∑

1

2

(2n + 1)3 + 17 ln(n + 2) + 5
.
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Solution:

2

(2n + 1)3 + 17 ln(n + 2) + 5
≤ 2

(2n + 1)3

3 pts.

From Problem 4, 11 terms suffice. Hence

s =
11

∑

1

2

(2n + 1)3 + 17 ln(n + 2) + 5
± 10−3.

2 pts.

(6) Prove, using M , that the following series diverges. 10 pts

∞
∑

1

1√
n + 3

Scratch work: According to Theorem 4

sn ≥
∫ n+1

1

(x + 3)−
1

2 dx

= 2
(

(4 + n)
1

2 − 2
)

= 2
√

4 + n − 4

2 pts+1 pts

Then sn is greater than M if:

2
√

4 + n − 4 > M 2 pts

√
4 + n >

1

2
M + 2

n >

(

1

2
M + 2

)2

− 4 2 pts

Proof: Let M > 0 be given.1 pt Let N =
(

1

2
M + 2

)2 − 4.1
pt From the scratch work, for n > N , sn > M ,1 pt proving
that limn→∞ sn = ∞.

(7) Is the following series convergent or divergent? Prove your
answer. 10 pts

∞
∑

1

ln n

n1.1 + 1
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Solution: Convergent. There is an N > 0 such that for all
n > N ,

ln n < n.05 (or na for any 0 < a < .1.) .

3 pts

Then (3 pts for dealing with N)

∞
∑

N+1

ln n

n1.1 + 1
<

∞
∑

N+1

n.05

n1.1

=
∞

∑

N+1

1

n1.05
< ∞

3 pts

since
∑

1

np < ∞ for p > 1.1 pts It follows that

∞
∑

1

ln n

n1.1 + 1
< ∞

proving convergence.
(8) For which values of p, p ≥ 0, is the following series:15 pts

(a) Divergent?
(b) Conditionally convergent?
(c) Absolutely convergent?

You must justify all of your answers.

∞
∑

1

(−1)n

√
n5 + 1

np + 2

Solution:
√

n5 + 1

np + 2
∼ n2.5

np
∼ 1

np−2.5
.

(a) If 2.5 ≥ p ≥ 0, the series diverges since limn→∞
√

n5+1

np+2
6=

0 in this case.
(b) If 3.5 ≥ p > 2.5 the series converges conditionally be-

cause it is an alternating series and limn→∞
√

n5+1

np+2
= 0

in this case.
(c) If p > 3.5 the series will converge absolutely since

∑

1

nq

converges for q > 1.
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(9) What is the set of x for which the following series converges?
You need not prove your answer. However, you should ex-
plain your reasoning. 10 pts

∞
∑

1

ln n

2n(n + 1)
xn

Solution: −2 ≤ x < 2. 3 pts

This is the same as
∞

∑

1

ln n

n + 1

(x

2

)n

.

If |x|
2

> 1, this diverges because
(

x
2

)n
grows exponentially

while ln n
n+1

decays slowly. (Or one can say that in this case
limn→∞ |an| = ∞.) 2 pts

Similarly, if |x|
2

< 1 it converges because
(

x
2

)n
decays

exponentially while ln n
n+1

decays. 3 pts

If x = 2, it diverges because ln n
n+1

> 1

n+1
for n > N . If

x = −2, it converges since it is an alternating series and
limn→∞

ln n
n+1

= 0 . 2 pts

(10) Question 10: Study for Test 4..
Find an explicit one-to-one correspondence between the set
of odd integers and the integers that are multiples of 3. 10 pts

Solution:

f(n) = 3
n + 1

2
.

The following is worth 5 pts. (It is not really “explicit”.)

. . . −3 −1 1 3 5 7 . . .

. . . −3 0 3 6 9 12 . . .

Theorem (2’). Suppose an > 0 for all n and f(x) is an integrable,

decreasing function on [0,∞) such that an = f(n) for all n ∈ N. Then

s =
∑∞

1
an exists if

∫ ∞

0

f(x) dx < ∞
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Figure 3. Theorems 2’ and 4’

Proof Each an is the length of a line segment drawn from the point
(n, 0) on the x-axis to the graph of y = f(x) as in Figure 3.

The area of a rectangle of width one having this line segment as
its right edge is an. (See Figure 4). This rectangle also lies entirely
below the graph of y = f(x) since this graph is decreasing.

Since the left side of the first rectangle extends to x = 0,

(1) sn = a1 + a2 + · · · + an ≤
∫ n

0

f(x) dx ≤
∫ ∞

0

f(x) dx.

y=f(x)

a

4a3a2a1
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Figure 4. Theorem 2’

Finally, since the an are all positive, sn is an increasing sequence.

From the Bounded Increasing Theorem, lim sn either exists or equals
∞. Formula (1) proves that the limit is not ∞. Hence the limit
exists, proving the convergence of the sum. ¤

Various Results From The Text

Proposition (1, p.89). If limn→∞ an 6= 0, then
∑∞

1
an cannot

converge.
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Theorem (1, p.89). Suppose an > 0 for all n and f(x) is an

integrable, decreasing function on [0,∞) such that an = f(n) for all

n ∈ N. Then

s − sn ≤
∫ ∞

n

f(x) dx

Theorem (2, p.89). Suppose an > 0 for all n and f(x) is an

integrable, decreasing function on [0,∞) such that an = f(n) for all

n ∈ N. Then s =
∑∞

1
an exists if there is a k such that

∫ ∞

k

f(x) dx < ∞

Theorem (3, p.91). The following series converges for all p > 1.

(2)
∞

∑

1

1

np

Remark 1: The series in Theorem 3 above diverges if p ≤ 1.

Theorem (4, p.94). Suppose an > 0 for all n and f(x) is an

integrable, decreasing function on [0,∞) such that an = f(n) for all

n ∈ N. Then

sn ≥
∫ n+1

1

f(x) dx

Theorem (5, p. 95). Suppose that 0 ≤ an ≤ bn for all n. Then
∑∞

1
an will converge if

∑∞
1

bn converges.

Theorem (6, p. 96). Suppose that in Theorem 5 above, the sum

of the first N bn approximates
∑∞

1
bn to within ±ǫ. Then the same

will be true for an: i.e. the sum of the first N an will approximate
∑∞

1
an to within ±ǫ.

Theorem (7, p. 98). Let x be a real number. Then the series

on the right side of the following equality converges if, and only if,
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|x| < 1. Furthermore, when it converges, it converges to the stated

value.
1

1 − x
= 1 + x + x2 + · · · + xn + . . .

Remark 2:
∑∞

1
an converges if and only if there is an N such that

∑∞
N an converges.

Theorem (1, p. 111). Let an be a sequence of real numbers.

Then
∑∞

1
an will converge if

∑∞
1
|an| converges.

Theorem (2, p. 114). Suppose that an is a positive, decreasing

sequence where limn→∞ an = 0. Then

s =
∞

∑

1

(−1)nan

converges. Furthermore

|s − sn| < an+1


