MA 301 Test 3, Spring 2005
TA grades: 1,3,4,5,7
Prof. Grades 2, 6,8,9,10
(1) Question 1: Study for Test 4..

State the "official" definition of "lim $x_{x \rightarrow a} f(x)=L$."
0, 5, 9 or 10 pts. The 9 pts. is if they omit $0<|x-a|$.
10 pts
Definition 1. We say that

$$
\lim _{x \rightarrow a} f(x)=L
$$

provided that for all numbers $\epsilon>0$ there is a number $\delta>0$ such that

$$
|f(x)-L|<\epsilon
$$

for all x satisfying $0<|x-a|<\delta$.
(2) Assume that it is given that $y=f(x)$ is increasing on $[0,5]$ and decreasing on $[5, \infty$). (See the figure below for a possible graph of f.) Let $a_{n}=f(n)$ and $s=\sum_{1}^{\infty} a_{n}$.
(a) Find a specific value of n, a and b such that the following inequality is guaranteed to hold. Choose both n and a as large as possible and b as small as possible, consistent with the information provided. Justify your answer with a diagram. You may either use the figure below or draw your own.

$$
a_{1}+a_{2}+\cdots+a_{n}<\int_{a}^{b} f(x) d x
$$

Solution:

$$
a_{1}+a_{2}+a_{3}+a_{4} \leq \int_{1}^{5} f(x) d x
$$

For the figure draw 5 rectangles of width 1 with their left edges beginning at $x=1,2,3,4$ respectively and extending up to the curve. The above inequality is true because the rectangles have their top edges below the curve since f is increasing over $[0,5]$.

Figure 1
(b) Find a specific value of n and a such that the following inequality is guaranteed to hold. Choose a and n as small as possible, consistent with the information provided. Justify your answer with a diagram. You may either use the figure below or draw your own.

$$
s-s_{n}<\int_{a}^{\infty} f(x) d x
$$

Solution:

$$
s-s_{5} \leq \int_{5}^{\infty} f(x) d x
$$

For the figure draw rectangles of width 1 with their right edges beginning at $x=6,7,8,9,10, \ldots$ and extending up to the curve. The sum of the areas of these rectangles is $s-s_{5}$. The above inequality is true because the rectangles have their top edges below the curve since f is decreasing over $[5, \infty)$.

Figure 2
(3) Question 3: Study for Test 4..

Prove that $Z=\frac{1}{\sqrt{1+\sqrt{2}}}$ is irrational. You may assume that $\sqrt{2}$ is irrational. You MAY NOT use Proposition 1 from Chapter 9.

Solution: Assume that Z is rational. $2 p t$
Then $Z=\frac{p}{q}$ where p and q are integers $2 p t$. It must be stated somewhere in the solution that p and q are integers. with $q \neq 0$. Then

$$
\begin{aligned}
\frac{p}{q} & =\frac{1}{\sqrt{1+\sqrt{2}}} \quad \text { 2 pts. } \\
\frac{q}{p} & =\sqrt{1+\sqrt{2}} \\
\frac{q^{2}}{p^{2}} & =1+\sqrt{2} \\
\frac{q^{2}-p^{2}}{p^{2}} & =\sqrt{2} \text { 2 pts. }
\end{aligned}
$$

Since $q^{2}-p^{2}$ and p^{2} are both integers2 pts., we conclude that $\sqrt{2}$ is rational, which is nonsense. Hence Z must be irrational.
10 pts
(4) Write a sum that expresses s to within $\pm 10^{-3}$ where

$$
s=\sum_{1}^{\infty} \frac{2}{(2 n+1)^{3}} .
$$

Solution:

According to Theorem 1,

$$
\begin{aligned}
s-s_{n} & <\int_{n}^{\infty} \frac{2}{(2 x+1)^{3}} d x \\
& =\frac{1}{2(2 n+1)^{2}}
\end{aligned}
$$

4 pts., -2 if they miss evaluate integral
This will be less than 10^{-3} provided

$$
\begin{aligned}
\frac{1}{2(2 n+1)^{2}} & <10^{-3} \\
2(2 n+1)^{2} & >10^{3} \\
2 n+1 & >\left(\frac{10^{3}}{2}\right)^{1 / 2} \\
n & >\frac{1}{2}\left(\frac{10^{3}}{2}\right)^{1 / 2}-\frac{1}{2}=10.68
\end{aligned}
$$

4 pts. They may have the wrong answer for the integral. As long as they attempt to solve for n they get these points.

Hence

$$
s=\sum_{1}^{11} \frac{2}{(2 n+1)^{3}} \pm 10^{-3} .
$$

2 pts.
5 pts
(5) Write a sum that expresses s within $\pm 10^{-3}$ where

$$
s=\sum_{1}^{\infty} \frac{2}{(2 n+1)^{3}+17 \ln (n+2)+5} .
$$

Solution:

$$
\frac{2}{(2 n+1)^{3}+17 \ln (n+2)+5} \leq \frac{2}{(2 n+1)^{3}}
$$

3 pts.
From Problem 4, 11 terms suffice. Hence

$$
s=\sum_{1}^{11} \frac{2}{(2 n+1)^{3}+17 \ln (n+2)+5} \pm 10^{-3} .
$$

2 pts.
(6) Prove, using M, that the following series diverges.

$$
\sum_{1}^{\infty} \frac{1}{\sqrt{n+3}}
$$

Scratch work: According to Theorem 4

$$
\begin{aligned}
s_{n} & \geq \int_{1}^{n+1}(x+3)^{-\frac{1}{2}} d x \\
& =2\left((4+n)^{\frac{1}{2}}-2\right) \\
& =2 \sqrt{4+n}-4
\end{aligned}
$$

$2 \mathrm{pts}+1 \mathrm{pts}$
Then s_{n} is greater than M if:

$$
\begin{aligned}
2 \sqrt{4+n}-4 & >M \quad \text { 2 pts } \\
\sqrt{4+n} & >\frac{1}{2} M+2 \\
n & >\left(\frac{1}{2} M+2\right)^{2}-4 \quad \text { 2 pts }
\end{aligned}
$$

Proof: Let $M>0$ be given. 1 pt Let $N=\left(\frac{1}{2} M+2\right)^{2}-4.1$ $p t$ From the scratch work, for $n>N, s_{n}>M, 1$ pt proving that $\lim _{n \rightarrow \infty} s_{n}=\infty$.
(7) Is the following series convergent or divergent? Prove your answer.

$$
\sum_{1}^{\infty} \frac{\ln n}{n^{1.1}+1}
$$

Solution: Convergent. There is an $N>0$ such that for all $n>N$,

$$
\ln n<n^{.05} \quad \text { (or } n^{a} \text { for any } 0<a<.1 \text {.) }
$$

3 pts
Then (3 pts for dealing with N)

$$
\begin{aligned}
\sum_{N+1}^{\infty} \frac{\ln n}{n^{1.1}+1} & <\sum_{N+1}^{\infty} \frac{n^{.05}}{n^{1.1}} \\
& =\sum_{N+1}^{\infty} \frac{1}{n^{1.05}}<\infty
\end{aligned}
$$

3 pts
since $\sum \frac{1}{n^{p}}<\infty$ for $p>1.1$ pts It follows that

$$
\sum_{1}^{\infty} \frac{\ln n}{n^{1.1}+1}<\infty
$$

proving convergence.
15 pts
(8) For which values of $p, p \geq 0$, is the following series:
(a) Divergent?
(b) Conditionally convergent?
(c) Absolutely convergent?

You must justify all of your answers.

$$
\sum_{1}^{\infty}(-1)^{n} \frac{\sqrt{n^{5}+1}}{n^{p}+2}
$$

Solution:

$$
\frac{\sqrt{n^{5}+1}}{n^{p}+2} \sim \frac{n^{2.5}}{n^{p}} \sim \frac{1}{n^{p-2.5}}
$$

(a) If $2.5 \geq p \geq 0$, the series diverges since $\lim _{n \rightarrow \infty} \frac{\sqrt{n^{5}+1}}{n^{p}+2} \neq$ 0 in this case.
(b) If $3.5 \geq p>2.5$ the series converges conditionally because it is an alternating series and $\lim _{n \rightarrow \infty} \frac{\sqrt{n^{5}+1}}{n^{p}+2}=0$ in this case.
(c) If $p>3.5$ the series will converge absolutely since $\sum \frac{1}{n^{q}}$ converges for $q>1$.
(9) What is the set of x for which the following series converges? You need not prove your answer. However, you should explain your reasoning.

$$
\sum_{1}^{\infty} \frac{\ln n}{2^{n}(n+1)} x^{n}
$$

Solution: $-2 \leq x<2$. 3 pts
This is the same as

$$
\sum_{1}^{\infty} \frac{\ln n}{n+1}\left(\frac{x}{2}\right)^{n}
$$

If $\frac{|x|}{2}>1$, this diverges because $\left(\frac{x}{2}\right)^{n}$ grows exponentially while $\frac{\ln n}{n+1}$ decays slowly. (Or one can say that in this case $\lim _{n \rightarrow \infty}\left|a_{n}\right|=\infty$.) 2 pts

Similarly, if $\frac{|x|}{2}<1$ it converges because $\left(\frac{x}{2}\right)^{n}$ decays exponentially while $\frac{\ln n}{n+1}$ decays. 3 pts

If $x=2$, it diverges because $\frac{\ln n}{n+1}>\frac{1}{n+1}$ for $n>N$. If $x=-2$, it converges since it is an alternating series and $\lim _{n \rightarrow \infty} \frac{\ln n}{n+1}=0$. 2 pts
(10) Question 10: Study for Test 4..

Find an explicit one-to-one correspondence between the set of odd integers and the integers that are multiples of 3 .

Solution:

$$
f(n)=3 \frac{n+1}{2} .
$$

The following is worth 5 pts. (It is not really "explicit".)

$$
\begin{array}{cccccccc}
\ldots & -3 & -1 & 1 & 3 & 5 & 7 & \ldots \\
\ldots & -3 & 0 & 3 & 6 & 9 & 12 & \ldots
\end{array}
$$

Theorem (2'). Suppose $a_{n}>0$ for all n and $f(x)$ is an integrable, decreasing function on $[0, \infty)$ such that $a_{n}=f(n)$ for all $n \in \mathbb{N}$. Then $s=\sum_{1}^{\infty} a_{n}$ exists if

$$
\int_{0}^{\infty} f(x) d x<\infty
$$

Figure 3. Theorems 2' and 4'
Proof Each a_{n} is the length of a line segment drawn from the point $(n, 0)$ on the x-axis to the graph of $y=f(x)$ as in Figure 3.

The area of a rectangle of width one having this line segment as its right edge is a_{n}. (See Figure 4). This rectangle also lies entirely below the graph of $y=f(x)$ since this graph is decreasing.

Since the left side of the first rectangle extends to $x=0$,

$$
\begin{equation*}
s_{n}=a_{1}+a_{2}+\cdots+a_{n} \leq \int_{0}^{n} f(x) d x \leq \int_{0}^{\infty} f(x) d x \tag{1}
\end{equation*}
$$

Figure 4. Theorem 2'
Finally, since the a_{n} are all positive, s_{n} is an increasing sequence. From the Bounded Increasing Theorem, $\lim s_{n}$ either exists or equals ∞. Formula (1) proves that the limit is not ∞. Hence the limit exists, proving the convergence of the sum.

Various Results From The Text

Proposition (1, p.89). If $\lim _{n \rightarrow \infty} a_{n} \neq 0$, then $\sum_{1}^{\infty} a_{n}$ cannot converge.

Theorem (1, p.89). Suppose $a_{n}>0$ for all n and $f(x)$ is an integrable, decreasing function on $[0, \infty)$ such that $a_{n}=f(n)$ for all $n \in \mathbb{N}$. Then

$$
s-s_{n} \leq \int_{n}^{\infty} f(x) d x
$$

Theorem (2, p.89). Suppose $a_{n}>0$ for all n and $f(x)$ is an integrable, decreasing function on $[0, \infty)$ such that $a_{n}=f(n)$ for all $n \in \mathbb{N}$. Then $s=\sum_{1}^{\infty} a_{n}$ exists if there is a k such that

$$
\int_{k}^{\infty} f(x) d x<\infty
$$

Theorem (3, p.91). The following series converges for all $p>1$.

$$
\begin{equation*}
\sum_{1}^{\infty} \frac{1}{n^{p}} \tag{2}
\end{equation*}
$$

Remark 1: The series in Theorem 3 above diverges if $p \leq 1$.
Theorem (4, p.94). Suppose $a_{n}>0$ for all n and $f(x)$ is an integrable, decreasing function on $[0, \infty)$ such that $a_{n}=f(n)$ for all $n \in \mathbb{N}$. Then

$$
s_{n} \geq \int_{1}^{n+1} f(x) d x
$$

Theorem (5, p. 95). Suppose that $0 \leq a_{n} \leq b_{n}$ for all n. Then $\sum_{1}^{\infty} a_{n}$ will converge if $\sum_{1}^{\infty} b_{n}$ converges.

Theorem (6, p. 96). Suppose that in Theorem 5 above, the sum of the first $N b_{n}$ approximates $\sum_{1}^{\infty} b_{n}$ to within $\pm \epsilon$. Then the same will be true for a_{n} : i.e. the sum of the first $N a_{n}$ will approximate $\sum_{1}^{\infty} a_{n}$ to within $\pm \epsilon$.

Theorem (7, p. 98). Let x be a real number. Then the series on the right side of the following equality converges if, and only if,
$|x|<1$. Furthermore, when it converges, it converges to the stated value.

$$
\frac{1}{1-x}=1+x+x^{2}+\cdots+x^{n}+\ldots
$$

Remark 2: $\sum_{1}^{\infty} a_{n}$ converges if and only if there is an N such that $\sum_{N}^{\infty} a_{n}$ converges.

Theorem (1, p. 111). Let a_{n} be a sequence of real numbers. Then $\sum_{1}^{\infty} a_{n}$ will converge if $\sum_{1}^{\infty}\left|a_{n}\right|$ converges.

Theorem (2, p. 114). Suppose that a_{n} is a positive, decreasing sequence where $\lim _{n \rightarrow \infty} a_{n}=0$. Then

$$
s=\sum_{1}^{\infty}(-1)^{n} a_{n}
$$

converges. Furthermore

$$
\left|s-s_{n}\right|<a_{n+1}
$$

