MA 301 Test 4, Spring 2006

(1) State the "official" definition of " $\lim _{x \rightarrow a} f(x)=L$."

8 pts
(2) Find a value of a for which the following function is continuous at $x=2$. Justify your answer.

$$
f(x)= \begin{cases}2^{a x} & x>2 \\ \sqrt{x} & 0<x \leq 2\end{cases}
$$

(3) Use a $\delta-\epsilon$ argument to prove that

12 pts

$$
\lim _{x \rightarrow 3} \frac{x-1}{x+1}=\frac{1}{2} .
$$

(4) Use a $\delta-\epsilon$ argument to prove that

$$
\lim _{x \rightarrow 1} \frac{1}{\sqrt{2 x+7}}=\frac{1}{3} .
$$

(5) Use a $\delta-\epsilon$ argument to prove that

$$
\lim _{x \rightarrow .5} \frac{1}{x^{2}}=4
$$

(6) Assume that $\lim _{x \rightarrow a} f(x)=5$. Use a $\delta-\epsilon$ argument to prove that

12 pts

$$
\frac{f(x)+3}{f(x)-1}=2
$$

(7) Use a $\delta-\epsilon$ argument to prove Theorem 3 on p .180 of the notes:

Theorem 3 (Sequence). Let $f(x)$ be continuous at a and let x_{n} be a sequence such that $\lim _{n \rightarrow \infty} x_{n}=a$. Then

$$
\lim _{n \rightarrow \infty} f\left(x_{n}\right)=f(a)
$$

