TA Grades 1-4
(1) State the "official" definition of " $\lim _{x \rightarrow a} f(x)=L$."

8 pts 0, 7, or 8 pts.

Definition 1. We say that

$$
\lim _{x \rightarrow a} f(x)=L
$$

provided that for all numbers $\epsilon>0$ there is a number $\delta>0$ such that

$$
|f(x)-L|<\epsilon
$$

for all x satisfying $0<|x-a|<\delta$.
(2) Find a value of a for which the following function is continuous at $x=2$. Justify your answer.

$$
f(x)= \begin{cases}2^{a x} & x>2 \\ \sqrt{x} & 0<x \leq 2\end{cases}
$$

Solution:

$$
\begin{aligned}
f(2) & =\sqrt{2}=2^{1 / 2} \quad 2 \mathrm{pts} \\
\lim _{x \rightarrow 2^{+}} f(x) & =\lim _{x \rightarrow 2^{+}} 2^{a x}=2^{2 a} \quad 2 \mathrm{pts} \\
\lim _{x \rightarrow 2^{-}} f(x) & =\lim _{x \rightarrow 2^{-}} \sqrt{x}=2^{1 / 2} \quad 2 \mathrm{pts}
\end{aligned}
$$

Hence, $f(x)$ will be continuous at $x=2$ if and only if $2^{2 a}=$ $2^{1 / 2}$; hence $a=\frac{1}{4} 2$ pts..
(3) Use a $\delta-\epsilon$ argument to prove that

$$
\lim _{x \rightarrow 3} \frac{x-1}{x+1}=\frac{1}{2} .
$$

Scratch Work: Let $\epsilon>0$ be given. We want

$$
\begin{aligned}
\left|\frac{x-1}{x+1}-\frac{1}{2}\right|< & \epsilon \quad \text { 2 pts. } \\
\left|\frac{x-3}{2(x+1)}\right|= & |x-3| \frac{1}{2|x+1|}<\epsilon \\
& \text { 2 pts. for simplification }
\end{aligned}
$$

Assume that $x=3 \pm 1$ (1 pt. for $3 \pm \delta$ (any δ)) so that $2<x<4$ and $3<x+1<5$. Then

$$
|x-3| \frac{1}{2|x+1|}<\frac{1}{6}|x-3| \quad 3 \text { pts. }
$$

This will be $<\epsilon$ if $|x-3|<6 \epsilon$.

Proof: Let $\epsilon>0$ be given 1 pt. and let $\delta=\min \{1,6 \epsilon\} 1$ pt.. Assume that $0<|x-3|<\delta .1$ pt. Then from the scratch work

$$
\left|\frac{x-1}{x+1}-\frac{1}{2}\right|<\epsilon, \quad 1 \mathrm{pt} .
$$

proving the limit statement.
12 pts
(4) Use a $\delta-\epsilon$ argument to prove that

$$
\lim _{x \rightarrow 1} \frac{1}{\sqrt{2 x+7}}=\frac{1}{3}
$$

Scratch Work: Let $\epsilon>0$ be given. We want

$$
\begin{gathered}
\left\lvert\, \frac{1}{\left.\sqrt{2 x+7}-\frac{1}{3} \right\rvert\,<\epsilon \quad 2 p t .} \begin{array}{c}
\frac{|3-\sqrt{2 x+7}|}{3 \sqrt{2 x+7}}<\epsilon \quad 1 \text { pt. } \\
\frac{|(3-\sqrt{2 x+7})(3+\sqrt{2 x+7})|}{3 \sqrt{2 x+7}(3+\sqrt{2 x+7})}<\epsilon \quad 1 \text { pt. } \\
\frac{|2-2 x|}{3 \sqrt{2 x+7}(3+\sqrt{2 x+7})}<\epsilon \\
|x-1| \frac{2}{3 \sqrt{2 x+7}(3+\sqrt{2 x+7})}<\epsilon \quad 1 \text { pt. for simplification } \\
\text { Assume that } x=1 \pm 1 \quad 1 \text { pt. for } 1 \pm \delta \text {, any } \delta \quad \text { so that } \\
0<x<2 \\
7<2 x+7<11 \\
\sqrt{7}<\sqrt{2 x+7}<\sqrt{11} \\
3+\sqrt{7}<3+\sqrt{2 x+7}<3+\sqrt{11} \quad 2 p t . \\
3 \sqrt{7}(3+\sqrt{7})<3 \sqrt{2 x+7}(3+\sqrt{2 x+7})
\end{array}\right.
\end{gathered}
$$

Then
$|x-1| \frac{2}{3 \sqrt{2 x+7}(3+\sqrt{2 x+7})}<|x-1| \frac{2}{3 \sqrt{7}(3+\sqrt{7})} \quad 1$ pt.
This will be $<\epsilon$ if $|x-1|<\frac{3 \sqrt{7}(3+\sqrt{7})}{2} \epsilon$.

Proof: Grade same as Problem (3) Let $\epsilon>0$ be given and let $\delta=\min \left\{1, \frac{3 \sqrt{7}(3+\sqrt{7})}{2} \epsilon\right\}$. Assume that $0<|x-1|<\delta$. Then from the scratch work

$$
\left|\frac{1}{\sqrt{2 x+7}}-\frac{1}{3}\right|<\epsilon,
$$

proving the limit statement.
(5) Use a $\delta-\epsilon$ argument to prove that

$$
\lim _{x \rightarrow .5} \frac{1}{x^{2}}=4
$$

Scratch Work: Let $\epsilon>0$ be given. We want

$$
\begin{aligned}
&\left|\frac{1}{x^{2}}-4\right|<\epsilon \quad 1 \text { pt. } \\
&\left|\frac{1-4 x^{2}}{x^{2}}\right|<\epsilon \\
&\left|\frac{(1-2 x)(1+2 x)}{x^{2}}\right|<\epsilon \\
& 2\left|x-\frac{1}{2}\right| \frac{|1+2 x|}{x^{2}}<\epsilon \\
& \begin{aligned}
& 2 p t . \text { for simplification }
\end{aligned}
\end{aligned}
$$

Assume that $x=.5 \pm .25 \quad$ 2 pt. for $.5 \pm \delta$, any δ. Then

$$
.25<x<.75
$$

$$
(.25)^{2}<x^{2}<(.75)^{2}
$$

$$
1 \text { pt.: but interval cannot contain } 0
$$

Also

$$
\begin{aligned}
.25 & <x<.75 \\
.5 & <2 x<1.5 \\
1.5 & <2 x+1<2.5 \quad 1 \text { pt. }
\end{aligned}
$$

Hence

$$
2\left|x-\frac{1}{2}\right| \frac{|1+2 x|}{x^{2}}<\frac{5}{(.25)^{2}}\left|x-\frac{1}{2}\right|
$$

This will be $<\epsilon$ if $\left|x-\frac{1}{2}\right|<\frac{(.25)^{2}}{5} \epsilon$.
2 pt.

Proof: Grade as in Exercise (3) Let $\epsilon>0$ be given and let $\delta=\min \left\{.25, \frac{(.25)^{2}}{5} \epsilon\right\}$. Assume that $0<\left|x-\frac{1}{2}\right|<\delta$. Then from the scratch work

$$
\left|\frac{1}{x^{2}}-4\right|<\epsilon
$$

proving the limit statement.
(6) Assume that $\lim _{x \rightarrow a} f(x)=5$. Use a $\delta-\epsilon$ argument to prove that

$$
\frac{f(x)+3}{f(x)-1}=2
$$

Scratch work: Let $\epsilon>0$ be given. We want

$$
\begin{aligned}
&\left|\frac{f(x)+3}{f(x)-1}-2\right|<\epsilon \quad \text { 2 pts. } \\
&\left|\frac{f(x)-5}{f(x)-1}\right|<\epsilon \\
&|f(x)-5| \frac{1}{|f(x)-1|}<\epsilon \quad 2 \text { pts. }
\end{aligned}
$$

The term on the left is our "gold" since it becomes small as x approaches a. The other term is our "trash" which we will bound. Specifically, we reason that for all x sufficiently close to $a, f(x)=5 \pm 1$. Thus, for such x,

$$
\begin{array}{rl}
4<f(x)<6 & 2 \text { pts. } \\
3<f(x)-1 & <5 \\
1 \text { pts. } \\
3<|f(x)-1| & <5
\end{array}
$$

Hence

$$
|f(x)-5| \frac{1}{|f(x)-1|}<\frac{1}{3}|f(x)-5| \quad 1 \text { pts. }
$$

This is $<\epsilon$ if $|f(x)-5|<3 \epsilon$, which is true for all x sufficiently close to a.

Proof: Let $\epsilon>0 \quad 1$ pts. be given and choose $\delta_{1}>0 \quad 1$ pts. so that

$$
|f(x)-5|<1
$$

for $0<|x-a|<\delta_{1}$.
Choose $\delta_{2}>0$ such that

$$
|f(x)-5|<3 \epsilon \quad 1 \text { pts. }
$$

for $0<|x-a|<\delta_{2}$. Let $\delta=\min \left\{\delta_{1}, \delta_{2}\right\} \quad 1$ pts. . From the scratch work, $0<|x-a|<\delta$ implies that

$$
\left|\frac{f(x)+3}{f(x)-1}-2\right|<\epsilon
$$

proving the limit statement.
(7) Use a $\delta-\epsilon$ argument to prove Theorem 3 on p. 180 of the notes:

Theorem 3 (Sequence). Let $f(x)$ be continuous at a and let x_{n} be a sequence such that $\lim _{n \rightarrow \infty} x_{n}=a$. Then

$$
\lim _{n \rightarrow \infty} f\left(x_{n}\right)=f(a)
$$

Proof Let $\epsilon>0 \quad 1 \mathrm{pt}$. be given. Since $\lim _{x \rightarrow a} f(x)=f(a)$, there is a $\delta>0$ such that

$$
|f(x)-f(a)|<\epsilon . \quad 4 \mathrm{pt}
$$

for $|x-a|<\delta, x \neq a$. This inequality holds even if $x=a$ since in this case the left hand quantity is zero. 1 pt .

But, since $\lim _{n \rightarrow \infty} x_{n}=a$, there is an N such that

$$
\left|x_{n}-a\right|<\delta \quad 4 \mathrm{pt}
$$

for all $n>N$. Replacing x with x_{n} in (1) shows that

$$
\left|f\left(x_{n}\right)-f(a)\right|<\epsilon \quad 3 \text { pt. }
$$

for $n>N$, which proves our theorem.

