
MA 301 Test 4, Spring 2006
TA Grades 1-4

(1) State the “official” definition of “limx→a f(x) = L.” 8 pts
0, 7, or 8 pts.

Definition 1. We say that

lim
x→a

f(x) = L

provided that for all numbers ε > 0 there is a number δ > 0
such that

|f(x)− L| < ε

for all x satisfying 0 < |x− a| < δ.

(2) Find a value of a for which the following function is continuous
at x = 2. Justify your answer. 8 pts

f(x) =

{
2ax x > 2√
x 0 < x ≤ 2

Solution:

f(2) =
√

2 = 21/2 2 pts.

lim
x→2+

f(x) = lim
x→2+

2ax = 22a 2 pts.

lim
x→2−

f(x) = lim
x→2−

√
x = 21/2 2 pts.

Hence, f(x) will be continuous at x = 2 if and only if 22a =
21/2; hence a = 1

4
2 pts..

(3) Use a δ-ε argument to prove that 12 pts

lim
x→3

x− 1

x+ 1
=

1

2
.

Scratch Work: Let ε > 0 be given. We want∣∣x− 1

x+ 1
− 1

2

∣∣ < ε 2 pts.∣∣ x− 3

2(x+ 1)

∣∣ = |x− 3| 1

2|x+ 1|
< ε

2 pts. for simplification

1



2

Assume that x = 3 ± 1 (1 pt. for 3 ± δ (any δ)) so that
2 < x < 4 and 3 < x+ 1 < 5. Then

|x− 3| 1

2|x+ 1|
<

1

6
|x− 3| 3 pts.

This will be < ε if |x− 3| < 6ε.

Proof: Let ε > 0 be given 1 pt. and let δ = min{1, 6ε} 1 pt..
Assume that 0 < |x−3| < δ.1 pt. Then from the scratch work∣∣x− 1

x+ 1
− 1

2
| < ε, 1 pt.

proving the limit statement.

(4) Use a δ-ε argument to prove that12 pts

lim
x→1

1√
2x+ 7

=
1

3
.

Scratch Work: Let ε > 0 be given. We want∣∣ 1√
2x+ 7

− 1

3

∣∣ < ε 2 pt.

|3−
√

2x+ 7|
3
√

2x+ 7
< ε 1 pt.

|(3−
√

2x+ 7)(3 +
√

2x+ 7)|
3
√

2x+ 7(3 +
√

2x+ 7)
< ε 1 pt.

|2− 2x|
3
√

2x+ 7(3 +
√

2x+ 7)
< ε

|x− 1| 2

3
√

2x+ 7(3 +
√

2x+ 7)
< ε 1 pt. for simplification

Assume that x = 1± 1 1 pt. for 1± δ, any δ so that

0 < x < 2

7 < 2x+ 7 < 11
√

7 <
√

2x+ 7 <
√

11

3 +
√

7 < 3 +
√

2x+ 7 < 3 +
√

11 2 pt.

3
√

7(3 +
√

7) < 3
√

2x+ 7(3 +
√

2x+ 7)
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Then

|x− 1| 2

3
√

2x+ 7(3 +
√

2x+ 7)
< |x− 1| 2

3
√

7(3 +
√

7)
1 pt.

This will be < ε if |x− 1| < 3
√
7(3+

√
7)

2
ε.

Proof: Grade same as Problem (3) Let ε > 0 be given and let

δ = min{1, 3
√
7(3+

√
7)

2
ε}. Assume that 0 < |x − 1| < δ. Then

from the scratch work∣∣ 1√
2x+ 7

− 1

3

∣∣ < ε,

proving the limit statement.
(5) Use a δ-ε argument to prove that 12 pts

lim
x→.5

1

x2
= 4.

Scratch Work: Let ε > 0 be given. We want∣∣ 1

x2
− 4
∣∣ < ε 1 pt.∣∣1− 4x2

x2
∣∣ < ε∣∣(1− 2x)(1 + 2x)

x2
∣∣ < ε

2|x− 1

2
| |1 + 2x|

x2
< ε

2 pt. for simplification

Assume that x = .5± .25 2 pt. for .5± δ, any δ . Then

.25 < x < .75

(.25)2 < x2 < (.75)2

1 pt.: but interval cannot contain 0

Also
.25 < x < .75

.5 < 2x < 1.5

1.5 < 2x+ 1 < 2.5 1 pt.

Hence

2|x− 1

2
| |1 + 2x|

x2
<

5

(.25)2
|x− 1

2
|
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This will be < ε if |x− 1
2
| < (.25)2

5
ε.

2 pt.

Proof: Grade as in Exercise (3) Let ε > 0 be given and let

δ = min{.25, (.25)
2

5
ε}. Assume that 0 < |x− 1

2
| < δ. Then from

the scratch work ∣∣ 1

x2
− 4| < ε,

proving the limit statement.

(6) Assume that limx→a f(x) = 5. Use a δ-ε argument to prove
that12 pts

f(x) + 3

f(x)− 1
= 2.

Scratch work: Let ε > 0 be given. We want∣∣f(x) + 3

f(x)− 1
− 2
∣∣ < ε 2 pts.

∣∣f(x)− 5

f(x)− 1

∣∣ < ε

|f(x)− 5| 1

|f(x)− 1|
<ε 2 pts.

The term on the left is our “gold” since it becomes small as
x approaches a. The other term is our “trash” which we will
bound. Specifically, we reason that for all x sufficiently close
to a, f(x) = 5± 1. Thus, for such x,

4 < f(x) < 6 2 pts.

3 < f(x)− 1 < 5 1 pts.

3 < |f(x)− 1| < 5

Hence

|f(x)− 5| 1

|f(x)− 1|
<

1

3
|f(x)− 5| 1 pts.

This is < ε if |f(x) − 5| < 3ε, which is true for all x
sufficiently close to a.
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Proof: Let ε > 0 1 pts. be given and choose δ1 > 0 1 pts.
so that

|f(x)− 5| < 1

for 0 < |x− a| < δ1.
Choose δ2 > 0 such that

|f(x)− 5| < 3ε 1 pts.

for 0 < |x− a| < δ2. Let δ = min{δ1, δ2} 1 pts. . From the
scratch work, 0 < |x− a| < δ implies that∣∣f(x) + 3

f(x)− 1
− 2
∣∣ < ε

proving the limit statement.

(7) Use a δ-ε argument to prove Theorem 3 on p. 180 of the notes:
12 pts

Theorem 3 (Sequence). Let f(x) be continuous at a and
let xn be a sequence such that limn→∞ xn = a. Then

lim
n→∞

f(xn) = f(a).

Proof Let ε > 0 1 pt. be given. Since limx→a f(x) = f(a),
there is a δ > 0 such that

(1) |f(x)− f(a)| < ε. 4 pt.

for |x − a| < δ, x 6= a. This inequality holds even if x = a
since in this case the left hand quantity is zero. 1 pt.

But, since limn→∞ xn = a, there is an N such that

|xn − a| < δ 4 pt.

for all n > N . Replacing x with xn in (1) shows that

|f(xn)− f(a)| < ε 3 pt.

for n > N , which proves our theorem.


