
MA 301 Test 4, Spring 2007

2 hours, calculator allowed, no notes. Provide paper for the students
to do work on. Students should not write answers on test sheet.

TA Grades 1, 5, 6, 7
All answers must be justified. Simply stating an answer is not

worth any credit.

(1) State the “official” definition of “limx→a f(x) = L.” 8 pts
0, 4, or 8 pts.

Definition 1. We say that

lim
x→a

f(x) = L

provided that for all numbers ε > 0 there is a number δ > 0
such that

|f(x)− L| < ε

for all x satisfying 0 < |x− a| < δ.

(2) Show that it is impossible to list all numbers in the interval
(0, 1). How does this prove that the set in question is uncount-
able. 12 pts

Solution:
Imagine that we have somehow managed to list all real

numbers in this interval. Our list might look something like:

b1 =.31415027 . . .

b2 =.14936815 . . .

b3 =.22719664 . . .

b4 =.97652234 . . .

b5 =.62718891 . . .

...

We imagine the decimal expansions extending out to infin-
ity and the list extending down the page to infinity. Some
numbers have both a finite decimal expansion and an infinite
expansion. In such cases we use the infinite expansion. Thus,
for example, we use .4999 . . . insteead of .5. We claim that no
matter what the specific numbers in the list, there will always
be some real number r which is not in the list. To see this,
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look at the first digit of the first number in the list. In our
case, it is 3. We choose some number between 1 and 9, other
than 3, and make it be the first digit of r. Lets choose 4, so
r = .4+. This insures that r 6= b1. Next, we look at the sec-
ond digit of the second number on the list: 4. We change it
to something between 1 and 9, declaring, say, r = .47+. This
guarantees that r is also not equal to b2. We continue this
way, at each step choosing the nth digit of r to be some some
number between 1 and 9 which differs from the nth digit of bn.
For the list above, r might look like r = .47647+. Since we
never choose 0, r will not be a finite decimal. It is clear that
in this manner we produce a number r which appears nowhere
on our list.

Since we cannot list the real numbers in (0, 1), they can-
not be put into a one-to-one correspondence with the natural
numbers; hence they are uncountable.

(3) Let A be the set of all rational numbers in the open interval
(0, 1) and let B be the set of all rational numbers in the closed
interval [0, 1]. Describe an explicit one-to-one correspondence
between A and B.10 pts

Solution: We define the correspondence by the following ta-
ble:

1
2

1
3

2
3

1
4

3
4

1
5

2
5

3
5

4
5

1
6

. . .
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ . . .
0 1 1

2
1
3

2
3

1
4

3
4

1
5

2
5

3
5

. . .

The pattern is that in each list we list the fractions in order of
increasing denominators, and then by increasing numerators,
omitting non-reduced fractions, except that in the second list,
we first list 0 and 1.

(4) For the following function, find a value of a for which f(x) is
continuous at x = 110 pts

f(x) =

{
(x+ a)2 x < 1

3 + x x ≥ 1

Solution:
f(1) = 4 2 pts.

lim
x→1+

f(x) = lim
x→1+

3 + x = 4 2 pts.

lim
x→1−

f(x) = lim
x→1−

(x+ a)2 = (1 + a)2 2 pts.
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Hence, f(x) will be continuous at x = 1 if and only if (1+a)2 =
4; hence a = ±2 − 1 2 pts. (a = −3 or a = 1 are both
acceptable.)

(5) Use a δ-ε argument to prove that 12 pts

lim
x→2

2x+ 1

x+ 1
=

5

3
.

Scratch Work: Let ε > 0 be given. We want∣∣2x+ 1

x+ 1
− 5

3

∣∣ < ε 2 pts.∣∣ x− 2

3(x+ 1)

∣∣ = |x− 2| 1

3|x+ 1|
< ε

2 pts. for simplification

Assume that x = 2 ± 1 (1 pt. for 2 ± δ (any δ)) so that
1 < x < 3 and 2 < x+ 1 < 4. Then

|x− 2| 1

3|x+ 1|
<

1

6
|x− 2| 3 pts.

This will be < ε if |x− 2| < 6ε.

Proof: Let ε > 0 be given 1 pt. and let δ = min{1, 6ε} 1 pt..
Assume that 0 < |x−2| < δ.1 pt. Then from the scratch work∣∣2x+ 1

x+ 1
− 5

3
| < ε, 1 pt.

proving the limit statement.

(6) Use a δ-ε argument to prove that 12 pts

lim
x→1

√
3x+ 1 = 2.

Scratch Work: Let ε > 0 be given. We want∣∣√3x+ 1− 2
∣∣ < ε 2 pt.

|(
√

3x+ 1− 2)(
√

3x+ 1 + 2)|
|
√

3x+ 1 + 2|
< ε 2 pt.

|3(x− 1)|
|
√

3x+ 1 + 2|
< ε 1 pt. for simplification
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Assume that x = 1± 1 (1 pt. for 2± δ, any δ) so that

0 < x < 2

1 < 3x+ 1 < 7

1 <
√

3x+ 1 <
√

7

3 < 2 +
√

3x+ 1 < 2 +
√

7 2 pt.

Then

|x− 1| 1

|
√

3x+ 1 + 2|
< |x− 1| 1

3
1 pt.

This will be < ε if |x− 1| < 3ε.

Proof: Grade same as Problem (5) Let ε > 0 be given and let
δ = min{1, 3ε}. Assume that 0 < |x− 1| < δ. Then from the
scratch work ∣∣√3x+ 1− 2

∣∣ < ε,

proving the limit statement.
(7) Use a δ-ε argument to prove that12 pts

lim
x→2

1

3− x
= 1.

Scratch Work: Let ε > 0 be given. We want∣∣ 1

3− x
− 1
∣∣ < ε 1 pt.∣∣x− 2

3− x
∣∣ < ε

|x− 2| 1

|3− x|
< ε

2 pt. for simplification

Assume that x = 2± 1
2

2 pt. for 2± δ, any δ . Then

1.5 < x < 2.5

−1.5 > −x > −2.5

1.5 > 3− x > .5

1 pt.: but interval cannot contain 0

Hence

|x− 2| 1

|3− x|
< |x− 2| 1

.5
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This will be < ε if |x− 2| < 1
2
ε.

2 pt.

Proof: Grade as in Exercise (5) Let ε > 0 be given and let
δ = min{.5, 1

2
ε}. Assume that 0 < |x− 2| < δ. Then from the

scratch work ∣∣ 1

3− x
− 1| < ε,

proving the limit statement.

(8) Assume that limx→a f(x) = 1. Use a δ-ε argument to prove
that 12 pts

lim
x→a

f(x)

f(x) + 2
=

1

3
.

Scratch work: Let ε > 0 be given. We want∣∣ f(x)

f(x) + 2
− 1

3

∣∣ < ε 2 pts.

2

3

∣∣f(x)− 1

f(x) + 2

∣∣ < ε

|f(x)− 1| 2

3|f(x) + 2|
<ε 2 pts.

The term on the left is our “gold” since it becomes small as
x approaches a. The other term is our “trash” which we will
bound. Specifically, we reason that for all x sufficiently close
to a, f(x) = 1± 1. Thus, for such x,

0 < f(x) < 2 2 pts.

2 < f(x) + 2 < 4 1 pts.

Hence

|f(x)− 1| 2

3|f(x) + 2|
<

1

3
|f(x)− 1| 1 pts.

This is < ε if |f(x) − 1| < 3ε, which is true for all x
sufficiently close to a.

Proof: Let ε > 0 1 pts. be given and choose δ1 > 0 1 pts.
so that

|f(x)− 1| < 1

for 0 < |x− a| < δ1.
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Choose δ2 > 0 such that

|f(x)− 1| < 3ε 1 pts.

for 0 < |x− a| < δ2. Let δ = min{δ1, δ2} 1 pts. . From the
scratch work, 0 < |x− a| < δ implies that∣∣ f(x)

f(x) + 2
− 1

3

∣∣ < ε

proving the limit statement.

(9) Use a δ-ε argument to prove Theorem 3 on p. 164 of the notes:
12 pts

Theorem 3 (Sequence). Let f(x) be continuous at a and
let xn be a sequence such that limn→∞ xn = a. Then

lim
n→∞

f(xn) = f(a).

Proof Let ε > 0 1 pt. be given. Since limx→a f(x) = f(a),
there is a δ > 0 such that

(1) |f(x)− f(a)| < ε. 4 pt.

for |x − a| < δ, x 6= a. This inequality holds even if x = a
since in this case the left hand quantity is zero. 1 pt.

But, since limn→∞ xn = a, there is an N such that

|xn − a| < δ 4 pt.

for all n > N . Replacing x with xn in (1) shows that

|f(xn)− f(a)| < ε 3 pt.

for n > N , which proves our theorem.

Proposition 1 (2, p. 138). Let Z be an irrational number and
let x and y be rational numbers with x 6= 0. Then W = xZ + y is
irrational.

Proof

Solution: There are integers p, q, r, and s with p, q and s non-zero
such that

x =
p

q
, y =

r

s
.

We work by contradiction, showing that assuming W rational leads
to nonsense. Specifically, suppose that W = u/v where u and v are
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integers. Then
u

v
=
p

q
+
r

s
Z

s

r

(
u

v
− p

q

)
= Z

s(uq − vp)
rpq

= Z

showing that Z is rational, which is a contradiction.


