MA 301 Test 4, Spring 2007

2 hours, calculator allowed, no notes. Provide paper for the students
to do work on. Students should not write answers on test sheet.

TA Grades 1, 5, 6, 7
All answers must be justified. Simply stating an answer is not
worth any credit.

(1)

State the “official” definition of “lim, . f(z) = L.”
0, 4, or 8 pts.

DEFINITION 1. We say that
lim f(x) =L

r—ra

provided that for all numbers e > 0 there is a number 6 > 0
such that
|f(z) = L] <€

for all x satisfying 0 < |z — a| < J.

Show that it is impossible to list all numbers in the interval
(0,1). How does this prove that the set in question is uncount-
able.

Solution:
Imagine that we have somehow managed to list all real
numbers in this interval. Our list might look something like:

by =.31415027 . ..
by =.14936815 . ..
bs =.22719664 . ..
by =.97652234 . ..
bs =.62718891 . ..

We imagine the decimal expansions extending out to infin-
ity and the list extending down the page to infinity. Some
numbers have both a finite decimal expansion and an infinite
expansion. In such cases we use the infinite expansion. Thus,
for example, we use .4999. .. insteead of .5. We claim that no
matter what the specific numbers in the list, there will always
be some real number r which is not in the list. To see this,

1

8 pts

12 pts



10 pts

10 pts

look at the first digit of the first number in the list. In our
case, it is 3. We choose some number between 1 and 9, other
than 3, and make it be the first digit of r. Lets choose 4, so
r = .4+. This insures that r # b;. Next, we look at the sec-
ond digit of the second number on the list: 4. We change it
to something between 1 and 9, declaring, say, » = .474. This
guarantees that r is also not equal to by,. We continue this
way, at each step choosing the n'® digit of r to be some some
number between 1 and 9 which differs from the n'* digit of b,,.
For the list above, r might look like r = .47647+. Since we
never choose 0, r will not be a finite decimal. It is clear that
in this manner we produce a number r which appears nowhere
on our list.

Since we cannot list the real numbers in (0, 1), they can-

not be put into a one-to-one correspondence with the natural
numbers; hence they are uncountable.
Let A be the set of all rational numbers in the open interval
(0,1) and let B be the set of all rational numbers in the closed
interval [0, 1]. Describe an explicit one-to-one correspondence
between A and B.

Solution: We define the correspondence by the following ta-
ble:

11 2 1 3 1 2 3 4 1
2 3 3 4 4 5 5 5 5 6
R I e O R T I
o0 1+ 1 2 1 3 1 2 3

2 3 3 4 4 5 5 b

The pattern is that in each list we list the fractions in order of
increasing denominators, and then by increasing numerators,
omitting non-reduced fractions, except that in the second list,
we first list 0 and 1.
For the following function, find a value of a for which f(x) is
continuous at r = 1

f(g:):{(x—i-a)2 r<l

3+x rz>1
Solution:
f(1)=4 2 pts.
li = li =4 2 pts.
)= i s =4 2t

lim f(z) = lim (z +a)? = (1 +a)* 2 pts.

rz—1— r—1—



(V3x +1—2)(v3x+1+2)|

Hence, f(z) will be continuous at x = 1 if and only if (1+a)? =
4; hence a = £2 — 1 2 pts. (a = —3 or a = 1 are both

acceptable.)
Use a - argument to prove that
2e+1 5

li = —.
xl—% r+1 3

Scratch Work: Let € > 0 be given. We want

20 +1 5
’:c+1_§‘<6 2 pts.
) L TP T

2 pts. for simplification

Assume that x = 2+ 1 (1 pt. for2+0 (any d)) so that

l<z<3and2<x+1<4. Then

1
|z — 2|
3lx + 1

This will be < € if |x — 2| < 6Be.

1
< 6|x —2| 3 pts.

Proof: Let € > 0 be given 1 pt. and let 6 = min{1, 6¢} 1 pt..
Assume that 0 < |z —2| < §.1 pt. Then from the scratch work

2c+1 5
- - < 1 pt.

proving the limit statement.

Use a - argument to prove that

lin% V3r +1=2.
T—r

Scratch Work: Let € > 0 be given. We want

|\/3x+ —2| <e 2t

<e 2t

|V3z + 1+ 2
3(z — 1)|
|V3x + 1+ 2]

< e 1 pt. for simplification

12 pts

12 pts



Assume that x =141 (1 pt. for2+6, any §)  so that
O0<x<?2
1<3r+1<7

1<\/3x+1<\/7
3<24+V3r+1<24+V7 2yt
Then

1
|z — 1| |l —1]= 1 pt.

1
—— <
V3 + 1+ 2 3

This will be < € if |z — 1] < 3e.

Proof: Grade same as Problem (5) Let € > 0 be given and let
d = min{1, 3e}. Assume that 0 < |z — 1| < J. Then from the
scratch work

|\/3x+ — 2| < €,
proving the limit statement.
12 pts (7) Use a 6-¢ argument to prove that
1
lim =1.
=23 —

Scratch Work: Let € > 0 be given. We want

1
}3_$—1‘<€ 1 pt
T — 2
|3_m‘<€
|z — 2| 3-a] <e€

2 pt. for simplification
Assume that v = 2 + % 2pt. for2+9, anyd . Then

1<z <25
—1.5>—x>-25
15>3—x>.5

1 pt.: but interval cannot contain 0

Hence

w2 <2
T — r—2|—
.5

|3 — ]



This will be < € if |x — 2| < 1.
2 pt.

Proof: Grade as in Ezercise (5) Let € > 0 be given and let
6 = min{.5, 3¢}. Assume that 0 < |z — 2| < §. Then from the

scratch work )

| 3—x
proving the limit statement.

— 1] <e,

Assume that lim,_,, f(z) = 1. Use a d-e¢ argument to prove

that
lim @) =

T—a f(x) +2 3

Scratch work: Let ¢ > 0 be given. We want

f (=)

2 flz)—1

3 f(x) +2‘ =
2

The term on the left is our “gold” since it becomes small as
x approaches a. The other term is our “trash” which we will
bound. Specifically, we reason that for all x sufficiently close
toa, f(x) =1=+1. Thus, for such x,

0< f(z) <2 2pts.
2< f(x)+2<4 1 pts.

Hence

2 1
|f(x)—1|m<§|f(x)—l| 1 pts.

This is < e if |f(z) — 1] < 3¢, which is true for all
sufficiently close to a.

Proof: Lete >0 1 pts. begivenand choosed; >0 1 pts.
so that

[f(z) =1 <1
for 0 < |z —al| < ¢;.

12 pts



12 pts

Choose d5 > 0 such that
|f(z) — 1] <3¢ 1 pts.

for 0 < |z — a|] < dy. Let 6 = min{dy,d2} 1 pts. . From the
scratch work, 0 < |z — a| < 0 implies that
fx) +2

proving the limit statement.

1‘<
-3 €

(9) Use a d-€ argument to prove Theorem 3 on p. 164 of the notes:

THEOREM 3 (Sequence). Let f(x) be continuous at a and
let x,, be a sequence such that lim, . x, = a. Then

Tim () = f(a).

Proof Let e >0 1pt. be given. Since lim,_,, f(z) = f(a),
there is a 0 > 0 such that
(1) |f(z) = fla)] <e. 4pt.

for |z —a| < §, © # a. This inequality holds even if x = a
since in this case the left hand quantity is zero. 1 pt.

But, since lim,,_,, z,, = a, there is an N such that

|z, —a] <0 4 pt.

for all n > N. Replacing x with z,, in (1) shows that

|[f(zn) = fla)] <€ 3 pt.

for n > N, which proves our theorem.

PROPOSITION 1 (2, p. 138). Let Z be an irrational number and
let x and y be rational numbers with x # 0. Then W = xZ + y 1is
wrrational.

Proof

Solution: There are integers p, ¢, r, and s with p, ¢ and s non-zero
such that
r==,y=-.
q s
We work by contradiction, showing that assuming W rational leads
to nonsense. Specifically, suppose that W = /v where u and v are



integers. Then

u_p_ T,
v q s
§<E_E):Z
T v q
stug —vp) _
rpq

showing that Z is rational, which is a contradiction.



