2 hours, calculator allowed, no notes. Provide paper for the students to do work on. Students should not write answers on test sheet.

TA Grades 1, 5, 6, 7
All answers must be justified. Simply stating an answer is not worth any credit.
(1) State the "official" definition of " $\lim _{x \rightarrow a} f(x)=L$." 0, 4, or 8 pts.

Definition 1. We say that

$$
\lim _{x \rightarrow a} f(x)=L
$$

provided that for all numbers $\epsilon>0$ there is a number $\delta>0$ such that

$$
|f(x)-L|<\epsilon
$$

for all $x$ satisfying $0<|x-a|<\delta$.
(2) Show that it is impossible to list all numbers in the interval $(0,1)$. How does this prove that the set in question is uncountable.

## Solution:

Imagine that we have somehow managed to list all real numbers in this interval. Our list might look something like:

$$
\begin{aligned}
b_{1} & =.31415027 \ldots \\
b_{2} & =.14936815 \ldots \\
b_{3} & =.22719664 \ldots \\
b_{4} & =.97652234 \ldots \\
b_{5} & =.62718891 \ldots
\end{aligned}
$$

We imagine the decimal expansions extending out to infinity and the list extending down the page to infinity. Some numbers have both a finite decimal expansion and an infinite expansion. In such cases we use the infinite expansion. Thus, for example, we use . $4999 \ldots$ insteead of . 5 . We claim that no matter what the specific numbers in the list, there will always be some real number $r$ which is not in the list. To see this,
look at the first digit of the first number in the list. In our case, it is 3 . We choose some number between 1 and 9 , other than 3 , and make it be the first digit of $r$. Lets choose 4 , so $r=.4+$. This insures that $r \neq b_{1}$. Next, we look at the second digit of the second number on the list: 4 . We change it to something between 1 and 9 , declaring, say, $r=.47+$. This guarantees that $r$ is also not equal to $b_{2}$. We continue this way, at each step choosing the $n^{\text {th }}$ digit of $r$ to be some some number between 1 and 9 which differs from the $n^{\text {th }}$ digit of $b_{n}$. For the list above, $r$ might look like $r=.47647+$. Since we never choose $0, r$ will not be a finite decimal. It is clear that in this manner we produce a number $r$ which appears nowhere on our list.

Since we cannot list the real numbers in $(0,1)$, they cannot be put into a one-to-one correspondence with the natural numbers; hence they are uncountable.
(3) Let $A$ be the set of all rational numbers in the open interval $(0,1)$ and let $B$ be the set of all rational numbers in the closed interval $[0,1]$. Describe an explicit one-to-one correspondence between $A$ and $B$.

Solution: We define the correspondence by the following table:

| $\frac{1}{2}$ | $\frac{1}{3}$ | $\frac{2}{3}$ | $\frac{1}{4}$ | $\frac{3}{4}$ | $\frac{1}{5}$ | $\frac{2}{5}$ | $\frac{3}{5}$ | $\frac{4}{5}$ | $\frac{1}{6}$ | $\ldots$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\downarrow$ | $\ldots$ |
| 0 | 1 | $\frac{1}{2}$ | $\frac{1}{3}$ | $\frac{2}{3}$ | $\frac{1}{4}$ | $\frac{3}{4}$ | $\frac{1}{5}$ | $\frac{2}{5}$ | $\frac{3}{5}$ | $\ldots$ |

The pattern is that in each list we list the fractions in order of increasing denominators, and then by increasing numerators, omitting non-reduced fractions, except that in the second list, we first list 0 and 1.
(4) For the following function, find a value of $a$ for which $f(x)$ is 10 pts continuous at $x=1$

$$
f(x)= \begin{cases}(x+a)^{2} & x<1 \\ 3+x & x \geq 1\end{cases}
$$

## Solution:

$$
\begin{aligned}
f(1) & =4 \quad 2 \mathrm{pts} \\
\lim _{x \rightarrow 1^{+}} f(x) & =\lim _{x \rightarrow 1^{+}} 3+x=4 \quad 2 \mathrm{pts} \\
\lim _{x \rightarrow 1^{-}} f(x) & =\lim _{x \rightarrow 1^{-}}(x+a)^{2}=(1+a)^{2} \quad 2 \mathrm{pts}
\end{aligned}
$$

Hence, $f(x)$ will be continuous at $x=1$ if and only if $(1+a)^{2}=$ 4; hence $a= \pm 2-12 \mathrm{pts}$. $\quad(a=-3$ or $a=1$ are both acceptable.)
(5) Use a $\delta-\epsilon$ argument to prove that

$$
\lim _{x \rightarrow 2} \frac{2 x+1}{x+1}=\frac{5}{3} .
$$

Scratch Work: Let $\epsilon>0$ be given. We want

$$
\begin{aligned}
\left|\frac{2 x+1}{x+1}-\frac{5}{3}\right|< & \epsilon \quad \text { 2 pts. } \\
\left|\frac{x-2}{3(x+1)}\right|= & |x-2| \frac{1}{3|x+1|}<\epsilon \\
& \text { 2 pts. for simplification }
\end{aligned}
$$

Assume that $x=2 \pm 1$ (1 pt. for $2 \pm \delta$ (any $\delta$ )) so that $1<x<3$ and $2<x+1<4$. Then

$$
|x-2| \frac{1}{3|x+1|}<\frac{1}{6}|x-2| \quad 3 \text { pts. }
$$

This will be $<\epsilon$ if $|x-2|<6 \epsilon$.

Proof: Let $\epsilon>0$ be given 1 pt . and let $\delta=\min \{1,6 \epsilon\} 1 \mathrm{pt}$. Assume that $0<|x-2|<\delta .1$ pt. Then from the scratch work

$$
\left|\frac{2 x+1}{x+1}-\frac{5}{3}\right|<\epsilon, \quad 1 \mathrm{pt} .
$$

proving the limit statement.
(6) Use a $\delta-\epsilon$ argument to prove that

$$
\lim _{x \rightarrow 1} \sqrt{3 x+1}=2
$$

Scratch Work: Let $\epsilon>0$ be given. We want

$$
\begin{array}{rll}
|\sqrt{3 x+1}-2| & <\epsilon & 2 p p t \\
\frac{|(\sqrt{3 x+1}-2)(\sqrt{3 x+1}+2)|}{|\sqrt{3 x+1}+2|}<\epsilon & 2 p p t \\
\frac{|3(x-1)|}{|\sqrt{3 x+1}+2|}<\epsilon & \text { 1 pt. for simplification }
\end{array}
$$

Assume that $x=1 \pm 1 \quad$ (1 pt. for $2 \pm \delta$, any $\delta$ ) so that $0<x<2$
$1<3 x+1<7$
$1<\sqrt{3 x+1}<\sqrt{7}$
$3<2+\sqrt{3 x+1}<2+\sqrt{7} \quad 2 p t$.
Then

$$
|x-1| \frac{1}{|\sqrt{3 x+1}+2|}<|x-1| \frac{1}{3} \quad 1 p t .
$$

This will be $<\epsilon$ if $|x-1|<3 \epsilon$.

Proof: Grade same as Problem (5) Let $\epsilon>0$ be given and let $\delta=\min \{1,3 \epsilon\}$. Assume that $0<|x-1|<\delta$. Then from the scratch work

$$
|\sqrt{3 x+1}-2|<\epsilon
$$

proving the limit statement.
12 pts
(7) Use a $\delta-\epsilon$ argument to prove that

$$
\lim _{x \rightarrow 2} \frac{1}{3-x}=1
$$

Scratch Work: Let $\epsilon>0$ be given. We want

$$
\begin{aligned}
\left\lvert\, \begin{aligned}
&\left|\frac{1}{3-x}-1\right|<\epsilon \quad 1 p t . \\
&\left|\frac{x-2}{3-x}\right|<\epsilon \\
&|x-2| \frac{1}{|3-x|}<\epsilon \\
& \text { 2 pt. for simplification }
\end{aligned}\right.
\end{aligned}
$$

Assume that $x=2 \pm \frac{1}{2} \quad 2$ pt. for $2 \pm \delta$, any $\delta$. Then

$$
1.5<x<2.5
$$

$$
-1.5>-x>-2.5
$$

$$
1.5>3-x>.5
$$

1 pt.: but interval cannot contain 0
Hence

$$
|x-2| \frac{1}{|3-x|}<|x-2| \frac{1}{.5}
$$

This will be $<\epsilon$ if $|x-2|<\frac{1}{2} \epsilon$.
2 pt .

Proof: Grade as in Exercise (5) Let $\epsilon>0$ be given and let $\delta=\min \left\{.5, \frac{1}{2} \epsilon\right\}$. Assume that $0<|x-2|<\delta$. Then from the scratch work

$$
\left|\frac{1}{3-x}-1\right|<\epsilon
$$

proving the limit statement.
(8) Assume that $\lim _{x \rightarrow a} f(x)=1$. Use a $\delta-\epsilon$ argument to prove that

$$
\lim _{x \rightarrow a} \frac{f(x)}{f(x)+2}=\frac{1}{3} .
$$

Scratch work: Let $\epsilon>0$ be given. We want

$$
\begin{array}{r}
\left|\frac{f(x)}{f(x)+2}-\frac{1}{3}\right|<\epsilon \quad 2 p \text { pts. } \\
\frac{2}{3}\left|\frac{f(x)-1}{f(x)+2}\right|<\epsilon \\
|f(x)-1| \frac{2}{3|f(x)+2|}<\epsilon \quad 2 \text { pts. }
\end{array}
$$

The term on the left is our "gold" since it becomes small as $x$ approaches $a$. The other term is our "trash" which we will bound. Specifically, we reason that for all $x$ sufficiently close to $a, f(x)=1 \pm 1$. Thus, for such $x$,

$$
\begin{array}{rl}
0<f(x)<2 & 2 \text { pts. } \\
2<f(x)+2<4 & 1 \text { pts. }
\end{array}
$$

Hence

$$
|f(x)-1| \frac{2}{3|f(x)+2|}<\frac{1}{3}|f(x)-1| \quad 1 \text { pts. }
$$

This is $<\epsilon$ if $|f(x)-1|<3 \epsilon$, which is true for all $x$ sufficiently close to $a$.

Proof: Let $\epsilon>0 \quad 1$ pts. be given and choose $\delta_{1}>0 \quad 1$ pts. so that

$$
|f(x)-1|<1
$$

for $0<|x-a|<\delta_{1}$.

Choose $\delta_{2}>0$ such that

$$
|f(x)-1|<3 \epsilon \quad 1 \text { pts }
$$

for $0<|x-a|<\delta_{2}$. Let $\delta=\min \left\{\delta_{1}, \delta_{2}\right\} \quad 1$ pts. . From the scratch work, $0<|x-a|<\delta$ implies that

$$
\left|\frac{f(x)}{f(x)+2}-\frac{1}{3}\right|<\epsilon
$$

proving the limit statement.
(9) Use a $\delta-\epsilon$ argument to prove Theorem 3 on p. 164 of the notes:

Theorem 3 (Sequence). Let $f(x)$ be continuous at $a$ and let $x_{n}$ be a sequence such that $\lim _{n \rightarrow \infty} x_{n}=a$. Then

$$
\lim _{n \rightarrow \infty} f\left(x_{n}\right)=f(a)
$$

Proof Let $\epsilon>0 \quad 1 \mathrm{pt}$. be given. Since $\lim _{x \rightarrow a} f(x)=f(a)$, there is a $\delta>0$ such that

$$
\begin{equation*}
|f(x)-f(a)|<\epsilon . \quad 4 \mathrm{pt} . \tag{1}
\end{equation*}
$$

for $|x-a|<\delta, x \neq a$. This inequality holds even if $x=a$ since in this case the left hand quantity is zero. 1 pt .

But, since $\lim _{n \rightarrow \infty} x_{n}=a$, there is an $N$ such that

$$
\left|x_{n}-a\right|<\delta \quad 4 \mathrm{pt}
$$

for all $n>N$. Replacing $x$ with $x_{n}$ in (1) shows that

$$
\left|f\left(x_{n}\right)-f(a)\right|<\epsilon \quad 3 \text { pt. }
$$

for $n>N$, which proves our theorem.
Proposition 1 (2, p. 138). Let $Z$ be an irrational number and let $x$ and $y$ be rational numbers with $x \neq 0$. Then $W=x Z+y$ is irrational.

Proof
Solution: There are integers $p, q, r$, and $s$ with $p, q$ and $s$ non-zero such that

$$
x=\frac{p}{q}, y=\frac{r}{s} .
$$

We work by contradiction, showing that assuming $W$ rational leads to nonsense. Specifically, suppose that $W=u / v$ where $u$ and $v$ are
integers. Then

$$
\begin{aligned}
\frac{u}{v} & =\frac{p}{q}+\frac{r}{s} Z \\
\frac{s}{r}\left(\frac{u}{v}-\frac{p}{q}\right) & =Z \\
\frac{s(u q-v p)}{r p q} & =Z
\end{aligned}
$$

showing that $Z$ is rational, which is a contradiction.

