Review Sheet for Mid 2

Math 266
Ralph Kaufmann
Disclaimer: This sheet is neither claimed to be complete nor indicative and may contain typos.

1. Homogeneous 2nd Order equations

1.1. Theorems. Consider

$$
\begin{equation*}
L[y]:=y^{\prime \prime}+p(t) y^{\prime}+q(t) y, \quad L[y]=g(t) \tag{1}
\end{equation*}
$$

Theorem. If p, q, g continuous on an interval I, then
\triangleright there is a unique solution on I for any given set of initial conditions

$$
\begin{equation*}
y\left(t_{0}\right)=y_{0}, y^{\prime}\left(t_{0}\right)=y_{0}^{\prime} \tag{2}
\end{equation*}
$$

\triangleright the general solution to the homogeneous equation $L[y]=0$ is given by

$$
\begin{equation*}
y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t) \tag{3}
\end{equation*}
$$

where y_{1}, y_{2} are a fundamental set, i.e. two linearly independent solutions.
\triangleright two solutions y_{1}, y_{2} are a fundamental set on I if and only if the Wronskian $W\left(y_{1}, y_{2}\right)\left(t_{0}\right) \neq 0$ for some $t_{0} \in I$ and hence for all $t \in I$. Here

$$
W\left(y_{1}, y_{2}\right)(t)=\left|\left(\begin{array}{ll}
y_{1}(t) & y_{2}(t) \tag{4}\\
y_{1}^{\prime}(t) & y_{2}^{\prime}(t)
\end{array}\right)\right|
$$

\triangleright If $Y(t)$ is a particular solution of $L[y]=g(t)$ and y_{1}, y_{2} are a fundamental set for $L[y]=0$ then all solutions of $L[y]=g(t)$ are of the form

$$
\begin{equation*}
y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)+Y(t) \tag{5}
\end{equation*}
$$

1.2. Initial Conditions.

Problem: Given a fundamental set y_{1}, y_{2} solve for given initial conditions.

$$
\begin{align*}
c_{1} y_{1}\left(t_{0}\right)+c_{2} y_{2}\left(t_{0}\right) & =y_{0} \tag{6}\\
c_{1} y_{1}^{\prime}\left(t_{0}\right)+c_{2} y_{2}^{\prime}\left(t_{0}\right) & =y_{0}^{\prime} \tag{7}
\end{align*}
$$

Solution

$$
c_{1}=\left|\begin{array}{ll}
y_{0} & y_{2}\left(t_{0}\right) \tag{8}\\
y_{0}^{\prime} & y_{2}^{\prime}\left(t_{0}\right)
\end{array}\right| /\left(W\left(y_{1}, y_{2}\right)\left(t_{0}\right)\right), \quad c_{2}=\left|\begin{array}{ll}
y_{1}\left(t_{0}\right) & y_{0} \\
y_{1}^{\prime}\left(t_{0}\right) & y_{0}^{\prime}
\end{array}\right| /\left(W\left(y_{1}, y_{2}\right)\left(t_{0}\right)\right)
$$

1.3. Constant coefficients.

$$
\begin{equation*}
a y^{\prime \prime}+b y^{\prime}+c y=0 \tag{9}
\end{equation*}
$$

Solution: Guess: $e^{r t}$, equation for r :

$$
\begin{equation*}
a r^{2}+b r+c=0 \tag{10}
\end{equation*}
$$

Solution

$$
\begin{equation*}
r_{1,2}=-\frac{b}{2 a} \pm \frac{1}{2 a} \sqrt{b^{2}-4 a c} \tag{11}
\end{equation*}
$$

2

roots	general solution
$r_{1} \neq r_{2}$ real	$A e^{r_{1} t}+B e^{r_{2} t}$
$r_{1}=r_{2}=r$ real	$A e^{r t}+B t e^{r t}$
$r_{1,2}=\lambda \pm i \mu$	$A e^{\lambda t} \cos (\mu t)+B e^{\lambda t} \sin (\mu t)$

1.4. Reduction of order. When to use: You have one solution y_{1} of $L[y]=0$ and are looking for a second. Get second solution from $y(t)=v(t) y_{1}(t)$.

Equation to solve. If

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q y=0 \tag{12}
\end{equation*}
$$

then solve

$$
\begin{equation*}
y_{1} v^{\prime \prime}+\left(2 y_{1}^{\prime}+p y_{1}\right) v^{\prime}=0 \tag{13}
\end{equation*}
$$

(1) Set $u=v^{\prime}$ and solve first order eq. $y_{1} u^{\prime}+\left(2 y_{1}^{\prime}+p y_{1}\right) u=0$: get $u(t)$.
(2) Solve $v^{\prime}=u$ and get $v(t)$.
(3) Get $y(t)=v(t) y_{1}(t)$.

2. Non-HOMOGENEOUS EQUATIONS

2.1. Sums.

$$
\begin{equation*}
L[y]=g_{1}(t)+g_{2}(t) \tag{14}
\end{equation*}
$$

(1) Solve $L[y]=g_{1}(t)$: get Y_{1}.
(2) Solve $L[y]=g_{2}(t)$: get Y_{2}.
(3) Get particular solution $Y(t)=Y_{1}(t)+Y_{2}(t)$
2.2. Method of Undetermined Coefficients. Find general solution of

$$
\begin{equation*}
a y^{\prime \prime}+b y^{\prime}+c y=g(t) \tag{15}
\end{equation*}
$$

(1) Solve the homogeneous equation:get $r_{1,2}$ and fundamental set y_{1}, y_{2}.
(2) Depending on $g(t)$ and $r_{1,2}$ make the following guess

$g(t)$	$Y(t)$	
$a_{0} t^{n}+\cdots+a_{n}$	$t^{s}\left(A_{0} t^{n}+\cdots+A_{n}\right)$	s
$\left(a_{0} t^{n}+\cdots+a_{n}\right) e^{\alpha t}$	$t^{s}\left(A_{0} t^{n}+\cdots+A_{n}\right) e^{\alpha t}$	multiplicity of 0 as a root
$\left(a_{0} t^{n}+\cdots+a_{n}\right) e^{\alpha t} \cos (\beta t)$ or	$t^{s}\left[\left(A_{0} t^{n}+\cdots+A_{n}\right) e^{\alpha t} \cos (\beta t)+\right.$	multiplicity of α as a root
$\left(a_{0} t^{n}+\cdots+a_{n}\right) e^{\alpha t} \sin (\beta t)$	$\left.\left(B_{0} t^{n}+\cdots+B_{n}\right) e^{\alpha t} \sin (\beta t)\right]$	

The multiplicity of x as a root is 0 if $x \neq r_{1,2}, 1$ if $x=r_{1} \neq r_{2}$ or $x=r_{2} \neq r_{1}$ and 2 if $x=r_{1}=r_{2}$.
(3) Plug into eq. and solve for the A_{i}, B_{j} : get $Y(t)$.
(4) Get the general solution: $y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)+Y(t)$

2.3. Variation of Parameters.

$$
\begin{equation*}
L[y]:=y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t) \tag{16}
\end{equation*}
$$

p, q, g continuous on I.
When to use: Have fundamental set y_{1}, y_{2} need particular solution $Y(t)$

$$
\begin{equation*}
Y(t)=-y_{1}(t) \int \frac{y_{2}(t) g(t)}{W\left(y_{1}, y_{2}\right)(t)} \mathrm{d} t+y_{2}(t) \int \frac{y_{1}(t) g(t)}{W\left(y_{1}, y_{2}\right)(t)} \mathrm{d} t \tag{17}
\end{equation*}
$$

You can set the integration constants to anything you want. If you keep them you get the general solution.

3. Vibrations: Mass on a Spring

In equilibrium: Mass m hanging on spring with spring constant k. Spring is extended to length L.

$$
\begin{equation*}
m g=k L \tag{18}
\end{equation*}
$$

Equation of motion: γ damping constant

$$
\begin{equation*}
m u^{\prime \prime}(t)+\gamma u^{\prime}(t)+k u(t)=g(t) \tag{19}
\end{equation*}
$$

3.1. Homogeneous/Free.

UndAmped: $\gamma=0$

$$
\begin{gather*}
m u^{\prime \prime}(t)+k u(t)=0 \tag{20}\\
u(t)=A \cos \left(\omega_{0} t\right)+B \sin \left(\omega_{0} t\right)=R \cos \left(\omega_{0} t-\delta\right) \tag{21}\\
\omega_{0}^{2}=\frac{k}{m} \tag{22}\\
A=R \cos (\delta) \quad B=R \sin (\delta) \tag{23}\\
R=\sqrt{A^{2}+B^{2}} \quad \tan (\delta)=B / A \tag{24}
\end{gather*}
$$

With DAmping: $\gamma \neq 0$

$$
\begin{equation*}
m u^{\prime \prime}(t)+\gamma u^{\prime}(t)+k u(t)=0 \tag{25}
\end{equation*}
$$

Roots: $r_{1,2}=\frac{\gamma}{2 m}\left(-1 \pm \sqrt{1-\frac{4 k m}{\gamma^{2}}}\right)$

$$
u(t)= \begin{cases}A e^{r_{1} t}+B^{r_{2} t} & \gamma^{2}>4 k m \text { overdamped } \tag{26}\\ (A+B t) e^{-\gamma t / 2 m} & \gamma^{2}=4 k m \text { critically damped } \\ e^{-\gamma t / 2 m}(A \cos (\mu t)+B \sin (\mu t))=R e^{-\gamma t / 2 m} \cos (\mu t+\delta) & \gamma^{2}<4 k m\end{cases}
$$

$\mu=\frac{\left(4 k m-\gamma^{2}\right)^{\frac{1}{2}}}{2 m}$ is the quasi frequency, $T=\frac{2 \pi}{\mu}$ is the quasi period, R and δ as in eqs. (23) and (24).

3.2. Inhomogeneous/Forced.

$$
\begin{equation*}
m u^{\prime \prime}(t)+\gamma u^{\prime}(t)+k u(t)=F_{0} \cos (\omega t) \tag{27}
\end{equation*}
$$

Special solution.

$$
\begin{equation*}
U(t)=R \cos (\omega t+\delta) \tag{28}
\end{equation*}
$$

$R=\frac{F_{0}}{\Delta}, \quad \cos \delta=\frac{m\left(\omega_{0}^{2}-\omega^{2}\right)}{\Delta}, \quad \sin \delta=\frac{\gamma \omega}{\Delta}, \quad \Delta=\sqrt{m^{2}\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+\gamma^{2} \omega^{2}}, \quad \omega_{0}^{2}=\frac{k}{m}$
RESONANCE at $\omega_{0} \approx \omega$ maximum amplitude

$$
\begin{equation*}
R_{\max }=\frac{F_{0}}{\gamma \omega_{0} \sqrt{1-\left(\gamma^{2} / 4 m k\right)}} \approx \frac{F_{0}}{\gamma \omega_{0}}\left(1+\frac{\gamma^{2}}{8 m k}\right) \tag{29}
\end{equation*}
$$

4. Higher order equations

4.1. Theorems. Consider

$$
\begin{equation*}
L[y]:=y^{(n)}+p_{1}(t) y^{(n-1)}+\ldots p_{n}(t) y, \quad L[y]=g(t) \tag{30}
\end{equation*}
$$

Theorem If p_{1}, \ldots, p_{n}, g continuous on an interval I, then
\triangleright there is a unique solution on I for any given set of initial conditions

$$
\begin{equation*}
y\left(t_{0}\right)=y_{0}, y^{\prime}\left(t_{0}\right)=y_{0}^{\prime}, \ldots, y^{(n-1)}\left(t_{0}\right)=y_{0}^{(n-1)} \tag{31}
\end{equation*}
$$

\triangleright the general solution to the homogeneous equation $L[y]=0$ is given by

$$
\begin{equation*}
y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)+\cdots+c_{n} y_{n}(t) \tag{32}
\end{equation*}
$$

where y_{1}, \ldots, y_{n} are a fundamental set, i.e. n linearly independant solutions.
$\triangleright n$ solutions y_{1}, \ldots, y_{n} are a fundamental set on I if and only if the Wronskian
$W\left(y_{1}, \ldots, y_{n}\right)\left(t_{0}\right) \neq 0$ for some $t_{0} \in I$ and hence for all $t \in I$. Here

$$
W\left(y_{1}, \ldots, y_{n}\right)(t)=\left|\left(\begin{array}{cccc}
y_{1}(t) & y_{2}(t) & \ldots & y_{n}(t) \tag{33}\\
y_{1}^{\prime}(t) & y_{2}^{\prime}(t) & \ldots & y_{n}^{\prime}(t) \\
\vdots & \vdots & \ddots & \vdots \\
y_{1}^{(n-1)}(t) & y_{2}^{(n-1)}(t) & \ldots & y_{n}^{(n-1)}(t)
\end{array}\right)\right|
$$

- If $Y(t)$ is a particular solution of $L[y]=g(t)$ and y_{1}, \ldots, y_{n} are a fundamental set for $L[y]=0$ then all solutions of $L[y]=g(t)$ are of the form

$$
\begin{equation*}
y(t)=c_{1} y_{1}(t)+\cdots+c_{n} y_{n}(t)+Y(t) \tag{34}
\end{equation*}
$$

4.2. Constant coefficients: homogeneous case.

$$
\begin{equation*}
a_{0} y^{(n)}+a_{1} y^{(n-1)}+\cdots+a_{n} y=0 \tag{35}
\end{equation*}
$$

Solution: Guess: $e^{r t}$, equation for r :

$$
\begin{equation*}
a_{0} r^{n}+a_{1} r^{n-1}+\cdots+a_{n}=0 \tag{36}
\end{equation*}
$$

The equation has n possibly complex roots counted with multiplicity

$$
\begin{equation*}
a_{0} r^{n}+a_{1} r^{n-1}+\cdots+a_{n}=a_{0}\left(r-r_{1}\right) \ldots\left(r-r_{n}\right) \tag{37}
\end{equation*}
$$

Since the coefficients are real, the roots are either real or appear in complex conjugate pairs. The multiplicity of a fixed root α is the number of factors $(r-\alpha)$ in eq. (37).

roots	summands of general solution
α real root multiplicity s	$e^{\alpha t}, t e^{\alpha t}, \ldots, t^{s-1} e^{\alpha t}$
complex conjugate pair	$e^{\lambda t} \cos (\mu t), e^{\lambda t} \sin (\mu t), t e^{\lambda t} \cos (\mu t), t e^{\lambda t} \sin (\mu t), \ldots$,
$(\alpha, \bar{\alpha})=\lambda \pm i \mu$ of multiplicity s	$t^{s-1} e^{\lambda t} \cos (\mu t), t^{s-1} e^{\lambda t} \sin (\mu t)$

4.3. Integer coefficients, rational roots. WHEN TO USE: If $a_{i} \in \mathbb{Z}$, can try to guess rational roots. If p / q is a root, then q divides a_{0} and p divides a_{n}.

Caveat: Notice this may not give all/any of the roots.
4.4. Constant coefficients: Inhomogenous case - Undetermined coefficients. Same as in $\S 2.2$ only now the multiplicity s of x can be $0,1, \ldots, n$.

