Review Sheet for Mid 2 Math 266 RALPH KAUFMANN

DISCLAIMER: This sheet is neither claimed to be complete nor indicative and may contain typos.

1. Homogeneous 2nd Order equations

1.1. Theorems. Consider

(1)
$$L[y] := y'' + p(t)y' + q(t)y, \quad L[y] = g(t)$$

Theorem. If p, q, g continuous on an interval I, then

 \triangleright there is a unique solution on *I* for any given set of initial conditions

(2)
$$y(t_0) = y_0, y'(t_0) = y'_0$$

 \triangleright the general solution to the homogeneous equation L[y] = 0 is given by

(3)
$$y(t) = c_1 y_1(t) + c_2 y_2(t)$$

where y_1, y_2 are a *fundamental set*, i.e. two linearly independent solutions. \triangleright two solutions y_1, y_2 are a fundamental set on I if and only if the Wronskian

 $W(y_1, y_2)(t_0) \neq 0$ for some $t_0 \in I$ and hence for all $t \in I$. Here

(4)
$$W(y_1, y_2)(t) = \begin{vmatrix} y_1(t) & y_2(t) \\ y'_1(t) & y'_2(t) \end{vmatrix}$$

▷ If Y(t) is a particular solution of L[y] = g(t) and y_1, y_2 are a fundamental set for L[y] = 0 then all solutions of L[y] = g(t) are of the form

(5)
$$y(t) = c_1 y_1(t) + c_2 y_2(t) + Y(t)$$

1.2. Initial Conditions.

PROBLEM: Given a fundamental set y_1, y_2 solve for given initial conditions.

(6)
$$c_1y_1(t_0) + c_2y_2(t_0) = y_0$$

(7)
$$c_1 y'_1(t_0) + c_2 y'_2(t_0) = y'_0$$

Solution

(8)
$$c_1 = \begin{vmatrix} y_0 & y_2(t_0) \\ y'_0 & y'_2(t_0) \end{vmatrix} / (W(y_1, y_2)(t_0)), \quad c_2 = \begin{vmatrix} y_1(t_0) & y_0 \\ y'_1(t_0) & y'_0 \end{vmatrix} / (W(y_1, y_2)(t_0))$$

1.3. Constant coefficients.

$$ay'' + by' + cy = 0$$

SOLUTION: Guess: e^{rt} , equation for r:

$$ar^2 + br + c = 0$$

Solution

(11)
$$r_{1,2} = -\frac{b}{2a} \pm \frac{1}{2a}\sqrt{b^2 - 4ac}$$

	general solution
$r_1 \neq r_2 \text{ real}$ $r_1 = r_2 = r \text{ real}$	$Ae^{r_1t} + Be^{r_2t}$
$r_1 = r_2 = r$ real	$Ae^{rt} + Bte^{rt}$
$r_{1,2} = \lambda \pm i\mu$	$Ae^{\lambda t}\cos(\mu t) + Be^{\lambda t}\sin(\mu t)$

1.4. Reduction of order. WHEN TO USE: You have one solution y_1 of L[y] = 0 and are looking for a second. Get second solution from $y(t) = v(t)y_1(t)$.

EQUATION TO SOLVE. If

(12)
$$y'' + p(t)y' + qy = 0$$

then solve

(13)
$$y_1 v'' + (2y_1' + py_1)v' = 0$$

- (1) Set u = v' and solve first order eq. $y_1u' + (2y'_1 + py_1)u = 0$: get u(t).
- (2) Solve v' = u and get v(t).
- (3) Get $y(t) = v(t)y_1(t)$.

2. Non-homogeneous equations

2.1. Sums.

(14)
$$L[y] = g_1(t) + g_2(t)$$

- (1) Solve $L[y] = g_1(t)$: get Y_1 .
- (2) Solve $L[y] = g_2(t)$: get Y_2 .
- (3) Get particular solution $Y(t) = Y_1(t) + Y_2(t)$

2.2. Method of Undetermined Coefficients. Find general solution of

(15)
$$ay'' + by' + cy = g(t)$$

- (1) Solve the homogeneous equation: get $r_{1,2}$ and fundamental set y_1, y_2 .
- (2) Depending on g(t) and $r_{1,2}$ make the following guess Q(t) = V(t)

g(t)	$Y\left(t ight)$	s	
$a_0t^n + \dots + a_n$	$t^s(A_0t^n + \dots + A_n)$	multiplicity of 0 as a root	
$(a_0t^n + \dots + a_n)e^{\alpha t}$	$t^s(A_0t^n + \dots + A_n)e^{\alpha t}$	multiplicity of α as a root	
$\frac{(a_0t^n + \dots + a_n)e^{\alpha t}\cos(\beta t) \text{ or }}{(a_0t^n + \dots + a_n)e^{\alpha t}\sin(\beta t)}$	$t^{s}[(A_{0}t^{n} + \dots + A_{n})e^{\alpha t}\cos(\beta t) + (B_{0}t^{n} + \dots + B_{n})e^{\alpha t}\sin(\beta t)]$	multiplicity of $\alpha + i\beta$ as a root	
The multiplicity of x as a root is 0 if $x \neq r_{1,2}$, 1 if $x = r_1 \neq r_2$ or $x = r_2 \neq r_1$			
and 2 if $x = r_1 = r_2$.			
(a) D1 $(1 + 1 + 2 + 1)$			

1

- (3) Plug into eq. and solve for the A_i , B_j : get Y(t).
- (4) Get the general solution: $y(t) = c_1 y_1(t) + c_2 y_2(t) + Y(t)$

2.3. Variation of Parameters.

(16)
$$L[y] := y'' + p(t)y' + q(t)y = g(t)$$

p, q, g continuous on I.

WHEN TO USE: Have fundamental set y_1, y_2 need particular solution Y(t)

(17)
$$Y(t) = -y_1(t) \int \frac{y_2(t)g(t)}{W(y_1, y_2)(t)} dt + y_2(t) \int \frac{y_1(t)g(t)}{W(y_1, y_2)(t)} dt$$

You can set the integration constants to anything you want. If you keep them you get the general solution.

IN EQUILIBRIUM: Mass m hanging on spring with spring constant k. Spring is extended to length L.

(18)
$$mg = kL$$

Equation of motion: γ damping constant

(19)
$$mu''(t) + \gamma u'(t) + ku(t) = g(t)$$

3.1. Homogeneous/Free.

UNDAMPED: $\gamma = 0$

(20)
$$mu''(t) + ku(t) = 0$$

(21)
$$u(t) = A\cos(\omega_0 t) + B\sin(\omega_0 t) = R\cos(\omega_0 t - \delta)$$

(22)
$$\omega_0^2 = \frac{k}{m}$$

(23)
$$A = R\cos(\delta) \qquad B = R\sin(\delta)$$

(24)
$$R = \sqrt{A^2 + B^2} \quad \tan(\delta) = B/A$$

With damping: $\gamma \neq 0$

(25)
$$mu''(t) + \gamma u'(t) + ku(t) = 0$$

Roots:
$$r_{1,2} = \frac{\gamma}{2m} \left(-1 \pm \sqrt{1 - \frac{4km}{\gamma^2}}\right)$$
(26)

$$u(t) = \begin{cases} Ae^{r_1 t} + B^{r_2 t} & \gamma^2 > 4km \text{ overdamped} \\ (A + Bt)e^{-\gamma t/2m} & \gamma^2 = 4km \text{ critically damped} \\ e^{-\gamma t/2m} (A\cos(\mu t) + B\sin(\mu t)) = Re^{-\gamma t/2m}\cos(\mu t + \delta) & \gamma^2 < 4km \end{cases}$$

 $\mu = \frac{(4km - \gamma^2)^{\frac{1}{2}}}{2m}$ is the quasi frequency, $T = \frac{2\pi}{\mu}$ is the quasi period, R and δ as in eqs. (23) and (24).

3.2. Inhomogeneous/Forced.

(27)
$$mu''(t) + \gamma u'(t) + ku(t) = F_0 \cos(\omega t)$$

Special solution.

(28)
$$U(t) = R\cos(\omega t + \delta)$$

$$R = \frac{F_0}{\Delta}, \quad \cos \delta = \frac{m(\omega_0^2 - \omega^2)}{\Delta}, \quad \sin \delta = \frac{\gamma \omega}{\Delta}, \quad \Delta = \sqrt{m^2(\omega_0^2 - \omega^2)^2 + \gamma^2 \omega^2}, \quad \omega_0^2 = \frac{k}{m}$$
BESONANCE at $\omega_0 \simeq \omega$ maximum amplitude

RESONANCE at $\omega_0 \approx \omega$ maximum amplitude

(29)
$$R_{\max} = \frac{F_0}{\gamma \omega_0 \sqrt{1 - (\gamma^2/4mk)}} \approx \frac{F_0}{\gamma \omega_0} (1 + \frac{\gamma^2}{8mk})$$

4. Higher order equations

4.1. Theorems. Consider

(30)
$$L[y] := y^{(n)} + p_1(t)y^{(n-1)} + \dots p_n(t)y, \quad L[y] = g(t)$$

Theorem If p_1, \ldots, p_n, g continuous on an interval I, then

 $\triangleright\,$ there is a unique solution on I for any given set of initial conditions

(31)
$$y(t_0) = y_0, y'(t_0) = y'_0, \dots, y^{(n-1)}(t_0) = y_0^{(n-1)}$$

 $\triangleright\,$ the general solution to the homogeneous equation L[y]=0 is given by

(32)
$$y(t) = c_1 y_1(t) + c_2 y_2(t) + \dots + c_n y_n(t)$$

where y_1, \ldots, y_n are a fundamental set, i.e. n linearly independent solutions. $\triangleright n$ solutions y_1, \ldots, y_n are a fundamental set on I if and only if the Wronskian $W(y_1, \ldots, y_n)(t_0) \neq 0$ for some $t_0 \in I$ and hence for all $t \in I$. Here

(33)
$$W(y_1, \dots, y_n)(t) = \begin{vmatrix} y_1(t) & y_2(t) & \dots & y_n(t) \\ y'_1(t) & y'_2(t) & \dots & y'_n(t) \\ \vdots & \vdots & \ddots & \vdots \\ y_1^{(n-1)}(t) & y_2^{(n-1)}(t) & \dots & y_n^{(n-1)}(t) \end{vmatrix}$$

▷ If Y(t) is a particular solution of L[y] = g(t) and y_1, \ldots, y_n are a fundamental set for L[y] = 0 then all solutions of L[y] = g(t) are of the form

(34)
$$y(t) = c_1 y_1(t) + \dots + c_n y_n(t) + Y(t)$$

4.2. Constant coefficients: homogeneous case.

(35)
$$a_0 y^{(n)} + a_1 y^{(n-1)} + \dots + a_n y = 0$$

SOLUTION: Guess: e^{rt} , equation for r:

(36)
$$a_0 r^n + a_1 r^{n-1} + \dots + a_n = 0$$

The equation has n possibly complex roots counted with multiplicity

(37)
$$a_0 r^n + a_1 r^{n-1} + \dots + a_n = a_0 (r - r_1) \dots (r - r_n)$$

Since the coefficients are real, the roots are either real or appear in complex conjugate pairs. The multiplicity of a fixed root α is the number of factors $(r - \alpha)$ in eq. (37).

roots	summands of general solution
α real root multiplicity s	$e^{\alpha t}, te^{\alpha t}, \dots, t^{s-1}e^{\alpha t}$
	$e^{\lambda t}\cos(\mu t), e^{\lambda t}\sin(\mu t), te^{\lambda t}\cos(\mu t), te^{\lambda t}\sin(\mu t), \dots,$
$(\alpha, \bar{\alpha}) = \lambda \pm i\mu$ of multiplicity s	$t^{s-1}e^{\lambda t}\cos(\mu t), t^{s-1}e^{\lambda t}\sin(\mu t)$

4.3. Integer coefficients, rational roots. WHEN TO USE: If $a_i \in \mathbb{Z}$, can try to guess rational roots. If p/q is a root, then q divides a_0 and p divides a_n .

CAVEAT: Notice this may not give all/any of the roots.

4.4. Constant coefficients: Inhomogenous case – Undetermined coefficients. Same as in §2.2 only now the multiplicity s of x can be 0, 1, ..., n.

4