Math 462 Fall 11 Sample Midterm Questions

RALPH M KAUFMANN

- (1) Give the definition of a regular parameterized differentiable curve.
- (2) Give the definition of the arc length parameter.
- (3) Can every curve be reparameteried by arc length?
- (4) Give an equation for the tangent line of a regular curve $\alpha : I \to \mathbb{R}^3$ at the point $t \in I$.
- (5) What can you say about a curve α whose second derivative $\alpha'' = 0$.
- (6) Give a parameterization of a circle of radius a clockwise/counterclockwise
- (7) Give a parameterization of a helix of radius a with height c.
- (8) Let α be a curve parameterized by arc length. Define the tangent, normal and bi-normal vectors \mathbf{t}, \mathbf{n} and \mathbf{b} of α at $\alpha(t)$. Do you need any additional assumptions for this? What would happen if the curve where not parametrized by arc length?
- (9) Define curvature and torsion.
- (10) What is the torsion of a planar curve?
- (11) Write down the Frenet formulas.
- (12) State the fundamental theorem of the local theory of curves.
- (13) Give a curve which has constant curvature and torsion.
- (14) Is there a curve $\alpha : [-1, 1] \to \mathbb{R}^3$ whose curvature is $\sin(t)$ and torsion $\cos(t)$, how about curvature t^2 and torsion t^3 .
- (15) True of false. To first order a curve lies in a plane. To third order a curve lies in a half space. To second order the curve lies in the normal plane. The osculating plane is defined to be the plane containing the tangent and the normal vector.
- (16) Define a regular surface

- (17) Give examples of regular surfaces.
- (18) Give coordinate charts which cover S^2 .
- (19) Give the definition of a rotational surface. Is a rotational surface regular? Give coordinate patches which cover a given a rotational surface.
- (20) True or false. Every regular surface has a global parameterization. One of the projections of a regular surface to the three coordinate planes is a graph. Locally a surface is a graph. The inverse image of a regular value is a regular surface. The inverse image of a critical value is necessarily not regular.
- (21) Give the definition of the tangent plane T_pS to a point p of a regular surface S.
- (22) Let $\phi: S_1 \to S_2$ be a differentiable map between two regular surfaces. How is the differential $d\phi(p): T_pS_1 \to T_{\phi(p)}S_2$ defined.
- (23) When is a regular surface orientable? Give examples of orientable and non-orientable surfaces. Explain your examples.
- (24) Give the definition of the first fundamental form.
- (25) Calculate the first fundamental form of the upper sheet of the hyperboloid $x^2 + y^2 - z^2 = 1$.
- (26) What is the Gauss map? Give the Gauss map for the cylinder, a graph and the sphere.
- (27) Give the definition of the second fundamental form.
- (28) Give a geometric interpretation of $II_p(v)$.
- (29) Derive the Euler formula. Let e_1, e_2 be a basis of $T_p(S)$ such that e_1 and e_2 are principal curvature directions of curvature k_1, k_2 . Calculate the normal curvature of the curve α through $p = \alpha(0)$ if $\alpha'(0) = \cos(\theta)e_1 + \sin(\theta)e_2$.
- (30) Give the definition of Gauss curvature and mean curvature.
- (31) Calculate the Gauss and mean curvature of the sphere and the cylinder of radius one.