R. Kaufmann Math 337, Spring 2007

Final

Problems

Problem 1: Give the data and steps in defining a toric variety from a fan.

Problem 2: Give the fans of \mathbb{P}^{n} and the twisted projective space $\mathbb{P}^{n}\left(d_{0}, \ldots, d_{n}\right)$. Draw the fans of $\mathbb{P}^{1}, \mathbb{P}^{2}, \mathbb{C}^{2}, \mathbb{C}^{* 2}$ and $\mathbb{P}^{2}(1,2,2)$.
Problem 3: Given Δ a fan in N and Δ^{\prime} a fan in N^{\prime}. What is the condition for a map $N \rightarrow N^{\prime}$ to induce a map $X(\Delta) \rightarrow X\left(\Delta^{\prime}\right)$
Problem 4: Give criteria for a toric variety to be a) complete/compact, b) non-singular.

Problem 5: Give the toric picture of the blow up of \mathbb{C}^{2} at the origin. Problem 6: Give an example of a toric flop.
Problem 7: Give a formula cohomology ring of a simplicial and a smooth toric variety. Be careful in the choice of coefficients.
Problem 8: What is the Euler characteristic of a toric variety given by a fan.
Problem 9: How are polytopes and toric varieties related?

