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Abstract

For any finite group G we define the moduli space of pointed admissible G-covers and the
concept of a G-equivariant cohomological field theory (G-CohFT), which, when G is the
trivial group, reduces to the moduli space of stable curves and a cohomological field theory
(CohFT), respectively. We prove that taking the ‘quotient’ by G reduces a G-CohFT to a
CohFT. We also prove that a G-CohFT contains a G-Frobenius algebra, a G-equivariant
generalization of a Frobenius algebra, and that the ‘quotient’ by G agrees with the obvious
Frobenius algebra structure on the space of G-invariants, after rescaling the metric. We
then introduce the moduli space of G-stable maps into a smooth, projective variety X
with G action. Gromov–Witten-like invariants of these spaces provide the primary source
of examples of G-CohFTs. Finally, we explain how these constructions generalize (and
unify) the Chen–Ruan orbifold Gromov–Witten invariants of [X/G] as well as the ring
H•(X,G) of Fantechi and Göttsche.

1. Introduction

The purpose of this paper is to introduce a generalization of Kontsevich and Manin’s notion of a
cohomological field theory (CohFT) [KM94], in the presence of a finite group G, which we call
a G-equivariant cohomological field theory (or G-CohFT). Examples of (usual) CohFTs include the
Gromov–Witten invariants of a smooth, projective variety (cf. [Man99]) and the r-spin CohFT
[JKV01, PV01, Pol04]. A G-CohFT provides a framework for studying the physical procedure of
orbifolding [Kau02, Kau03, Moo01], as well as a structure for understanding both Chen–Ruan
orbifold Gromov–Witten invariants of global quotients by a finite group [CR04, CR02, AGV02] and
the non-commutative ring structure of Fantechi and Göttsche [FG03]. We now describe in some
detail the motivation for studying G-CohFTs.

The first motivation comes from topological field theory. Recall that a Frobenius algebra H is
a finite-dimensional, commutative, associative, unital algebra with an invariant metric. It can be
regarded as a two-dimensional topological field theory, in the sense of Atiyah–Segal, associated
to a cobordism category of two (real) dimensional, compact, oriented surfaces with boundary.
A CohFT is a generalization of the above, but where the role of the cobordism category is
replaced by {Hr(M g,n)} for all r, where M g,n is the moduli space of stable curves of genus g
with n marked points. By specializing to r = 0, one finds that the state space of the theory H
recovers the structure of a Frobenius algebra.
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Figure 1. Schematic of Question 1 where each box contains an algebraic structure and the respon-
sible homology group, the horizontal arrows are restrictions, and the vertical arrows are ‘quotients’
by G. When G is the trivial group, the two rows coincide.

For every finite group G, Turaev [Tur99] introduced a G-equivariant topological field theory
(which he called a homotopy field theory) whose state space H is a (non-projective) G-Frobenius
algebra associated to a cobordism category of principal G-bundles over two (real) dimensional,
compact, oriented surfaces with boundary. A (non-projective) G-Frobenius algebra (borrowing ter-
minology from [Kau02, Kau03]) is a finite-dimensional, G-graded G-module with a G-equivariant
associative multiplication, metric and unit, and whose multiplication is braided commutative, satis-
fying an additional genus-one compatibility condition (called the trace axiom). By braided commu-
tative we mean that the multiplication commutes with the action of the generator of the braid group
which acts on tensor products of G-graded G-modules. If G is the trivial group, then a G-Frobenius
algebra is a Frobenius algebra. Furthermore, the space of G-invariants H of a G-Frobenius alge-
bra inherits the structure of a Frobenius algebra graded by G, the set of conjugacy classes of G.
Kaufmann [Kau02, Kau03] considered a generalization of the above construction which allowed for
projective factors.

This procedure of restricting to the space of invariants can be interpreted as a kind of orbifolding
procedure from physics [Kau02, Kau03, Moo01] where the subspace of H graded by 1 in G is called
the untwisted sector, and the subspaces graded by nontrivial elements in G are called twisted sectors.

Question 1 (see Figure 1). Is there a generalization of a CohFT, called a G-CohFT, where M g,n is
replaced by another moduli space M

G
g,n, such that for all r, the collection {Hr(M

G
g,n)} endows the

state space H of the theory with an algebraic structure whose specialization to r = 0 induces the
structure of a G-Frobenius algebra on H ? A G-CohFT should also have the property that when
G is the trivial group, a G-CohFT reduces to a CohFT. Furthermore, by performing the correct
‘quotient’ by G, the space of G-invariants H should inherit the structure of a CohFT graded by G.

The second motivation for studying G-CohFTs comes from orbifold Gromov–Witten invariants
and is about how to construct certain examples of G-CohFTs associated to a smooth, projective
variety X with an action of a finite group G.

Consider the G-graded G-module H (X) :=
⊕

m∈GH
•(Xm), where Xm denotes the fixed-

point set in X of m, and let H (X) denote its space of G-invariants. Chen and Ruan [CR04,
CR02] introduced the notion of Gromov–Witten invariants for orbifolds, which, when applied to
the global quotient [X/G], has a state space isomorphic to H (X). An algebro-geometric version
of this theory was introduced in [AGV02]. The key geometric object in these constructions was
M g,n([X/G]), the moduli space of orbifold stable maps into the quotient [X/G]. The state space
H (X) of this theory is graded by G, and the Gromov–Witten invariants are expected to yield
a CohFT associated to each [X/G]. An important special case arises by considering only those
contributions from M g,n([X/G], 0), the moduli of orbifold stable maps which have degree zero.
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Figure 2. Schematic of Question 2 where each box contains an algebraic structure and the relevant
moduli space, F–G denotes Fantechi–Göttsche, C–R denotes Chen–Ruan, the horizontal arrows
denote restriction, and the vertical arrows denote taking ‘quotients’ by G.

This endows H (X) with the structure of a Frobenius algebra graded by G, called variously stringy
orbifold cohomology, Chen–Ruan cohomology, or just orbifold cohomology of [X/G].

When G is a trivial group, M g,n([X/G]) reduces to the usual moduli space M g,n(X) of stable
maps into X, and the Gromov–Witten invariants of X make H•(X) into a CohFT. Restricting to
contributions from M g,n([X/G], 0) alone, one obtains the usual cohomology ring of X, which is a
Frobenius algebra. ‘Forgetting’ the stable map yields a morphism M g,n(X) � M g,n for all stable
pairs (g, n), which is an isomorphism when X is a point.

Fantechi and Göttsche [FG03] were able to obtain the structure of the Chen–Ruan orbifold
cohomology on H (X) by first introducing a certain ring structure with metric on H (X) and then
taking G-invariants. In fact, their ring satisfies all of the axioms of a G-Frobenius algebra except,
possibly, the trace axiom. However, their construction is not obviously part of a larger structure
and does not explicitly involve the moduli space of orbifold stable maps.

Question 2 (see Figure 2). For any smooth, projective variety X with a G-action, does there exist
a moduli space M

G
g,n(X) of a G-equivariant version of stable maps such that ‘forgetting’ the map

yields a morphism M
G
g,n(X) � M

G
g,n for stable pairs (g, n)? This map should be an isomorphism

when X is a point.

There should also exist G-equivariant Gromov–Witten invariants associated to M
G
g,n(X) which

yield a G-CohFT with state space H (X), generalizing the usual construction when G is the trivial
group. Furthermore, by taking the appropriate ‘quotient’ by G, one should recover the orbifold
Gromov–Witten invariants of [X/G] as in [CR04, CR02, AGV02] with associated state space H (X).

Finally, by considering only those contributions from the moduli M
G
g,n(X, 0) of stable maps of

degree zero, one should be able to recover the G-Frobenius algebra structure in [FG03] and prove
that the trace axiom must hold.

This paper provides affirmative answers to both of these questions.

The first part of this paper is devoted to answering the first question. We introduce M
G
g,n, the

moduli space of n-pointed admissible G-covers of genus g. Roughly speaking, it consists of a tuple
(E

π� C; p̃1, . . . , p̃n), where E and C are (at worst, nodal) curves, (C, p1, . . . , pn) is a stable
curve of genus g, where p̃i are points in E and pi := π(p̃i), and π maps nodes of E to nodes of C.
Furthermore, we require that, away from π−1(pi) and nodes, E is a principal G-bundle; however,
E is allowed to have ramification over the marked points and nodes. Our construction differs from
the stack of admissible covers in [ACV03], as we require the additional data of p̃i in E over each
marked point pi in C.
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By forgetting the data associated to the G-cover, one obtains a morphism st : M
G
g,n

� M g,n,

where M g,n is the moduli space of stable curves. We prove that M
G
g,n is a smooth, Deligne–Mumford

stack, flat, proper, and quasi-finite (but not representable) over M g,n. Furthermore, M
G
g,n has an

action of the symmetric group Sn by permuting the ordering of the marked points, and it has
an action of Gn by translation of the marked points. In fact, M

G
g,n admits an action of the braid

group Bn, which factors through the Sn and Gn actions.

The collection {MG
g,n} possesses gluing morphisms, provided that the monodromies of the two

marked points to be glued together are inverses of one another. These gluing morphisms are equiv-
ariant under the action of Sn and Gn. One may regard the collection {MG

g,n} as a G-equivariant
colored modular operad, where the coloring is by elements of G. Furthermore, the morphism st
respects the Sn actions and the gluing morphisms.

A G-CohFT is defined analogously to a CohFT, but where the role of M g,n is replaced by
M

G
g,n, and where G-equivariance is maintained throughout the construction. We prove that there

is an external tensor product and a (usual) tensor product associated to equivariant CohFTs. We
then define the correct notion of taking a ‘quotient’ by G and prove that this procedure has the
desired properties. The procedure of taking quotients involves an intermediate step on the stack
M g,n(BG) of stable maps into the classifying stack BG (i.e. the stack of admissible covers without
the additional points p̃i). We show that in this intermediate step the stack M g,n(BG) can be
replaced by the quotient [M

G
g,n/G

n], but that the resulting ‘quotient’ CohFTs are isomorphic.
The last part of this paper treats the second question. We introduce the moduli space of G-stable

maps M
G
g,n(X) and describe the G-equivariant Gromov–Witten invariants. By restricting to contri-

butions from M
G
g,n(X, 0) alone, we prove that the state space H (X) inherits a G-Frobenius algebra

structure which agrees with that from [FG03], and in particular that the trace axiom holds for their
ring. The proof consists of relating the virtual fundamental class to an analogous cohomology class
in their construction.

The details of the construction of a G-CohFT for general equivariant Gromov–Witten invariants,
properties of potential functions, and applications to higher spin curves will be explored elsewhere.

The Gromov–Witten invariants of orbifolds which are global quotients of a variety by a finite
group are particularly interesting in light of the results of Costello [Cos] which state that the
Gromov–Witten invariants of a smooth, projective variety X of arbitrary genus are determined by
the genus zero Gromov–Witten invariants of the orbifolds [Xn/Sn] where Sn is the symmetric group
acting upon Xn by permuting its factors. We expect that our generalization of [FG03] to higher
degree stable maps will be useful in calculating these invariants.

Finally, we observe that orbifolding plays an important role in mirror symmetry, in certain
Landau–Ginzburg theories (see, for example, [CK99, Man99]), and in conformal field theory. In
particular, there are related notions of orbifolding which appear in the context of vertex algebras (see,
for example, [Kir02, FS03]). Furthermore, a variant of our moduli spaces is used in the announcement
[Kir03] of the construction of a modular functor associated to a finite group, and this can be regarded
as an example of an orbifold conformal field theory. It would be enlightening to further clarify the
relationship between these notions.

The outline of this paper is as follows. In § 2 we describe the moduli spaces M
G
g,n, their associated

forgetful and gluing morphisms, group actions, and automorphism groups. In § 3 we briefly review
important facts from the category of G-graded G-modules, including the braid group action and
tensor products. In § 4 we define G-CohFTs and their tensor products. We prove that a (non-
projective) G-CohFT always contains a G-Frobenius algebra. In § 5 we define how to obtain a
CohFT from a G-CohFT by taking the appropriate ‘quotient’. We prove that this is consistent with
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the obvious notion of taking a quotient for a G-Frobenius algebra, after rescaling the metric, and
then work out the example of the orbifold cohomology of BG. In § 6 we introduce the moduli space
of G-stable maps and equivariant Gromov–Witten invariants, reproduce the ring of [FG03] as a
special case, and prove that the trace axiom is satisfied.

Remark 1.1. Unless otherwise specified, we assume that all cohomology rings are over the ground
ring C, although all constructions here are also valid over the rationals Q.

Also, unless otherwise specified, all groups which appear are finite and all group actions are right
group actions.

Notation 1.2. The stack quotient of a variety X by G will be denoted [X/G] and the coarse moduli
space of this quotient will be denoted X/G.

2. The moduli spaces

Let (C
�� T, p1, . . . , pn) be a stable curve over T of genus g, with marked points (sections)

p1, . . . , pn. We want to study a variant of the space of admissible G-covers of C, as defined in
[ACV03, Definition 4.3.1]. We recall the definition here.

Definition 2.1. A finite morphism π : E � C to an n-pointed, genus-g, stable curve C
�� T,

p1, . . . , pn over T is an admissible G-cover if we have the following.

(i) E/T is itself a nodal curve (not necessarily connected).

(ii) Nodes of E map to nodes of C.

(iii) There is a right action ρE of G on E preserving π, and such that we have (iv).

(iv) The restriction of π to Cgen (the points of C which are neither marked points nor nodes) is a
principal G-bundle.

(v) At points of E lying over nodes of C the structure of the maps E
π� C

�� T is locally the
same as (analytically isomorphic to) that of

SpecA[z,w]/(zw − t) � SpecA[x, y]/(xy − tr) � SpecA,

where we have t ∈ A, x = zr and y = wr, for some integer r > 0.

(vi) At points of E lying over marked points of C the structure of the maps E
π� C

�� T is
locally the same as (analytically isomorphic to) that of

SpecA[z] � SpecA[x] � SpecA,

where x = zs for some integer s > 0.

(vii) The action of the stabilizer Gq ⊆ G at each node q of E is balanced ; that is, the eigenvalues of
the action on the tangent space at q are multiplicative inverses of each other.

Theorem 4.3.2 of [ACV03] shows that the stack of admissible G-covers is isomorphic to the stack
M g,n(BG) of balanced twisted stable maps into the classifying stack of G.

2.1 Definition, construction, and basic properties of M
G
g,n

Given an admissible G-cover (E
π� C, p1, . . . , pn), let p̃i ∈ π−1(pi) be a choice of a point in the

fiber over pi for all i = 1, . . . , n.
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Definition 2.2. Let M
G
g,n denote the stack of admissible G-covers

(π : E � C, p1, . . . , pn, p̃1, . . . , p̃n)

of n-pointed, genus-g, stable curves, together with a choice of n marked points p̃i ∈ E such that
π(p̃i) = pi for all i = 1, . . . , n. We call such objects n-pointed admissible G-covers. A morphism
of such objects is a G-equivariant fibered diagram; that is, a morphism of the underlying stable
curves, together with a G-equivariant morphism of the induced admissible G-covers preserving the
points p̃i.

Because the curve C is oriented, a pointed admissible G-cover (E
π� C, p̃1, . . . , p̃n) has a

well-defined monodromy mi at each marked point p̃i; namely, E induces a principal G-bundle over
C − {p1, . . . , pn}, and the orientation gives a small loop in C − {p1, . . . , pn} around each pi, with a
lift to a path in a small neighborhood of p̃i in E−{p̃1, . . . , p̃n}. The lift is not uniquely determined,
but the difference between the starting and ending sheets of the lifted path is given by a well-defined
element mi ∈ G.

Since the points p̃i are determined up to a discrete choice by C, π, and the points pi, the
monodromy is invariant under deformation of the curve C, the cover E, and the points pi. Also note
that, while the action ρE acts on the points p̃i by right multiplication, it acts on the holonomies by
conjugation.

Let GA denote the set G, considered as a right G-space under conjugation. Associated to any
object (E

π� C, p̃1, . . . , p̃n) there exists an element m = (m1, . . . ,mn) ∈ GnA; namely, mi is the
monodromy of E at the point p̃i.

Definition 2.3. Denote the canonical morphism we have just described by

e : M
G
g,n

� GnA, (1)

and let
M

G
g,n(m) := e−1(m) (2)

denote the substack of objects in M
G
g,n that map to m.

Since e is locally constant, we may write

M
G
g,n =

∐
m∈Gn

A

M
G
g,n(m).

The stack M
G
g,n and the substacks M

G
g,n(m) can be explicitly constructed as follows.

Theorem 2.4. The stack M
G
g,n and the substacks M

G
g,n(m) are smooth Deligne–Mumford stacks,

flat, proper, and quasi-finite over M g,n.

Proof. Let AdmG
g,n be the stack of admissible G-covers of n-pointed, genus-g curves, and let

E
π� C

�� AdmG
g,n be the universal G-cover and stable curve, with universal gerbe markings

Si
� C := [E/G]. Let

Ei := E ×C Si

be the fibered product of E with Si. Let

W := E1 ×AdmG
g,n
E2 ×AdmG

g,n
× · · · ×AdmG

g,n
En

be the fibered product of the Ei. It is straightforward to see that W is the stack of admissible
G-covers, together with explicit choices of sections p̃i ∈ E lying over the sections pi; that is,
W = M

G
g,n.
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Theorems 3.0.2 and 4.3.2 of [ACV03] show that the space AdmG
g,n is isomorphic to M g,n(BG),

the stack of balanced twisted stable maps to the classifying stack BG, and is a smooth Deligne–
Mumford stack, flat, proper, and quasi-finite over M g,n. Since the Si are étale over AdmG

g,n and E is
étale over C , these properties are preserved by the above-listed fibered products. Thus, the theorem
follows for M

G
g,n. The substacks M

G
g,n(m) are finite disjoint unions of connected components of

M
G
g,n, so the theorem also holds for them.

Remark 2.5. The above construction of the moduli stack requires the use of the gerbe sections Si

rather than the coarse sections Ai := im(pi) in the coarse curve C. This is due to the fact that the
fibered product of the Ai with E over C does not necessarily represent reduced points of E, which
is what we really mean when we say a point.

2.2 Morphisms and group actions on M
G
g,n

There are several obvious morphisms on M
G
g,n. First, there are the forgetful morphisms

M
G
g,n

s̃t� AdmG
g,n

∼= M g,n(BG)
ŝt� M g,n,

which were shown in Theorem 2.4 to be proper, flat, and quasi-finite. We denote the composition
by

st := ŝt ◦ s̃t.
We also have the evaluation morphism (2):

e : M
G
g,n

� GnA.

Recall (see [JK02]) that while M g,n(BG) cannot be written as a disjoint union of substacks
indexed by m ∈ GnA, it does have a decomposition indexed by conjugacy classes of G.

Definition 2.6. We denote the set of conjugacy classes of G by G and the conjugacy class of m ∈ G
by m. Similarly, we denote by m ∈ G

n the n-tuple of conjugacy classes determined by m ∈ Gn.

As described in [JK02], we have

M g,n(BG) =
∐

m∈Gn

M g,n(BG;m),

where some of the substacks may be empty.

Definition 2.7. We let M
G
g,n(m) denote the preimage s̃t

−1
(M g,n(BG;m)), which is easily seen

to be
M

G
g,n(m) =

∐
m′∈m

M
G
g,n(m

′).

The stack M
G
g,n(m) has a right Gn action

ρ(γ1, . . . , γn) : M
G
g,n(m) � M

G
g,n(γ

−1
1 m1γ1, . . . , γ

−1
n mnγn), (3)

which acts by right multiplication on the n marked points (p̃1, . . . , p̃n) �→ (p̃1 · γ1, . . . , p̃n · γn).
We sometimes write ρi for the action on the ith factor: ρi(γ) = ρ(1, . . . , γ, . . . 1).

Together with the action of the symmetric group Sn on M
G
g,n, which reorders the marked points,

M
G
g,n has the action of the semi-direct product group Gn � Sn, called the wreath product, where

Sn acts on Gn by permuting its factors. One consequence is that M
G
g,n has the action of the braid

group Bn.
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Definition 2.8. Let B1 be the trivial group. If n � 2, let Bn be the group with generators
{b1, . . . , bn−1} subject to the relations

bibi+1bi = bi+1bibi+1 (4)

for all i = 1, . . . , n− 1 and

bibj = bjbi (5)

if |i− j| > 1. Bn is called the braid group on n-letters.

For each generator bi of the braid group Bn, there is an isomorphism

M
G
g,n(m1, . . . ,mi,mi+1, . . . ,mn)

bi� M
G
g,n(m1, . . . ,mimi+1m

−1
i ,mi, . . . ,mn). (6)

These are given by bi := ρi(m−1
i ) ◦ si, where si is the element (i, i+ 1) in Sn which transposes i and

i+ 1, and ρi is the group action on M
G
g,n obtained by right translation of the ith marked point. It

is straightforward to check that the induced isomorphisms satisfy the braid relations (4) and (5),
thus they induce an action of Bn on M

G
g,n.

Finally, there are the three fundamental morphisms: forgetting tails, gluing trees, and gluing
loops.

Forgetting tails. Let m be any n-tuple

m := (m1, . . . ,mn) ∈ GnA,

and let 1 be the identity in G. Whenever the pair (g, n) is stable (i.e. 2g − 2 + n > 0) there is a
natural forgetting tails morphism τ̃ : M

G
g,n+1(m, 1) � M

G
g,n(m) defined as follows.

First, simply forgetting the data associated to the (n+1)st marked point usually yields an object
of M

G
g,n(m), but if the resulting curve is unstable, then we need to contract the unstable component

to a point p. In those cases it is true, but not immediately obvious, that we can produce a suitable
G-cover E on the new curve, and where necessary, assign a point p̃ in E over p. We now describe
how this works.

We have two cases: first, when the resulting unstable component D is a (genus-zero) −1-curve
with one marked point pi, and one node q; and second, when the unstable componentD is a −2-curve
with two nodes q and q′ and no marked points.

In either case, the unstable component D is a genus-zero curve with two special points (call
them q and q′ for simplicity of notation). It is straightforward to see that for any q̃′ ∈ E over q′

with monodromy m, the connected component D̃ of E containing q̃′ is a finite cover of D with
automorphism group AutD D̃ generated by m, which acts faithfully on all points but q and q′. In
particular, it is fully ramified over q and q′, and unramified at all other points. Thus, there is a
canonical G-equivariant isomorphism ϕ : E|q ∼� E|q′ . This shows in the first case, where pi = q′,
that there is a canonical choice of q̃ ∈ E|q (namely, q̃ = ϕ−1(p̃i)), and thus a well-defined point of
M

G
g,n(m).
In the second case, the isomorphism ϕ allows the construction of a principal G-bundle on the

curve with the unstable component D contracted. In this case, we need no point q̃: the data we
already have will give a point of M

G
g,n. Thus in every case the forgetting tails morphism exists.

Gluing trees. Given any m ∈ Gn1
A and m′ ∈ Gn2

A , as well as an additional element µ ∈ GA, let
g := g1 + g2 and n := n1 + n2. We have the gluing trees morphism:

ρtree : M
G
g1,n1+1(m, µ) × M

G
g2,n2+1(µ

−1,m′) � M
G
g,n(m,m′) (7)
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given by attaching the universal G-covers E
π� C ′ �� M

G
g1,n1+1(m, µ) and E′ π′

� C
�′
�

M
G
g2,n2+1(µ

−1,m′) along the sections ρ(γ)p̃n1+1 ∈ E and ρ(γ)p̃′1 ∈ E′ for all γ in G, and attaching
the universal curves C and C ′ along the sections pn1+1 and p′1. It is straightforward to see that,
because the monodromies µ and µ−1 are inverses, the induced cover is indeed an admissible G-cover
of the resulting stable curve, and thus gives an object in M

G
g,n(m,m′).

More generally, let I = {i1, . . . , in1} and J = {j1, . . . , jn2} be any disjoint subsets of {1, . . . , n}
such that I � J = {1, . . . , n}. For any integers s, t with i � s � n1, 1 � t � n2 there is a morphism

M
G
g1,n1+1(mi1 , . . . ,mis−1 , µ,mis , . . . ,min1

) × M
G
g2,n2+1(mj1 , . . . ,mjt−1 , µ

−1,mjt , . . . ,mjn2
)

� M
G
g,n(m1, . . . ,mn). (8)

Gluing loops. Given any m ∈ GnA and µ ∈ GA we have the gluing loops morphism:

ρloop : M
G
g−1,n+2(m, µ, µ−1) � M

G
g,n(m), (9)

defined in a manner similar to the gluing trees morphism; namely, one attaches the universal G-cover
E to itself along the two sections p̃n+1 and p̃n+2, and the universal curve C to itself along the sections
pn+1 and pn+2.

As with gluing trees, the gluing loops morphism can be defined more generally for any two
sections p̃i, and p̃j , provided they have inverse monodromies.

Remark 2.9. Even more generally, if two points do not have inverse monodromies, the braid group
action may still allow one to glue them. For example, for any i1 < i2 with i1, i2 ∈ {0, . . . , n+1} and
σ = m−1

i1+1m
−1
i1+2 . . .m

−1
i2
µ−1mi2 . . .mi1+1, we have a morphism

M
G
g,n+2(m1, . . . ,mi1 , µ,mi1+1, . . . ,mi2 , σ,mi2+1, . . . ,mn+2)

bi1+1◦bi1+2◦···◦bi2� M
G
g,n+2(m1, . . . ,mi1 , µ, µ

−1,mi1+1, . . . ,mn)
ρloop� M

G
g+1,n(m1, . . . ,mn).

Remark 2.10. Since the collection {MG
g,n} has gluing morphisms which are equivariant under the

actions of Gn and Sn, one may regard {MG
g,n} as a G-equivariant colored modular operad where

the set of colors is the G-set GA. Since the action of the braid group Bn (see (6)) on M
G
g,n is

constructed from the Gn and Sn actions, one may also regard {MG
g,n} as a colored modular operad,

but where the role of the permutation group is replaced by the braid group.

Remark 2.11. It is worth pointing out that the stack M
G
g,n+1(m, 1) is not the universal curve

or orbicurve over M
G
g,n(m) nor is it the universal admissible G-cover. On the one hand, generic

locations of p̃n+1 will have no automorphisms, since they must fix the point p̃n+1. On the other
hand, when pn+1 ‘collides’ with another marked point (i.e. they bubble off a genus-zero component),
then the point p̃n+1 only prevents the existence of nontrivial automorphisms of E over the new
component, but automorphisms over the remainder of the curve need only fix the fiber of E over
the new node.

2.3 Holonomy and other tools for studying G-covers
Let GR denote G considered as a right G-module. Note that the automorphism group AutG(GR) of

GR is again G, acting by left multiplication. Given a pointed admissible cover (E
π� C, p̃1, . . . , p̃n)

and given any point p̃0 ∈ Egen := π−1(Cgen) lying over p0 ∈ Cgen, we have an isomorphism of right

G-modules νp̃0 : E|p0
∼� GR, given by

νp̃0(p̃0γ) := γ.
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Changing the base point p̃0 to p̃0α changes the map νp̃0 by left multiplication by α−1.

νp̃0α = α−1νp̃0 .

Definition 2.12. The choice of p̃0 ∈ Egen gives a homomorphism from the fundamental group
to G:

χp̃0 : π1(Cgen, p0) � G,

which we call holonomy. One way to see this homomorphism explicitly is to pull Egen back to
the trivial admissible cover Ẽ of the universal cover U of Cgen. Automorphisms of U are precisely
π1(Cgen, p0), and they induce automorphisms of Ẽ ∼= U ×GR, and therefore of GR:

π1(Cgen, p0) ∼= AutCgen U
χ� AutGGR = G.

Conversely, given any homomorphism χ : π1(Cgen, p0) � G, it is easy to see that we get a
uniquely determined admissible G-cover of (C, p1, . . . , pn) and a distinguished point p̃0,χ over p0.
This G-cover is given by first taking the quotient of U ×GR by the action of

π1(Cgen, p0)
id,χ� AutCgen U × AutGGR

and then extending it to all of C. Such an extension is uniquely determined by the G-cover on Cgen.
The point p̃0,χ is the image of (p0, 1) ∈ U×GR under this quotient. We call this cover the admissible
G-cover of C induced by χ and p0, and we denote it Eχ,p0, or Eχ if p0 is clear from context.

The following proposition is an immediate consequence of well-known corresponding results for
principal G-bundles (see, for example, [Fu95, chs 13–14]) and is straightforward to check.

Proposition 2.13. Let Cgen be connected. For any homomorphism χ : π1(Cgen, p0) � G, the
induced E and p̃0,χ have holonomy χp̃0 equal to χ, and conversely, given an E and p̃0 the bundle
Eχp̃0

is canonically isomorphic to E, via an isomorphism identifying p̃0,χp̃0
with the original p̃0.

Thus the data of E, p̃0 is equivalent to a choice of homomorphism χ : π1(Cgen, p0) � G.

A different choice of point p̃0, say p̃0α, changes χ by conjugation χp̃0α = α−1χα. Furthermore,
given a path γ from p0 to p′0 in Cgen and the corresponding unique lift γ̃ of γ from p̃0 to p̃′0 ∈ E|p′0 ,
the holonomy χp̃′0 is induced from χp̃0 by conjugation with γ.

π1(Cgen, p0)
χp̃0 � G

π1(Cgen, p0)

ad(γ)

�
χ p̃

′
0

�

Conversely, given any χ′ : π1(Cgen, p0) � G determined from χ by conjugation by γ, the
induced G-cover Eχ′ is canonically isomorphic to Eχ, and the induced point p̃′0,χ′ is that obtained
by parallel transporting p̃0 along γ (i.e. p̃′0,χ is the endpoint of γ̃).

Definition 2.14. For any path d from p0 to pi in Cgen (that is, a path in C such that the image
of (0, 1) lies in Cgen and d(1) = pi and d(0) = p0), we have an induced element σd of π1(Cgen, p0)
defined by following d from p0 to a little loop around pi, tracing the loop out once counterclockwise,
and then returning along d (or rather d−1) to p0.

Moreover, for any admissible G-cover with point p̃0 ∈ E|p0 , the path d determines a point
p̃(d) ∈ E|pi , which is the endpoint of the unique lift d̃ of d in E that begins at p̃0.
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Finally, given p̃0 and a path d from p0 to pi, holonomy and the map νp̃0 induce an isomorphism

of right G-modules νd,p̃0 : E|pi

∼� 〈mi〉\GR, where mi := χp̃0(σd), and ν̄d,p̃0 maps the point p̃(d)
to the coset 〈mi〉.
Definition 2.15. In genus zero, a choice of paths di from the point p0 to the point pi for each
i ∈ {1, . . . , n} induces loops σdi

that generate π1(Cgen, p0). Not every choice of monodromy m ∈ Gn

satisfies the same relations that the generators σi do, and thus not every choice of monodromy
defines a holonomy χ, but for those m that do, there is a uniquely determined pointed admissible
G-cover

ζ(d1, . . . , dn;m) := (Eχ � CP1, p̃1, . . . , p̃n)
by defining the holonomy χ to be given by the monodromy

χ(σdi
) = mi, for i ∈ {1, . . . , n}

and letting the points p̃i := p̃(di) be the points induced as in Definition 2.14. Since the loops σdi

generate the fundamental group of CP1−{p1, . . . , pn}, this construction gives a well-defined pointed
admissible G-cover.

It is clear from our discussion so far that every smooth, genus-zero, n-pointed, admissible G-cover
(E � CP1, p̃1, . . . , p̃n) that has all of its points p̃i in the same connected component of E must
be of the form ζ(d1, . . . , dn;m) for some choice of p0, paths (d1, . . . , dn), and m ∈ Gn. Assume that
the points p0, . . . , pn ∈ C are given. Of special interest is the case where the induced generators of
the fundamental group have product equal to 1. We denote the subset of such n-tuples of paths by

PC :=
{

(d1, . . . , dn)
∣∣∣∣ di a path from p0 to pi, and

n∏
i=1

σdi
= 1
}
, (10)

and the corresponding pointed admissible G-covers of C by

ζC :=
{
ζ(d;m)

∣∣∣∣ d ∈ PC ,m ∈ Gn,

n∏
i=1

mi = 1
}
. (11)

Definition–Proposition 2.16. Given a choice of p0, . . . , pn ∈ C, with genus(C) = 0, there is a
transitive action of the braid group on the set PC , where

bidi = di+1 (12)
bidi+1 = σdi+1di (13)
bidj = dj if j 
= i, i + 1. (14)

This action of Bn on the set PC is compatible with the usual braid action on π1(Cgen, p0); that is,
for each i we have σdi

∈ π1(Cgen, p0), and

σbdi
= bσdi

. (15)

Consequently, the braid action on PC induces an action of the braid group on ζC , distinct from
the braid action on all of M

G
g,n that we defined earlier. To distinguish the two, we denote this new

action by β : Bn � Aut(ζC).

Proof. The fact that the given equation defines an action and that the action is compatible with
the usual action on the fundamental group is a straightforward calculation. That the action is
transitive follows from the classical fact that the braid group generates all outer automorphisms of
the fundamental group that preserve the property of the product of generators being trivial.

Since the product of generators and the product of monodromies are both trivial, the induced
holonomy bχ : σ(bdi) �→ mi is still a well-defined homomorphism of groups. Thus, for each admissible
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cover ζ(d;m) ∈ ζC and for each b ∈ Bn we can define

β(b)ζ(d;m) := ζ(bd;m). (16)

2.4 Automorphisms, isomorphisms, and fibers
Definition 2.17. Let AutGC E denote the group of G-equivariant automorphisms of E over C. Any
ϕ ∈ AutGC E must induce a G-equivariant automorphism ϕ′ : GR � GR of right G-modules by
ϕ′ = νp̃0 ◦ ϕ ◦ ν−1

p̃0
. It is easy to see that if ϕ(p̃) = p̃0g, then ϕ′ is simply left multiplication by g.

This gives a homomorphism
Ψp̃0 : AutGC E � G.

Proposition 2.18. The homomorphism Ψp̃0 : AutGC E � G commutes with every element of
im(χp̃0), and depends only upon the (path-)component of Egen in which p̃0 lies. Moreover, if C is
irreducible, then Ψp̃0 is an isomorphism to the centralizer of (i.e. the subgroup of G which commutes
with every element of) the image of χp̃0:

Ψp̃0 : AutGC E
∼� C(imχp̃0).

Proof. It is straightforward to check that a change of base point from p̃0 to p̃′0 = p̃0γ changes Ψp̃0

by conjugation.
Ψp̃0γ = γ−1Ψp̃0γ.

On the other hand, given a path σ : [0, 1] � Egen from p̃0 to another point q̃0 we may
parallel transport any point p̃0γ of the fiber E|p0 to the point q̃0γ in the fiber E|q0 , thus giving an

isomorphism of right G-sets σ∗ : E|p0
∼� E|q0, and one can check that the induced homomorphisms

Ψp̃0 and Ψq̃0 are the same:
Ψp̃0 = Ψq̃0 : AutGC E � G.

The first two claims of the proposition follow.
It is straightforward to check that if Cgen is path connected, then Ψp̃0 is injective, and surjectivity

can be seen by uniformizing Cgen, pulling E back to a trivial bundle on the uniformizer, and
checking that left multiplication by any element of G which commutes with holonomy descends to
a G-equivariant automorphism of E over C.

We now turn our attention to automorphisms of pointed admissible G-covers. For a pointed
admissible G-cover (E

π� C, p̃1, . . . , p̃n), we denote the group of G-equivariant automorphisms of
E over C which fix the points p̃i by AutGC(E, p̃1, . . . , p̃n).

Proposition 2.19. If C is an irreducible curve, and if m1, . . . ,mn ∈ GA are the monodromies
of the admissible G-cover E at p̃1, . . . , p̃n, respectively, then for any elements γ1, . . . , γn such that
p̃0 ∈ Egen lies in the same connected component of Egen as p̃1γ1, . . . , p̃nγn, the map Ψp̃0 induces an
isomorphism

Ψp̃0 : AutGC(E, p̃1, . . . , p̃n)
∼� 〈γ−1

1 m1γ1〉 ∩ · · · ∩ 〈γ−1
n mnγn〉 ∩ C(im(χp̃0)),

where C(im(χp̃0)) denotes the centralizer of the image of χp̃0.

Proof. If p̃iγi is in the same component of Egen as p̃0, then there is a path d in Cgen from p0 to pi
which lifts to a path d̃ from p̃0 to p̃i, and we have an isomorphism νd,p̃0 : E|pi

∼� 〈γ−1
i miγi〉\GR

of right G-sets taking p̃iγi to the coset 〈γ−1
i miγi〉. An automorphism ϕ ∈ AutGC E with Ψp̃0(ϕ) = g

takes the coset 〈γ−1
i miγi〉 to itself if and only if g ∈ 〈γ−1

i miγi〉. Thus ϕ fixes the points p̃iγi and
also p̃i if and only if Ψp̃0(ϕ) ∈ 〈γ−1

i miγi〉 for every i.
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Of course, if p̃iγ is in the same connected component of Egen as p̃iα, then, since Ψp̃0(ϕ) commutes
with holonomy, including γ−1α, the condition Ψp̃0(ϕ) ∈ 〈γ−1miγ〉 is the same as the condition
Ψp̃0(ϕ) ∈ 〈α′−1miα〉.

Proposition 2.20. For any smooth pointed curve (C, p1, . . . , pn) having no nontrivial automor-

phisms, choose an admissible cover (E
π� C, p1, . . . , pn) ∈ AdmG

g,n. For any p̃0 ∈ Egen and for
any choice of paths di in Cgen from p0 = π(p̃0) to pi, let σi = σdi

be the corresponding ele-

ment of π1(Cgen, p0). We can describe the fiber (s̃t)−1([E
π� C, p1, . . . , pn]) of the forgetful map

s̃t : M
G
g,n

� AdmG
g,n as the quotient stack

(s̃t)−1(E
π� C, p1, . . . , pn) =

[( n∏
i=1

〈χp̃0(σi)〉\GR
)/

C(χp̃0)
]

=
∐
Ip̃0

BHp̃0,

where C(χp̃0) is the centralizer of the image of χp̃0, acting diagonally on the product, the index
set Ip̃0 is (

∏n
i=1〈χp̃0(σi)〉\GR)/(C(χp̃0)/Hp̃0), and the group Hp̃0 is the image under Ψp̃0 of the

automorphism group of any pointing (p̃1, . . . , p̃n) of E:

Hp̃0 = Ψp̃0(AutGC(E, p̃1, . . . , p̃n)) = C(χp̃0) ∩ 〈χp̃0(σ1)〉 ∩ · · · ∩ 〈χp̃0(σn)〉.

Proof. A choice of pointing p̃1, . . . , p̃n ∈ E is equivalent to a choice ν p̃0(p̃i) ∈ 〈χp̃0(σi)〉\GR for
each i ∈ {1, . . . , n}, and any isomorphism between two pointings (E, p̃1, . . . , p̃n) and (E, p̃′1, . . . , p̃′n)
induces an automorphism of E. Conversely, the automorphisms of E act on the set of all point-
ings, thus Proposition 2.18 gives the first equality. For any pointing, the homomorphism Ψp̃0 takes
the automorphism group AutGC(E, p̃1, . . . , p̃n) to Hp̃0 := C(χp̃0) ∩ 〈χp̃0(σ1)〉 ∩ · · · ∩ 〈χp̃0(σn)〉 by
Proposition 2.19. The second equality follows.

Proposition 2.21. Let C = C1 ∪ C2 be the union of two irreducible curves joined at a single
node q. Choose points p̃1

0, p̃
2
0 ∈ Egen lying over C1

gen and C2
gen, respectively, and such that p̃1

0 and
p̃2
0 lie in the same connected component of E. Also, choose a point q̃ ∈ E|q of the fiber over q

which lies in the same connected component of E as p̃1
0 and p̃2

0. Let µ and µ−1 be the monodromy of E
at q with respect to the orientations of C1 and C2, respectively. We have an injective homomorphism

Ψ := (Ψp̃10
,Ψp̃20

) : AutGC(E, p̃1, . . . , p̃n) ↪→ G×G,

which depends only on the connected component of E in which p̃1
0 and p̃2

0 lie, and

im Ψ = {(g1, g2) ∈ im Ψp̃10
× im Ψp̃20

|g1g−1
2 ∈ 〈µ1〉}.

Proof. The injectivity follows from arguments similar to the irreducible case. The condition on the
elements (g1, g2) ∈ im Ψp̃10

× im Ψp̃20
comes from the fact that any automorphism of E must take

both ‘sides’ of the node q̃ to the same point: q̃g1 = q̃g2, but q̃gi is only determined up to a (left)
coset of 〈µ〉.

Let C be an irreducible curve with one node q obtained by attaching two points q+ and q− of the
normalized curve Cν . An admissible G-cover E of C is obtained by attaching two points q̃+ ∈ Eν |q+
and q̃− ∈ Eν |q− of an admissible G-cover Eν on Cν which have monodromy µ and µ−1, respectively,
for some µ ∈ G. Let p̃0 ∈ Eνgen = Egen be in the same connected component of Eν as q̃+, and let
γ ∈ G be chosen so that q̃−γ−1 is in that same component of Eν .

Proposition 2.22. Any automorphism ϕ ∈ AutGC(E, p̃1, . . . , p̃n) induces an automorphism N(ϕ) ∈
AutGCν (Eν , p̃1, . . . , p̃n) by pullback to the normalization. For any p̃0 ∈ Egen the homomorphism N
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is injective and is compatible with Ψp̃0; that is, the following diagram commutes:

AutGC(E, p̃1, . . . , p̃n)
Ψp̃0 � G

AutGCν (Eν , p̃1, . . . , p̃n)

N

�

∩

Ψp̃0 � G

����������
Moreover, we have

im(Ψp̃0 ◦N) = {g ∈ Ψp̃0(AutGCν Eν)|g ∈ C(γ)}.
Proof. The commutativity of the diagram is straightforward to check and injectivity of N follows
from the fact that Ψp̃0 is injective. The fact that the image commutes with γ follows from an
argument similar to that for holonomy in Proposition 2.18.

2.5 Distinguished components of M
G
g,n

Several distinguished components of M
G
g,n will be useful for our construction of G-CohFTs. We

describe them and their basic properties in this section.

2.5.1 The substack ξ(m) of M
G
0,3(m)

Definition 2.23. For any m := (m1,m2,m3) ∈ G3
A, if the product

∏3
i=1mi is not 1, then we

define the stack ξ(m) to be the empty stack. Otherwise, let C denote the sphere CP1 with special
points p0 := 0 and pj = exp(2πj

√−1/3) for j ∈ {1, 2, 3}. For each j ∈ {1, 2, 3} let di be the
path in C determined by following a straight line from p0 to pi. These paths induce elements
σi := σdi

∈ π1(CP1 − {p1, p2, p3}, p0) (see Definition 2.14), which generate the fundamental group
and have trivial product: σ1σ2σ3 = 1. Thus the triple d = (d1, d2, d3) is in PC .

We define ξ(m) to be the connected component of M
G
0,3(m) containing the geometric point

ζ(d;m), as defined in Definition 2.15.

Remark 2.24. For any m ∈ G, it is clear that the component ξ(m,m−1, 1) is the unique component
of M

G
0,3(m,m

−1, 1) such that all the points p̃i lie in the same connected component of the admissible
G-cover E.

Lemma 2.25. For any m ∈ G3
A we have the following identities for the ξ(m).

(i) ρ(γ, γ, γ)(ξ(m)) = ξ(γm1γ
−1, γm2γ

−1, γm3γ
−1) for any γ ∈ G.

(ii) ρ(m1, 1, 1)(ξ(m)) = ρ(1,m2, 1)(ξ(m)) = ρ(1, 1,m3)(ξ(m)) = ξ(m).
(iii) For the generators b1, b2 of the braid group B3

b1ξ(m) = ξ(m1m2m
−1
1 ,m1,m3)

b2ξ(m) = ξ(m1,m2m3m
−1
2 ,m2).

Thus for any element b ∈ B3, we have

bξ(m) = ξ(bm),

where b acts on the triple m via the Hurwitz action (i.e. the obvious action where, for example,
b1(m1,m2,m3) := (m1m2m

−1
1 ,m1,m3)).

(iv) Let s be an isomorphism induced from a cyclic permutation (also denoted s) in S3, then

sξ(m) = ξ(sm).
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Proof. The first identity follows from the fact that the global right action translates all points in
the admissible G-cover in ξ by γ. Under this action, the ith monodromy mi changes to γ−1miγ for
all i = 1, . . . , n.

The second statement follows from the fact that the action of ρi on the ith point p̃i is the same
(via the map ν̄p̃0) as right multiplication acting on the right G-coset 〈mi〉; that is, the action ϕi(mi)
is trivial.

The third statement follows from studying the results of sliding points pj around pi, which we
now describe in the case of b2. The case of b1 is essentially the same.

The transformation T : z �→ 1/z takes p0 = 0 to ∞, fixes p1, and interchanges p2 and p3.
Let E′ = T∗E := (T−1)∗E, p̃′2 := T∗(p̃3), p̃′3 := T∗(p̃2), and p̃′1 := T∗(p̃1). The pointed cover
(E′, p̃′1, p̃′2, p̃′3) corresponds to the geometric point representing the image of ξ(m) under the action
of the transposition s(2,3). Let γ be a straight path from p0 to ∞ that passes between p3 and p1,
e.g., the path γ(t) = −i/(1− t). Note that via γ we have an isomorphism of (un-pointed) admissible
G-covers E′ ∼= Eχ,p0, where χ is the homomorphism π1(Cgen, p0) � G, given by taking γT∗σiγ−1

to mi and with the induced p̃0,χ being the ‘parallel transport’ of T ∗(p̃0) along γ. The loop γT∗σ3γ
−1

(around T (p3) = p2) and the loop γT∗σ1γ
−1 (around T (p1) = p1) are homotopic to the loops σ2

and σ1, respectively. However, the loop γT∗σ2γ
−1 is homotopic to σ2σ3σ

−1
2 . Thus the (un-pointed)

G-cover E′ is isomorphic to E′′ := Eχ,p0, where χ is the homomorphism taking σ1 to m1, σ2 to
m2m3m

−1
2 , and σ3 to m2; that is, to the G-cover E′′ associated to ξ(b2m). The points p̃′1 and p̃′3

are the same as those that are induced on ξ(b2m). However, the point p̃′2 is not the same as the
point p̃′′2 induced on ξ(b2m); indeed, p̃′′2 is induced by parallel transport from p̃0 along the path d2,
whereas p̃′2 is induced by parallel transport from p̃0 along γT∗d3γ

−1 = (σ3)−1d2. Thus, they differ
by the holonomy m2 of the loop σ3, i.e. the claim of the third statement holds.

Finally, the last statement of the lemma follows from the fact that a rotation (multiplication by
± exp(2πi/3)) of CP1 will induce the permutation s on ξ.

The construction of ξ(m) depends a priori on the choices of pi and di, but we will see in
Proposition 2.27 that it is independent of these choices.

Before we give that proposition, we need to understand better how the different braid actions
interact. The fact that the braid action on paths agrees with the usual braid action on loops shows
that for any b ∈ B3 we may write

bd = (ω1dψ(b(1)), ω2dψ(b(2)), ω3dψ(b(3)))

for some choice of ωi ∈ π1(Cgen, p0) (and ψ(b(i)) is the action on i of the permutation induced by

the standard surjection B3
ψ� S3). Let bχ denote the induced holonomy σbdi

�→ mi, and let γi
be the image of ωi in G via bχ. It is clear that bχ is the same homomorphism as that induced by
taking di �→ bmi, but the point p̃(bdi) differs from that defined by p̃(dψ(b(i))) by ρ(γi). That is, we
have

β(b)ξ(m) = β(b)ζ(d;m)
= ζ(bd;m)
= ρ(γ)ζ(d; bm)
= ρ(γ)ξ(bm)
= ρ(γ)bξ(m). (17)

Lemma 2.26. The braid action β on ζC ⊂ M
G
0,3 factors through the standard symmetric group

action on M
G
0,3 via the usual surjection ψ : B3

� S3 to the symmetric group. That is, for
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any b ∈ B3, d ∈ PC , and m, such that
∏
mi = 1, we have

β(b)ζ(d;m) = ψ(b)ζ(d;m).

Proof. By transitivity of the Bn action on PC , for every ζ(d′;m) there exists a b′ ∈ Bn such that
d′ = b′d, where d is the set of paths used to define ξ. So it suffices to check this only in the case of
ξ(m), i.e. where the paths are the standard d. Checking the generators of B3 is now quite easy. For
example, in the case of b = b1 the shift γ is simply (m1, 1, 1) and so (17) and Lemma 2.25(iii) gives

β(b1)ξ(m) = ρ(m1, 1, 1)ξ(bm)
= ρ(m1, 1, 1)bξ(m)
= s1,2ξ,

as desired.

Proposition 2.27. For any m ∈ G3 with
∏3
i=1mi = 1, any choice of points p′0, . . . , p′3 ∈ CP1, and

any choice of paths d′i from p′0 to p′i for each i ∈ {1, 2, 3} with trivial product (i.e. d′ = (d′1, d′2, d′3) ∈
PC), the geometric point of M

G
0,3(m) defined by ζ(d′,m) lies in the component ξ(m).

Proof. Using the action of PGL(2,C) we may assume that p′1 = p1, p
′
2 = p2, and p′3 = p3.

Moreover, given any path δ from p0 to p′0, we may replace the paths d′i by d′iδ. This gives an
isomorphism between the n-pointed admissible G cover defined by the d′i and that defined by the
d′iδ. Thus, we may assume that p′0 = p0.

Since both sets of paths d = (d1, d2, d3) (from the definition of ξ(m)) and d′ = (d′1, d′2, d′3) lie in
the set PC , and since the braid action on PC is transitive (Definition–Proposition 2.16), there is an
element b′ ∈ B3 such that

ζ(d′;m) = ζ(b′d;m) = β(b′)ξ(m).

Moreover, since the endpoint of each d′i is pi, we must have

b′ ∈ ker(ψ : B3
� S3),

that is, b′ lies in the pure braid group.
The proposition now follows from Lemma 2.26.

2.5.2 Distinguished components of M
G
0,4

Definition 2.28. Let m = (m1, . . . ,m4) be chosen so that
∏4
i=1mi = 1, and let

m+ := (m1m2)−1, m− = m−1
+ .

We let ξ0,4(m) denote the component of M
G
0,4(m) which contains the image of ξ(m1,m2,m+) ×

ξ(m−,m3,m4) under the gluing map

ρ : M
G
0,3(m1,m2,m+) × M

G
0,3(m−,m3,m4) � M

G
0,4(m).

Definition 2.29. For any closed substack Q ⊆ M
G
g,n, consider the homology class [Q] in H•(M

G
g,n).

We define [[Q]] := 0 when Q is empty, otherwise, [[Q]] := (1/deg(stQ))[Q], where deg(stQ) is the
degree of the forgetful morphism restricted to Q:

stQ : Q � M g,n.

Lemma 2.30. Using the notation of Definition 2.28, let

m′
+ := (m4m1)−1, m′

− := (m′
+)−1.
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We further let ρ′ denote the gluing map composed with the cyclic permutation s = (4, 3, 2, 1) ∈ S4,
that is, ρ′ = s ◦ ρtree:

M
G
0,3(m4,m1,m

′
+) × M

G
0,3(m

′
−,m2,m3)

ρtree� M
G
0,4(m4,m1,m2,m3)

s� M
G
0,4(m),

and we let ρ′′ denote the gluing map

ρ′′ : M
G
0,3(m1,m

′
+,m4) × M

G
0,3(m2,m

′
−,m3) � M

G
0,4(m).

(i) The component ξ0,4(m) contains the image of ξ(m4,m1,m
′
+) × ξ(m′−,m2,m3) under the map

ρ′ and the image of ξ(m1,m
′
+,m4) × ξ(m2,m

′−,m3) under the map ρ′′.
(ii) We have the following equalities in H2(ξ0,4(m)):

[[ρ(ξ(m1,m2,m+) × ξ(m−,m3,m4))]] = [[ρ′(ξ(m4,m1,m
′
+) × ξ(m′

−,m2,m3))]],

and

(iii) ρ∗([[ξ(m1,m2,m+)]] ⊗ [[ξ(m−,m3,m4)]]) = ρ′∗([[ξ(m4,m1,m
′
+)]] ⊗ [[ξ(m′−,m2,m3)]]).

Proof. For any choice m ∈ G4
A with

∏4
i=1mi = 1, a construction similar to that of ξ(m1,m2,m3)

on CP1−{p1, p2, p3, p4}, with, say, pi := (
√−1)i and p0 := 0, and with straight-line paths di to each

pi, gives a pointed admissible G-cover of CP1−{p1, p2, p3, p4}, which has two obvious degenerations.
The first degeneration is given by contracting the great circle defined by {z = t(1+

√−1)|t ∈ R∪∞}.
This can easily be seen to be the image of ξ(m1,m2,m+) × ξ(m−,m3,m4) under the gluing map
ρtree : M

G
0,3(m1,m2,m+) × M

G
0,3(m−,m3,m4) � M

G
0,4(m). Similarly, the second degeneration,

given by contracting the great circle {z = t(1−√−1)|t ∈ R ∪∞}, is the image of ξ(m1,m
′
+,m4)×

ξ(m2,m
′−,m3) under the gluing map M

G
0,3(m1,m

′
+,m4) × M

G
0,3(m2,m

′−,m3) � M
G
0,4(m). The

first claim follows from Lemma 2.25(iv) and the fact that all these gluing morphisms are well behaved
under cyclic permutations.

To see the second claim, consider the forgetful morphism st : ξ0,4(m) � M 0,4. By pulling
back the corresponding boundary divisors on M 0,4, one obtains the equality

[ρ(ξ(m1,m2,m+) × ξ(m−,m3,m4))]
A

B
= [ρ′(ξ(m4,m1,m

′
+) × ξ(m′

−,m2,m3))]
A′

B
,

where A is the order of the automorphism group of ρ(ξ(m1,m2,m+) × ξ(m−,m3,m4)), A′ is the
order of the automorphism group of ρ′(ξ(m4,m1,m

′
+) × ξ(m′−,m2,m3)), and B is the order of

the automorphism group of a generic point in M
G
0,4(m).

Finally, we observe that

ρ∗([ξ(m1,m2,m+)] ⊗ [ξ(m−,m3,m4)]) = [ρ(ξ(m1,m2,m+) × ξ(m−,m3,m4))]
C

D+D−
,

where C is the order of the automorphism group of a generic point in ρ(ξ(m1,m2,m+) × ξ(m−,
m3,m4)), D+ is the order of the automorphism group of ξ(m1,m2,m+), and D− is the order
of the automorphism group of ξ(m−,m3,m4). This equation, together with its counterpart from
ρ∗([ξ(m1,m2,m+)]⊗ [ξ(m−,m3,m4)]) and the previously derived equation, yields the desired result.

2.5.3 Distinguished components of M
G
1,1

Definition 2.31. Choose elements a, b,m1 ∈ G such that m1 = [a, b]. Let ρb be the composition of
the morphisms

ξ(m1, b, ab
−1a−1)

ρ3(a)� M
G
0,3(m1, b, b

−1)
ρ′b� M

G
1,1(m1), (18)
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where the first morphism is right action by a in the third factor, and the second morphism is the
gluing morphism identifying the second and third marked points.

Similarly, let ρa be the composition of the morphisms

ξ(m1, bab
−1, a−1)

ρ2(b)� M
G
0,3(m1, a, a

−1)
ρ′a� M

G
1,1(m1), (19)

where the first morphism is right action by b in the second factor, and the second is again the gluing
morphism identifying the second and third marked points.

We define ξ1,1(m1, a, b) to be the component of M
G
1,1(m1) containing the image of ρb.

Lemma 2.32. The images of ρa and ρb lie in the same connected component ξ1,1(m1, a, b) of

M
G
1,1(m1). Moreover, the following equation holds in H2(M

G
1,1(m1)):

ρ′b∗([[ρ3(a)ξ(m1, b, ab
−1a−1)]]) = ρ′a∗([[ρ2(b)ξ(m1, bab

−1, a−1)]]). (20)

Proof. The images of ρa and ρb are degenerations of the same smooth admissible G-cover over a
smooth torus. In particular, consider a smooth, one-pointed torus (T, p1) with generators α, β, and
γ of π1(T, p0) for some point p0, with γ corresponding to the loop σd induced by a path d from p0

to p1 (as in Definition 2.14), and [α, β] = γ. The homomorphism χ : π1(T, p0) � G that takes α,
β , and γ to a, b, and m1, respectively, defines an admissible G-cover Eχ, and a point p̃0,χ. Parallel
transport along d induces a point p̃1 with monodromy m1, giving us a pointed admissible G-cover
Eχ,p̃1.

It is straightforward to see that the image of ρa corresponds to the α-cycle shrinking to become
a node, while the image of ρb corresponds to the β-cycle shrinking to become a node. Thus, both
images lie in the same connected component ξ1,1(m1) of M

G
1,1(m1).

Equation (20) follows from the identity

ρ′b∗([ρ3(a)ξ(m1, b, ab
−1a−1)])

A

B
= ρ′a∗([ρ2(b)ξ(m1, bab

−1, a−1)])
A′

B′ ,

where A is the order of the automorphism group of ρ3(a)ξ(m1, b, ab
−1a−1), A′ is the order of

the automorphism group of [ρ2(b)ξ(m1, bab
−1, a−1)], B is the order of the automorphism group

of ρ′b(ρ3(a)ξ(m1, b, ab
−1a−1)), and B′ is the order of the automorphism group of ρ′a(ρ2(b)ξ(m1,

bab−1, a−1)).
However, B = B′, as their corresponding automorphism groups are both isomorphic to C(a, b) ⊆

G (see Proposition 2.22).

3. The category of G-graded G-modules

In this section, we briefly review some well-known facts from the category of G-graded G-modules
(see [Kas95, BK01]) which will be useful in the sequel.

3.1 G-graded G-modules and their G-coinvariants

Definition 3.1. Let H :=
⊕

m∈G Hm be a finite-dimensional GA-graded vector space which is

endowed with the structure of a right G-module ρ(γ) : H
∼� H for all γ in G, with ρ(γ) taking

Hm to Hγ−1mγ for all m in G. (H , ρ) is said to be a G-graded G-module.
A G-invariant metric η on a G-graded G-module H is a symmetric, nondegenerate, bilinear

form η on H which is G-invariant (under the diagonal G action) and which respects the grading,
i.e. for all vm+ in Hm+ and vm− in Hm− we have η(vm+ , vm−) = 0 unless m+m− = 1.
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G-graded G-modules form a category whose objects are G-graded G-modules and whose mor-
phisms are homomorphisms of G-modules which respect the G-grading. Furthermore, the dual of a
G-graded G-module inherits the structure of a G-graded G-module.

Example 3.2. Any finite-dimensional G-module V is a G-graded G-module where H1 := V and
Hm := 0 for all m not equal to 1 in G.

Example 3.3. The simplest example of a nontrivial G-graded G-module is C[G], the free vector
space generated by G, with its natural G-grading, endowed with the G-action ρ(γ)m := γ−1mγ for
all γ,m in G.

Definition 3.4. Recall that G is the set of conjugacy classes of G, the conjugacy class of m in G
is denoted by m, and the conjugacy class of m−1 is denoted by m−1.

A section s of the natural map G � G is said to be involutive if s(m−1) = s(m)−1 for all m.

Definition 3.5. Let (H , ρ) be a G-graded G-module. Let πG : H → H be the averaging map
πG(v) := (1/|G|)∑γ∈G ρ(γ)v for all v in H . Let H be the image of πG. The vector space H is
called the space of G-coinvariants of H , and it inherits a grading byG, denoted by H =

⊕
γ∈GH γ .

If η is a metric on H , then let η be the restriction of the metric (1/|G|)η to H .

Remark 3.6. The reason for the factor of 1/|G| in the definition of η will become evident when we
discuss the geometry of G-CohFTs.

Let us describe H in terms of H .

Proposition 3.7. Let (H , ρ) be a G-graded G-module with a G-invariant metric η.

(i) Consider vm in H m, where vm =
∑

m′∈m vm′ . For all m′ in m, vm′ belongs to H
C(m′)
m′ , the

C(m′)-invariant subspace of Hm′ . In particular, for all vm in Hm,

πG(vm) = πG(πC(m)(vm)),

where πC(m) : Hm
� H

C(m)
m is the averaging map

πC(m)(vm) :=
1

|C(m)|
∑

γ∈C(m)

ρ(γ)vm.

(ii) For all m in G, the map πm : H
C(m)
m

� H m, defined as

πm(vm) := πG(vm),

is an isomorphism of vector spaces.

(iii) For all m± in G and vm± in H
C(m±)
m± , where m+m− = 1, we have

η(πm+(vm+), πm−(vm−)) = η(πG(vm+), πG(vm−)) =
|C(m+)|

|G| η(vm+ , vm−).

(iv) If s is an involutive section of the natural map G � G, then⊕
m∈G

H
C(s(m))
s(m)

� H ,

taking vs(m) �→ πG(vs(m)), is an isomorphism of vector spaces which is not an isometry.

(v) η is nondegenerate, i.e. H is a G-graded vector space with metric η.
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Proof. To prove part (i), consider wm in Hm. We have

πG(wm) =
1
|G|

∑
γ′∈G

ρ(γ′)wm

=
1
|G|

∑
[γ]∈(C(m)\G)

∑
c∈C(m)

ρ(cγ)wm

=
|C(m)|
|G|

∑
[γ]∈C(m)\G

ρ(γ)
1

|C(m)|
∑

c∈C(m)

ρ(c)wm

=
|C(m)|
|G|

∑
[γ]∈C(m)\G

ρ(γ)πC(m)(wm).

We conclude that

πG(wm) =
|C(m)|
|G|

∑
[γ]∈C(m)\G

πC(γ−1mγ)(ρ(γ)wm), (21)

which finishes the proof.

We prove part (ii) by showing that the map fm : H m
� H

C(m)
m , defined by

fm

( ∑
m′∈m

vm′

)
:=

|G|
|C(m)|vm, (22)

is the inverse of πm. Note that the right-hand side is C(m)-invariant by part (i). Consider wm in
H

C(m)
m . We have

fm(πG(wm)) = fm

( |C(m)|
|G|

∑
[γ]∈C(m)\G

ρ(γ)wm

)

=
|C(m)|
|G| fm(wm) =

|C(m)|
|G|

|G|
|C(m)|wm = wm.

Therefore, πm is an isomorphism.
To prove part (iii), observe that

η(πG(vm+), πG(vm−)) =
1

|G|2
∑
γ±∈G

η(ρ(γ+)vm+ , ρ(γ−)vm−)

=
1

|G|2
∑
γ±∈G

η(ρ(γ−1
− )ρ(γ+)vm+ , vm−)

=
1

|G|2
∑
γ±∈G

η(ρ(γ+γ
−1
− )vm+ , vm−)

=
1

|G|2
∑
γ∈G

∑
γ+∈G

η(ρ(γ)vm+ , vm−)

=
1
|G|

∑
γ∈G

η(ρ(γ)vm+ , vm−)

=
1
|G|

∑
γ∈C(m+)

η(ρ(γ)vm+ , vm−)

=
|C(m+)|

|G| η(vm+ , vm−),

where we used the C(m+)-invariance of vm+ in the last equality.
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Part (iv) follows immediately from (ii) and (iii). Involutivity of s is needed to insure that⊕
m∈G H

C(s(m))
s(m) inherits a metric from H compatible with its grading.

To prove part (v), let m+m− = 1, so that η restricted to Hm+ ⊕ Hm− is nondegenerate. Hm±
is a C(m±)-module, so one can write

Hm± = H C(m±)
m± ⊕ H ′

m± (23)

as C(m±)-modules, where H ′
m± is the direct sum of all nontrivial irreducible representations of

C(m±) appearing in Hm± . Note that since m+m− = 1, we have C(m+) = C(m−).
Since η is C(m+)-invariant, η restricted to Hm+ ⊕ Hm− is the direct sum of η restricted to

H
C(m+)
m+ ⊕H

C(m+)
m− and η restricted to H ′

m+
⊕H ′

m− . Therefore, η restricted to H
C(m+)
m+ ⊕H

C(m−)
m−

is nondegenerate.

Let vm+ be in H
C(m+)
m+ . Suppose that η(πG(vm+), πG(vm−)) = 0 for all vm− in H

C(m−)
m− . By

part (iii), this is equivalent to the condition η(vm+ , vm−) = 0 for all vm− in H
C(m−)
m− . However, η

restricted to H
C(m+)
m+ ⊕ H

C(m−)
m− is nondegenerate, therefore vm+ = 0. Thus, η restricted to H is

also nondegenerate.

3.2 Tensor products and the braid group
As is usual in the representation theory of groups, there are two kinds of tensor products associated
to G-graded G-modules,

Definition 3.8. Let H ′ be a G′-graded G′-module and H ′′ be a G′′-graded G′′-module. Their
vector space tensor product H ′ ⊗ H ′′ is naturally a G′ × G′′-graded G′ × G′′-module called the
external tensor product of H ′ and H ′′.

On the other hand, the category of G-graded G-modules has a natural tensor product which
differs from the tensor product of their underlying vector spaces.

Definition 3.9. Let H ′ :=
⊕

m∈G H ′
m and H ′′ :=

⊕
m∈G H ′′

m be two G-graded G-modules. Let

H ′ � H ′′ :=
⊕
m∈G

H ′
m ⊗ H ′′

m,

with the induced G-module structure, where G acts diagonally. We call H ′�H ′′ the tensor product
of H ′ and H ′′.

Remark 3.10. The G-graded G-module C[G] has the important property that

H � C[G] ∼= C[G] � H ∼= H

for any G-graded G-module H .

Finally, we note that objects in this category have a natural action of the braid group, which
we now describe.

Definition 3.11. Let H be a G-graded G-module. Its n-fold tensor product H ⊗n inherits the
structure of a right Gn � Sn-module where the symmetric group Sn acts on H ⊗n by permuting its
factors.

For all i = 1, . . . , n− 1, let bi : H ⊗n � H ⊗n be defined by

bi(vm1 ⊗ · · · ⊗ vmi ⊗ vmi+1 ⊗ · · · ⊗ vmn) := vm1 ⊗ · · · ⊗ (ρ(m−1
i )vmi+1) ⊗ vmi ⊗ · · · ⊗ vmn

for all vmj in Hmj , mj in G, and j = 1, . . . , n− 1.

The following proposition is immediate.

Proposition 3.12. The elements {b1, . . . , bn} on H ⊗n give an action of Bn on H ⊗n.
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4. G-equivariant cohomological field theories

In this section, we introduce the notion of a G-CohFT , defined in terms of M
G
g,n, and prove some

of its basic properties.

4.1 G-CohFTs and G-Frobenius algebras
Definition 4.1. A tuple ((H , ρ), η, {Λg,n},1) is said to be a G-CohFT if the following axioms
hold.

(i) G-graded G-module: (H , ρ) is a G-graded G-module. The subspace H1 is called the untwisted
sector of the G-CohFT, and Hm, where m 
= 1, is called a twisted sector of the G-CohFT.

(ii) Gn � Sn invariance. For all m := (m1, . . . ,mn) in Gn and all stable pairs (g, n), if we denote
Hm :=

⊗n
i=1 Hmi , then Λg,n is an element of

⊕
mH•(MG

g,n(m)) ⊗ H ∗
m which is invariant

under the diagonal action of Gn � Sn.
(iii) Identity. The element 1 in H1 is nonzero, and is called the flat identity or vacuum vector.

(a) (G-invariance of the identity) The vacuum vector 1 is G-invariant, i.e. ρ(γ)1 = 1 for all γ
in G.

(b) (Flat identity) Under the forgetting tails morphism τ̃ : M
G
g,n+1(m, 1) � M

G
g,n(m), we

have
Λg,n+1(vm1 , . . . , vmn ,1) = τ̃∗Λg,n(vm1 , . . . , vmn)

for all m in Gn, and vmi in Hmi for all i = 1, . . . , n.
(iv) Metric: η is a symmetric, nondegenerate, bilinear form on H such that

η(vm1 , vm2) :=
∫

[[ξ(m1,m2,1)]]
Λ0,3(vm1 , vm2 ,1).

It follows that η(vm1 , vm2) = 0 unless m1m2 = 1. Recall that ξ is defined in § 2.5.1 and the
scaled class [[Q]] in Definition 2.29.

(v) Factorization. Fix any m+ ∈ G and m− := (m+)−1. Let the set {eα} be a basis for Hm+ , the
set {êβ} be a basis for Hm− , and ηαβ be the inverse of the metric

η : Hm+ ⊗ Hm−
� C

relative to these bases.
(a) For all stable pairs (g1, n1 + 1) and (g2, n2 + 1) let g = g1 + g2 and n = n1 + n2. For all m

in Gn and all (vm1 . . . , vmn) ∈ Hm we require

(ρ∗treeΛg,n)(vm1 , . . . , vmn)=
∑
α,β

Λg1,n1+1(vmi1
, . . . , vmin1

, eα)ηαβΛg2,n2+1(êβ , vmj1
, . . . , vmjn2

)

for all partitions {i1, . . . , in1} � {j1, . . . , jn2} of the set {1, . . . , n}.
(b) For all stable pairs (g − 1, n+ 2), all m ∈ Gn, and all (vm1 , . . . , vmn) ∈ Hm, the classes Λ

must satisfy

(ρ∗loopΛg,n)(vm1 , . . . , vmn) =
∑
α,β

Λg−1,n+2(vm1 , . . . , vmn , eα, êβ)η
αβ .

Remark 4.2. If G is the trivial group, then a G-CohFT coincides with a CohFT in the sense of
Kontsevich and Manin [KM94].

Example 4.3. The simplest example of a G-CohFT has as its state space H =
⊕

m∈G Hm :=
H•(G) = H0(G) ∼= C[G] as G-graded G-modules, i.e. if {em}m∈G denotes the obvious basis in H ,
then the G-action ρ(γ) : Hm → Hγ−1mγ is ρ(γ)(em) := eγ−1mγ for all γ,m in G.
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For all m = (m1, . . . ,mn) in Gn, let

Λg,n(em1 , . . . , emn) := e∗1m,

where e : M
G
g,n

� Gn, and 1m in H0(Gn) denotes the fundamental class of the point m in Gn.

It follows that

η(em1 , em2) :=
∫

[[ξ(m1,m2,1)]]
Λ0,3(em1 , em2 ,1) = δm1,m

−1
2
.

Definition 4.4. We call the G-CohFT of the previous example the group ring G-CohFT, and we
denote it simply by C[G] whenever it is clear from context that we mean the group ring G-CohFT
and not just the ring itself.

Remark 4.5. In the next section we see that this G-CohFT induces the G-Frobenius algebra C[G],
and a standard argument (along the lines of [Tur99]) shows that the two constructions are actually
equivalent, thus we are justified in the terminology and notation of the previous definition.

4.2 Tensor products of equivariant CohFTs

Given two equivariant CohFTs, one can construct a new one by taking their tensor product. As
in the case of G-graded G-modules, there are two tensor products associated to G-CohFTs. The
first, the external tensor product, associates to a G-CohFT and a G′-CohFT a G × G′-CohFT.
The second is a tensor product in the category of G-CohFTs.

Proposition 4.6. For all m′ in G′n and m′′ in G′′n, let m′×m′′ denote the element ((m′
1,m

′′
2), . . . ,

(m′
n,m

′′
n)) in (G′ ×G′′)n. Consider the commuting diagram

M
G′×G′′
g,n (m′ × m′′)

Υ� M
G′
g,n(m

′) ×M g,n
M

G′′
g,n(m

′′)
pr′′ � M

G′′
g,n(m

′′)

M
G′
g,n(m

′)

pr′

�
st′ � M g,n

st′′

�

where st′ and st′′ forget the pointed admissible covers and M
G′
g,n(m

′) ×M g,n
M

G′′
g,n(m

′′) is the

fibered product with projections pr′ and pr′′. The map Υ takes an object (E � C; p̃1, . . . , p̃n)
to ((E′ � C; p̃′1, . . . , p̃′n), (E′′ � C; p̃′′1, . . . , p̃′′n)), where E′ is the variety E/G′′ and p̃′i is the
marked point on E′ induced by p̃i, E

′′ is the variety E/G′ and p̃′′i is the marked point on E′′ induced
by p̃i.

(i) The morphism Υ preserves the (G′ ×G′′)n and Sn actions.

(ii) The morphism pr′ is G′n-equivariant and pr′′ is G′′n-equivariant.

(iii) The morphisms pr′,pr′′, st′, st′′ are Sn-equivariant.

(iv) The morphisms Υ,pr′,pr′′, st′, st′′ commute with the gluing morphisms.

Proof. For (i) note that Υ is a morphism because both E′ � C and E′′ � C are admissible
G′-, respectively G′′-covers with the proper monodromies. The equivariance under the actions of
(G′ ×G′′)n and Sn is manifest.

Similarly, parts (ii) and (iii) are manifest.

We now treat part (iv) in the case of the loop for the morphism pr′. For all m′± in G′ and m′′±
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in G′′ such that m′
+m

′− = m′′
+m

′′− = 1, consider the diagram

M
G′×G′′
g−1,n+2(m

′ × m′′, (m′
+,m

′′
+), (m′

−,m
′′
−))

ρ̃� M
G′×G′′
g,n (m′ × m′′)

M
G′
g−1,n+2(m

′,m′
+,m

′
−)

pr′cut

�
ρ̃ ′

� M
G′
g,n(m

′)

pr′

�

(24)

where ρ̃ and ρ̃ ′ are the gluing morphisms and pr′cut and pr′ are the canonical projections. Part (iv)
states that this diagram commutes, which follows immediately from the definition of the morphisms
involved. Similarly, the analogous diagrams for Υ, pr′′, st′, and st′′ also commute. The proof in the
case of the tree is identical and will be omitted.

Corollary 4.7. Let (H ′, η′, {Λ′
g,n},1′) be a G′-CohFT and (H ′′, η′′, {Λ′′

g,n},1′′) be a G′′-CohFT.
If we define

Λg,n(v′m′
1
⊗ v′′m′′

1
, . . . , v′m′

n
⊗ v′′m′′

n
) := Υ∗((pr′∗Λ′

g,n(v
′
m′

1
, . . . , v′m′

n
)) ∪ (pr′′∗Λ′′

g,n(v
′′
m′′

1
, . . . , v′′m′′

n
))) (25)

for all v′m′
i

in H ′
m′

i
and v′′m′′

i
in H ′′

m′′
i
, where the morphisms pr′ and pr′′ are defined as in Proposi-

tion 4.6, then (H ′ ⊗ H ′′, η′ ⊗ η′′, {Λg,n},1′ ⊗ 1′′) is a G′ ×G′′-CohFT.

Proof. Let G := G′ × G′′. Using the tensor product of a G′-graded G′-module and G′′-graded
G′′-module, H ′ ⊗H ′′ inherits the structure of a G-graded G-module. The G-invariance of 1′ ⊗ 1′′

follows.
The Gn- and Sn-invariance follow from Proposition 4.6(ii) and (iii), respectively.
The flatness of the identity follows immediately from the definition of Λg,n.
The metric axiom follows from observation that since M 0,3 is a point, the fibered product

M
G′
0,3(m′) ×M 0,3

M
G′′
0,3(m′′) is equal to M

G′
0,3(m′) × M

G′′
0,3(m′′).

We prove the factorization axiom in the case of the loop; the case of the tree is similar. Let us
adopt the notation from Proposition 4.6 and define v′m′ × v′′m′′ to be (v′m′

1
⊗ v′′m′′

1
, . . . , v′m′

n
⊗ v′′m′′

n
) for

all v′m′ in H ′
m′ and v′′m′′ in H ′′

m′′ .
From the definition of Λ we have

ρ̃∗Λg,n(v′m′ × v′′m′′) = ((pr′ × pr′′) ◦ ∆̃ ◦ Υ ◦ ρ̃)∗(Λ′
g,n(v

′
m′) ⊗ Λ′′

g,n(v
′′
m′′)),

where ∆̃ is the diagonal morphism

∆̃ : M
G′
g,n(m

′) ×M g,n
M

G′′
g,n(m

′′) � M
G′
g,n(m

′) ×M g,n
M

G′′
g,n(m

′′) × M
G′
g,n(m

′) ×M g,n
M

G′′
g,n(m

′′).

Let ∆ denote the diagonal morphism

∆ : M
G
g,n(m ×m′) � M

G
g,n(m× m′) × M

G
g,n(m × m′)

and ∆cut denotes the diagonal morphism associated to M
G
g−1,n+2(m′ × m′′, (m′

+,m
′′
+), (m′−,m′′−))

for any m′± in G′ and m′′± in G′′, such that m′
+m

′− = m′′
+m

′′− = 1. We have

(pr′ × pr′′) ◦ ∆̃ ◦ Υ ◦ ρ̃ = (pr′ × pr′′) ◦ (Υ × Υ) ◦ ∆̃ ◦ ρ̃
= (pr′ × pr′′) ◦ (Υ × Υ) ◦ (ρ̃× ρ̃) ◦ ∆cut

= (ρ̃ ′ × ρ̃ ′′) ◦ (pr′ × pr′′) ◦ (Υ × Υ) ◦ ∆cut,

where the first equality follows from the identity (Υ × Υ) ◦ ∆ = ∆̃ ◦ Υ, the second follows from
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the identity (ρ̃× ρ̃) ◦ ∆cut = ∆ ◦ ρ̃, and the third from Proposition 4.6(iv). Putting these together,
we obtain

ρ̃∗Λg,n(v′m′ × v′′m′′) = ((pr′ ◦ Υ)∗ρ′∗Λ′
g,n(v

′
m′)) ∪ ((pr′′ ◦ Υ)∗ρ′′∗Λ′′

g,n(v
′′
m′′))

= ((pr′ × pr′′) ◦ (Υ × Υ) ◦ ∆)∗(ρ′∗Λ′
g,n(v

′
m′) ⊗ ρ′′∗Λ′′

g,n(v
′′
m′′))

= ((pr′ × pr′′) ◦ ∆̃ ◦ Υ)∗(ρ′∗Λ′
g,n(v

′
m′) ⊗ ρ′′∗Λ′′

g,n(v
′′
m′′))

= Υ∗((pr′∗ρ′∗(Λ′
g,n(v

′
m′))) ∪ (pr′′∗ρ′′∗(Λ′′

g,n(v
′′
m′′))))

= Υ∗((pr′∗Λ′
g−1,n+2(v

′
m′ , e′α[m′

+], e
′
α[m′

−]))

∪ (pr′′∗Λ′′
g−1,n+2(v

′′
m′′ , e′′β[m′′

+], e
′′
β[m′′−])))η

′α[m′
+ ]α[m′

−]η′′β[m′′
+]β[m′′

−]

as desired, where {e′α[m′± ]} is a basis for H ′
m′±

and {e′′β[m′′±]} is a basis for H ′′
m′′±

.

This completes the case of the loop. The case of the tree is identical and will be omitted.

Definition 4.8. Let G′ = (H ′, η′, {Λ′
g,n},1′) be a G′-CohFT and G′′ := (H ′′, η′′, {Λ′′

g,n},1′′)
be a G′′-CohFT. Their external tensor product G′ ⊗ G′′ is the G′ × G′′-CohFT (H ′ ⊗ H ′′, η′ ⊗
η′′, {Λg,n},1′ ⊗ 1′′), where Λg,n is defined by (25).

The category of G-CohFTs also has a tensor product induced from the diagonal morphism on
M

G
g,n.

Definition 4.9. Let G′ = (H ′, η′, {Λ′
g,n},1′) and G′′ = (H ′′, η′′, {Λ′′

g,n},1′′) be G-CohFTs, then
consider the tuple (H , η, {Λg,n},1) given by

(i) H = H ′ � H ′′ as G-graded G-modules;
(ii) For all v′m1

⊗ v′′m1
in Hm1 and v′m2

⊗ v′′m2
in Hm2 ,

η(v′m1
⊗ v′′m1

, v′m2
⊗ v′′m2

) := η′(v′m1
, v′m2

)η′′(v′′m1
, v′′m2

);

(iii) 1 := 1′ ⊗ 1′′; and
(iv) Λg,n(v′m1

⊗ v′′m1
, . . . , v′mn

⊗ v′′mn
) := Λ′

g,n(v
′
m1
, . . . , v′mn

) ∪ Λ′′
g,n(v

′′
m1
, . . . , v′′mn

).

(H , η, {Λg,n},1) is said to be the tensor product of the G-CohFTs (H ′, η′, {Λ′
g,n},1′) and (H ′′, η′′,

{Λ′′
g,n},1′′) and is denoted G′ � G′′.

Proposition 4.10. The tensor product of two G-CohFTs is a G-CohFT.

Proof. The proof follows, first, from the fact that the diagonal morphism

∆ : M
G
g,n(m) → M

G
g,n(m) × M

G
g,n(m)

induces a morphism

H•(M
G
g,n(m)) → H•(M

G
g,n(m)) ⊗H•(M

G
g,n(m)),

which respects the gluing, the Sn actions, and the Gn action, and second, from the fact that the
cup product is induced via pullback of the diagonal morphism. The definitions of the flat identity
and the metric are easily verified.

Remark 4.11. Let H ′ and H ′′ be two G-graded G-modules. The G-module structure on H ′�H ′′

is induced from the G × G-module structure on the external tensor product H ′ ⊗ H ′′ via the
diagonal homomorphism G ⊂ � G × G. An analogous phenomenon occurs in the category of
G-CohFTs, where the role of the homomorphism G ⊂ � G×G is replaced by a natural inclusion
M

G
g,n(m) ⊂ � M

G×G
g,n (m × m) for all stable pairs (g, n) and m in Gn. This inclusion respects

the actions of Gn and Sn as well as the gluing morphisms. Consequently, the tensor product in the
category of G-CohFTs ‘factors through’ the external tensor product.
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This natural inclusion is obtained as follows. The diagonal morphism ∆ : M
G
g,n(m)⊂ � M

G
g,n(m)

× M
G
g,n(m) can be written as the composition

M
G
g,n(m) ⊂ ∆̂� M

G
g,n(m) ×M g,n

M
G
g,n(m) ⊂ ĵ� M

G
g,n(m) × M

G
g,n(m),

where ∆̂ is the diagonal morphism into the fibered product, and ĵ is the obvious inclusion. However,
M

G
g,n(m)×M g,n

M
G
g,n(m) is isomorphic to M

G×G
g,n (m×m) via Υ. Observe that ∆̂ and ĵ both preserve

the actions of Sn and Gn and the gluing operations.

The G-CohFT C[G] is initial among all G-CohFTs, in the following sense.

Proposition 4.12. Let G := (H , η, {Λg,n},1) be any G-CohFT. The tensor product of C[G] with
G satisfies C[G] � G ∼= G � C[G] ∼= G.

The proof is immediate from the definition of tensor product.

4.3 G-Frobenius algebras
Recall that a Frobenius algebra is a special CohFT. This statement admits a generalization to
G-CohFTs and G-Frobenius algebras, as will be seen in Theorem 4.16.

Definition 4.13. Let us adopt the notation that vm is a vector in Hm for any m ∈ G. A tuple
((H , ρ), ·,1, η) is said to be a (non-projective) G-Frobenius algebra [Kau02, Kau03, Tur99] provided
that the following hold.

(i) G-graded G-module: (H , ρ) is a G-graded G-module.
(ii) Self-invariance. For all γ in G, ρ(γ) : Hγ → Hγ is the identity map.
(iii) Metric: η is a symmetric, nondegenerate, bilinear form on H such that η(vm1 , vm2) is nonzero

only if m1m2 = 1.
(iv) G-graded multiplication. The binary product (v1, v2) �→ v1 · v2, called the multiplication on

H , preserves the G-grading (i.e. the multiplication takes Hm1 ⊗ Hm2 to Hm1m2) and is
distributive over addition.

(v) Associativity. The multiplication is associative, i.e. (v1 · v2) · v3 = v1 · (v2 · v3) for all v1, v2,
and v3 in H .

(vi) Braided commutativity. The multiplication is invariant with respect to the braiding:

vm1 · vm2 = (ρ(m−1
1 )vm2) · vm1 for all mi ∈ G and all vmi ∈ Hmi with i = 1, 2.

(vii) G-equivariance of the multiplication: (ρ(γ)v1) · (ρ(γ)v2) = ρ(γ)(v1 · v2) for all γ in G, and all
v1, v2 ∈ H .

(viii) G-invariance of the metric: η(ρ(γ)v1, ρ(γ)v2) = η(v1, v2) for all γ in G, and all v1, v2 ∈ H .
(ix) Invariance of the metric: η(v1 · v2, v3) = η(v1, v2 · v3) for all v1, v2, v3 ∈ H .
(x) G-invariant identity. The element 1 in H1 is the identity element under the multiplication,

and which satisfies ρ(γ)1 = 1 for all γ in G.
(xi) Trace axiom. For all a, b in G and v in H[a,b], let Lv denote left multiplication by v:

TrHa(Lvρ(b−1)) = TrHb
(ρ(a)Lv).

Remark 4.14. When G is the trivial group, a G-Frobenius algebra is a Frobenius algebra, a unital,
commutative, associative algebra with an invariant metric. Given a general G-Frobenius algebra H ,
there are two ways that one can construct a Frobenius algebra from it. The first Frobenius algebra
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is obtained by considering the subalgebra H1. The second approach is to consider H , the algebra
of G-coinvariants of H , with its induced multiplication and identity. The metric on H induces a
metric on H which makes H into a Frobenius algebra.

Remark 4.15. If H is a G-Frobenius algebra, then it follows from the axioms of a G-Frobenius
algebra that the action of the braid group on the multiplication factors through the symmetric
group. More precisely, let µ : H ⊗3 → C be given by µ(vm1 , vm2 , vm3) := η(vm1 · vm2 , vm3) and let
b1, b2 denote the generators of the braid group B3, then µ ◦ bi ◦ bi = µ for all i = 1, 2.

Theorem 4.16. Let ((H , ρ), η, {Λg,n},1) be a G-CohFT. Define a multiplication · on H as follows.
For any m1,m2 ∈ G, let m3 = (m1m2)−1. For all vm1 in Hm1 and vm2 in Hm2 , define

vm1 · vm2 :=
∫

[[ξ(m1,m2,m3)]]
Λ0,3(vm1 , vm2 , eα)ηαβfβ,

where {eα} is a basis for Hm3 , {fβ} is a basis for Hm−1
3

, and ηαβ is the inverse of the metric in

those bases.

The tuple ((H , ρ), ·,1, η) is a G-Frobenius algebra.

Proof. The G-module (H , ρ), the metric η, and the identity element 1 in the G-CohFT are the
same for the G-Frobenius algebra.

The invariance of the metric follows from the fact that

sξ(m1,m2,m3) = ξ(m2,m3,m1),

where s is the isomorphism induced from the cyclic permutation in S3 (this is proved in Lemma 2.25).

Note also that since ξ(m1,m2,m3) is empty unlessm1m2m3 = 1, the product is naturally graded.

The product is not commutative, in general, because ξ(m1,m2,m3) 
= ξ(m2,m1,m3). However,
it is braided commutative, because

ξ(m1,m2,m3) = b−1
1 ξ(m1m2m

−1
1 ,m1,m3) = σρ1(m1)ξ(m1m2m

−1
1 ,m1,m3), (26)

with σ the transposition (1, 2) ∈ S3, as shown in Lemma 2.25. The relation (26) on ξ implies the
braided commutativity via the equation

vm1 · vm2 =
∫

[[ξ(m1,m2,m3)]]
Λ0,3(vm1 , vm2 , eα)ηαβfβ

=
∫

[[(σρ1(m1))ξ(m1m2m
−1
1 ,m1,m3)]]

Λ0,3(vm1 , vm2 , eα)ηαβfβ

=
∫

[[ξ(m1m2m
−1
1 ,m1,m3)]]

(σρ1(m1))∗(Λ0,3(vm1 , vm2 , eα))ηαβfβ

=
∫

[[ξ(m1m2m
−1
1 ,m1,m3)]]

ρ1(m1)∗σ∗(Λ0,3(vm1 , vm2 , eα))ηαβfβ

=
∫

[[ξ(m1m2m
−1
1 ,m1,m3)]]

ρ1(m1)∗(Λ0,3(vm2 , vm1 , eα))ηαβfβ

=
∫

[[ξ(m1m2m
−1
1 ,m1,m3)]]

Λ0,3(ρ1(m−1
1 )vm2 , vm1 , eα)ηαβfβ

= (ρ(m−1
1 )vm2) · vm1 .

Again, using the braided commutativity for the classes ξ and the invariance of 1, we can show
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that 1 is indeed a unit for the multiplication, since

vm1 · 1 =
∫

[[ξ(m1,1,m
−1
1 )]]

Λ0,3(vm1 ,1, eα)ηαβfβ

=
∫

[[ξ(m1,m
−1
1 ,1)]]

Λ0,3(vm1 , eα,1)ηαβfβ

= η(vm1 ,1)ηαβfβ = vm1 ,

where we introduced a basis (eα) of Hm−1
1

and a basis (fβ) of Hm1 .

The property that 1 is a unit implies that the invariance of the metric follows from

η(vm1 , vm2) = η(vm1 · vm2 ,1). (27)

Equation (27) in turn follows from

η(vm1 · vm2 ,1) =
∫

[[ξ(m1,m2,m3)]]
Λ0,3(vm1 , vm2 , eα)ηαβ

∫
[[ξ(m3,1,1)]]

Λ0,3(fβ,1,1)

=
∫

[[ξ(m1,m2,m3)]]
Λ0,3(vm1 , vm2 , eα)ηαβη(fβ,1)

=
∫

[[ξ(m1,m2,m3)]]
Λ0,3(vm1 , vm2 ,1)

= η(vm1 , vm2),

where we use the notation m3 := (m1m2)−1, and we let {eα} be a basis of Hm3 and {fβ} be a basis
of Hm−1

3
.

The ρ(γ)-invariance of Hγ follows from the second part of Lemma 2.25:

ρ(γ)vγ = ρ(γ)vγ · 1 =
∫

[[ξ(γ,1,γ−1)]]
Λ0,3(ρ(γ)vγ ,1, eα)ηαβfβ

=
∫

[[ρ(γ,1,1)ξ(γ,1,γ−1)]]
Λ0,3(ρ(γ)vγ ,1, eα)ηαβfβ

=
∫

[[ξ(γ,1,γ−1)]]
Λ0,3(vγ ,1, eα)ηαβfβ

= vγ .

Again we use bases {eα} of Hγ−1 and {fβ} of Hγ .
The self invariance, together with the invariance of the metric, imply the symmetry of the metric:

η(vm, vm−1) = η(vmvm−1 ,1) = η(ρ(m−1)(vm−1)vm,1) = η(vm−1 , vm).

The G-invariance of the metric follows from the Gn-invariance of Λ and the ρ-invariance of the
unit 1 via

η(ρ(γ)vm1 , ρ(γ)vm2) =
∫

[[ξ(γ−1m1γ,γ−1m2γ,1)]]
Λ0,3(ρ(γ)vm1 , ρ(γ)vm2 ,1)

=
∫

[[ρ(γ,γ,γ)ξ(m1,m2,1)]]
Λ0,3(ρ(γ)vm1 , ρ(γ)vm2 , ρ(γ)1)

=
∫

[[ξ(m1,m2,1)]]
Λ0,3(vm1 , vm2 ,1)

= η(vm1 , vm2),

where we used the first property of ξ of Lemma 2.25.
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The above, in turn, gives the G-equivariance of the multiplication

ρ(γ)vm1 · ρ(γ)vm2 =
∫

[[ξ(γ−1m1γ,γ−1m2γ,(γ−1m3γ)−1)]]
Λ0,3(ρ(γ)vm1 , ρ(γ)vm2 , eα)ηαβfβ

=
∫

[[ρ(γ,γ,γ)(ξ(m1,m2,m3))]]
Λ0,3(ρ(γ)vm1 , ρ(γ)vm2 , ρ(γ)e

′
α)ηαβρ(γ)f ′β

=
∫

[[ξ(m1,m2,m3]]
Λ0,3(vm1 , vm2 , e

′
α)η′αβρ(γ)f ′β

= ρ(γ)(vm1 · vm2),

where we used m3 := (m1m2)−1, a basis {eα} of Hγ−1m3γ , {fβ} of Hγ−1m−1
3 γ , and the transformed

bases {e′α := ρ(γ−1)eα} of Hm3 and {f ′β := ρ(γ−1)fβ} of Hm−1
3

. Also, we used the notation η′αβ

for the inverse metric of ηαβ = η(e′α, f ′β), the G-invariance of the metric η′αβ = ηαβ, and the first
property of Lemma 2.25.

Associativity follows from Lemma 2.30 in the following way:

(vm1 · vm2) · vm3 =
∫

[[ξ(m1,m2,m+]]
Λ0,3(vm1 , vm2 , eα)ηαβ

∫
[[ξ(m−,m3,m4)]]

Λ0,3(fβ, vm3 , kγ)η
γδlδ

=
∫

[[ξ(m1,m2,m+)×ξ(m−,m3,m4)]]
ρ∗Λ0,4(vm1 , vm2 , vm3 , kγ)η

γδlδ

=
∫

[[ρ(ξ(m1,m2,m+)×ξ(m−,m3,m4)]]
Λ0,4(vm1 , vm2 , vm3 , kγ)η

γδlδ

=
∫

[[ρ′(ξ(m4,m1,m′
+)×ξ(m′−,m2,m3))]]

Λ0,4(vm1 , vm2 , vm3 , kγ)η
γδlδ

=
∫

[[ξ(m4,m1,m′
+)×ξ(m′−,m2,m3)]]

ρ′∗Λ0,4(vm1 , vm2 , vm3 , kγ)η
γδlδ

=
∫

[[ξ(m4,m1,m′
+)]]

Λ0,3(kγ , vm1 , eα)ηαβ
∫

[[ξ(m′−,m2,m3)]]
Λ0,3(fβ, vm2 , vm3)η

γδlδ

=
∫

[[ξ(m2,m3,m′
−)]]

Λ0,3(vm2 , vm3 , fβ)η
βα

∫
[[ξ(m1,m′

+,m4]]
Λ0,3(vm1 , eα, kγ)η

γδlδ

= vm1 · (vm2 · vm3),

where we used the S3-invariance of Λ, the fourth property of Lemma 2.25, and the symmetry
of the metric. Also, we introduced the notation m4 = (m1m2m3)−1 and used the notation of
Lemma 2.30 for m±,m′±, ρ, ρ′, i.e. m+ := (m1m2)−1,m− := m1m2,m

′
+ = m2m3, and m′− :=

(m2m3)−1. Furthermore, {eα} is a basis of Hm+ , {fβ} is a basis of Hm− , {kγ} is a basis of Hm4 ,
and {lδ} is a basis of Hm−1

4
.

Lastly, the proof of the trace axiom follows using Lemma 2.32:

TrHa(Lvρ(b−1)) = η(ηαβfβ, vaba−1b−1 · ρ(b−1)eα)

= η(ηαβfβ,
∫

[[ξ(m1,bab−1,a−1)]]
Λ0,3(vm1 , ρ(b

−1)eα, fγ)ηγδeδ)

=
∫

[[ξ(a−1,a,1)]]
Λ0,3(fβ, eδ ,1)ηαβ

∫
[[ξ(m1,bab−1,a−1)]]

Λ0,3(vm1 , ρ(b
−1)eα, fγ)ηγδ

=
∫

[[ξ(m1,bab−1,a−1)]]
Λ0,3(kλ, ρ(b−1)eα, fβ)ηαβ

∫
[[ξ(1,m1,m

−1
1 )]]

Λ0,3(1, vm1 , lµ)η
λµ

=
∫

[[ρb∗ξ(m1,bab−1,a−1)]]
Λ1,1(kλ)

∫
[[ξ(1,m1,m

−1
1 )]]

Λ0,3(1, vm1 , lµ)η
λµ
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=
∫

[[ρa∗ξ(m1,b,ab−1a−1)]]
Λ1,1(kλ)

∫
[[ξ(1,m1,m

−1
1 )]]

Λ0,3(1, vm1 , lµ)η
λµ

=
∫

[[ξ(m1,b,ab−1a−1)]]
Λ0,3(kλ, gγ , ρ(a)−1hδ)ηγδ

∫
[[ξ(1,aba−1b−1,m−1

1 )]]
Λ0,3(1, vm1 , lµ)η

λµ

=
∫

[[ξ(b−1,b,1)]]
Λ0,3(hτ , gγ ,1)ηστ

∫
[[ξ(m1,b,ab−1a−1)]]

Λ0,3(vm1 , gσ , ρ(a
−1)hδ)ηγδ

= TrHb
(ρ(a)Lv),

where we used Lemma 2.30, as well as Lemma 2.32 with its notation for the maps ρa, ρb and
m1 = [a, b], and introduced the bases {eα} of Ha, {fβ} of Ha−1 , {gγ} of Hb, {hδ} of Hb−1 , {kλ} of
Hm1 , and {lµ} of Hm−1

1
.

We can now justify naming the G-CohFT C[G] of Example 4.3 the group ring G-CohFT.

Proposition 4.17. In the group ring G-CohFT, the metric η on H =
⊕

g∈G C satisfies η(em1 , em2)
= δm1,m

−1
2

for all m1,m2 in G.

The multiplication is given by em1 · em2 = em1m2 for all m1,m2 in G. The identity element is
1 := e1. The resulting G-Frobenius algebra is isomorphic to the group ring C[G].

Proof. The multiplication operation is

em1 · em2 =
∫

[[ξ(m1,m2,(m1m2)−1)]]
Λ0,3(em1 , em2 , e(m1m2)−1)em1m2 = em1m2 .

The metric and identity element follow by a similar calculation.

5. CohFTs and quotients of G-CohFTs
In this section, we explain how to obtain a CohFT from a G-CohFT by taking the appropriate
quotient with respect to G. Geometrically, going from a G-CohFT to a CohFT corresponds to going
from M

G
g,n to M g,n, where the Λg,n are only allowed to act upon elements of H . We perform this

procedure in two steps. The first step is to go from M
G
g,n to M g,n(BG). The second step is to go

from M g,n(BG) to M g,n.

5.1 From M
G
g,n to M g,n(BG)

We begin with a useful lemma.

Lemma 5.1. For all m in G
n
, the forgetful morphism s̃tm : M

G
g,n(m) � M g,n(BG;m) induces

a ring isomorphism s̃t
∗
m : H•(M g,n(BG;m)) � H•(MG

g,n(m))G
n
.

Proof. Let C be the constant sheaf of complex numbers on M
G
g,n(m), and let C ′ be the constant

sheaf on M g,n(BG;m).
Since s̃t is finite, the Leray spectral sequence degenerates, giving

Hp(M
G
g,n(m),C ) = Hp(M g,n(BG;m), s̃t∗(C )).

Since these sheaves are all sheaves of vector spaces over C, they are all divisible, hence the coinvariant
map πGn is well defined and preserves invariants, i.e. if i : (s̃t∗C )G

n � s̃t∗C is the natural
inclusion, then πGn ◦ i = 1. Thus, taking Gn-invariants is the same as applying the map πGn , and
is exact. So a general homological argument gives that

(Hp(M g,n(BG;m), s̃t∗C ))G
n

= Hp(M g,n(BG;m), (st∗C )G
n
),

and we have
(Hp(MG

g,n(m),C ))G
n

= Hp(M g,n(BG;m), (s̃t∗C )G
n
).
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On the other hand, we have s̃t
∗
(C ′) = C , so by adjointness we have a map j : C ′ � s̃t∗C .

Composing with πGn , we get a map of sheaves πGn ◦ j : C ′ � (s̃t∗C )G
n
. On each fiber this map

is an isomorphism, since for a fixed admissible cover E � C the fiber F := s̃t
−1

([E � C]) is a
disjoint union of points with transitive Gn-action inducing the Gn-action on s̃t∗C =

⊕
f∈F C ′, and

j is just given by q �→ (q, q, . . . , q). Some straightforward work shows that for any vector space V
and any set F with transitive Gn-action, the vector space V ×F has as its Gn-invariants exactly the
image of the map j : V � V × F , taking v to (v, v, . . . , v). In particular, this holds for V = C ′.
Since the fiber F and the Gn-action on F are unchanged under small deformation, this shows that
the morphism of sheaves πGn ◦ j induces an isomorphism on stalks, and thus is an isomorphism of
sheaves. So we have

Hp(M g,n(BG;m),C ′) = Hp(M g,n(BG;m), (s̃t∗(C ))G
n
)

= Hp(M g,n(BG;m), s̃t∗C )G
n

= Hp(M
G
g,n,C )G

n

as desired.

Proposition 5.2. Let (H , η,Λg,n,1) be a G-CohFT. There exist uniquely-determined classes Λ̂g,n
in
⊕

m∈Gn H•(M g,n(BG;m)) ⊗ H
∗
m such that s̃t

∗
mΛ̂g,n(vm) = Λg,n(vm) for all vm in H m.

Proof. Consider vm in H m for m in Gn. For all γ in Gn we have

ρ(γ)∗(Λg,n(vm)) = Λg,n(ρ(γ−1)∗vm)) = Λg,n(vm)),

where the first equality is by the (diagonal) Gn-invariance of Λg,n and the second is by the definition
of H . Therefore, Λg,n(vm) belongs to H•(M g,n(m))G

n
, and we are done by the previous lemma.

Fix an element m+ in G and let m− := m−1
+ . To each such choice, we have the following

associated commutative diagram, which we will use extensively hereafter, and whose morphisms
and other terms we explain below:

FG
Γ̂

µ̃ � M
G
Γ̂

⊂ ĩ � M
G
g,n(m)

M
G
Γ̃cut

r̃

�

F
Γ̂
(BG)

p̃r

�
µ̂� M

Γ̂
(BG)

s̃t
′

�
⊂ î� M g,n(BG;m)

s̃t

�

M Γ̂cut

s̃t
′′

��

r̂

M Γcut

p̂r

�
µ �

ŝt ′′

�

M Γ

ŝt
′

�
⊂ i � M g,n

ŝt

�

(28)
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The above diagram has two cases. The first case corresponds to the situation where all graphs
are decorated stable graphs of genus g with n tails which are trees of the form

Γ̃ =

m+

g + g −

m−

mi 1
mj 1

−
mj n+

mi n

and Γ̃cut =

m+

g +

mi 1

+
mi n

g −

m−

mj 1

−
mj n

(29)

Γ̂ = g + g −

mi 1
mj 1

−
mj n+

mi n

m
−

m
+

and Γ̂cut = g +

mi 1

+
mi n

m
+

g −

mj 1

−
mj n

m
−

(30)

and

Γ =
+ −

g + g −

1i 1j

in nj
and Γcut =

−+

g + g −

1i 1j

njin

+ −

, (31)

where N+ := {i1, . . . , in+} is the index set of the labels for the tails on the left half of each
graph above, N− := {j1, . . . , jn−} is the index set of the labels for the tails on the right half of
each graph above, N+ �N− = {1, . . . , n} and g+ + g− = g.

The second case corresponds to the situation where all graphs are decorated stable graphs of
genus g with n tails which are loops of the following form:

Γ̃ =

m
+

m
−m

n

m
2

m
1

g−1

and Γ̃cut =
m

n

m
2

m
1

m
+

m
−

g−1

(32)

Γ̂ =
m

n

m
2

m
1

m
−

m
+g−1

and Γ̂cut =
m

n

m
2

m
1

m
−

m
+

g−1

(33)

and

Γ =
n

2

1
g−1

and Γcut =
g−1

−

+

1

2

n

(34)

Note that in both cases, the graph Γ̃ has tails labeled by conjugacy classes mi, but its one edge
is labeled by a specific choice of m+ and m−.

Now we explain the various terms and morphisms. M Γ is the closure of the locus in M g,n whose
dual graph is Γ, i is the inclusion morphism, and µ is the normalization morphism associated to
cutting the internal edge of Γ. Similarly, M

Γ̂
(BG) denotes the closure of the locus in M g,n(BG;m)

whose associated dual graph has tails decorated by m and whose monodromies around one side of the
node lie in m+ and whose monodromies around the other side of the node lie in m−. The morphism î
is the inclusion, and FΓ̂(BG) is the fibered product M Γcut ×MΓ

M Γ̂(BG). The morphisms µ̂ and p̂r
are the canonical projections of the fibered product. To explain r̂, we first note that FΓ̂(BG) is the
stack of triples consisting of a cut curve C ′ in M Γcut , an admissible G-cover E → C in M

Γ̂
(BG),

and an isomorphism α in M Γ from the glued curve µ(C ′) to C. The morphism r̂ takes such a triple
to the pullback of E along the composition α ◦µ. The morphisms ŝt, ŝt

′
, and ŝt

′′
simply forget their

respective twisted curve structures.

Similarly, M
G
Γ̂ is the closure of the locus of pointed G-covers with dual graph Γ̂, so all tails are

labeled by conjugacy classes mi; and M
G
Γ̃cut

is the closure of the locus of pointed G-covers with dual
graph Γ̃cut, so their tails are labeled with conjugacy classes mi, but on the two sides of the node
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their monodromies are the specific group elements m+ and m−. The morphisms s̃t
′
and s̃t

′′
simply

forget the marked points in the G-cover.

The stack FG
Γ̂

is the fibered product F
Γ̂
(BG) ×M

Γ̂
(BG) M

G
Γ = M Γcut ×MΓ

M
G
Γ , and the mor-

phisms µ̃ and p̃r are the canonical projections. The morphism r̃ is induced by the pair of the gluing
map ρ : M

G
Γ̃cut

� M
G
Γ̂ and the map ŝt

′′ ◦ s̃t
′′

: M
G
Γ̃cut

� M Γcut (actually the gluing map has

as its target M
G
g,n, but it factors through the substack M

G
Γ̂ ). In particular, we can write the gluing

morphism on M
G

as
ρ̃Γ̃ = ĩ ◦ µ̃ ◦ r̃, (35)

while the corresponding gluing morphism on M can be written as

ρΓ = i ◦ µ. (36)

Remark 5.3. The morphisms i, î, ĩ are regular embeddings. The remaining morphisms in the diagram
are both flat and proper.

Notation 5.4. For all m in G, let |C(m)| denote the order of the subgroup C(m′) of G for any m′

in m, as it is independent of the choice of m′.

Theorem 5.5. Let {Λ̂g,n} be a collection of classes associated to a G-CohFT {Λg,n}, as in Propo-

sition 5.2. Fix any conjugacy class m+, and let m− := m−1
+ . Let Γ̂ be a decorated stable graph of

genus g with n-tails which is either a tree, as in (30), or a loop, as in (33). Let vm belong to H m.

When Γ̂ is a tree then

r̂∗µ̂∗̂i∗Λ̂g,n(vm) =
deg(ŝt

′
)

deg(ŝt
′′
)

∑
β[m+],β[m−]

Λ̂g+,n++1(vmN+
, eβ[m+])η̂

β[m+],β[m−]Λ̂g−,n−+1(eβ[m−], vmN− ),

(37)
where N+ � N− = {1, . . . , n} is the partition corresponding to the tree, n± = |N±| and vmN±
denotes the n±-tuple

∏
i∈N± vmi , the collection {eβ[m±]} is a basis of H m± , and g+ + g− = g. And

η̂β[m+]β[m−] is the inverse of the metric η̂ on H in the basis {eβ[m±]}, where

η̂(vm+ , vm−) := |C(m+)|η(vm+ , vm−) (38)

for all vm± in H m± .

When Γ̂ is a loop then

r̂∗µ̂∗î∗Λ̂g,n(vm) =
deg(ŝt

′
)

deg(ŝt
′′
)

∑
β[m+],β[m−]

Λ̂g−1,n+2(vm, eβ[m+], eβ[m−])η̂
β[m+],β[m−]. (39)

In either case, denote the right-hand side of equations (37) and (39) by (deg(ŝt
′
)/deg(ŝt

′′
))Λ̂

Γ̂cut
.

Remark 5.6. This theorem suggests that Λ̂g,n should be regarded as an analog of the virtual class

c
1/r
g,n on M

1/r
g,n , the moduli stack of r-spin curves [JKV01]. Equations (37) and (39) should be regarded

as an analog of the cutting-edges axiom.

Proof (of Theorem 5.5). Let m+ be any representative of the conjugacy class m+ and let m− :=
m−1

+ . Consider the associated commuting diagram (28) and graphs (29)–(34).

For vm in H m, let I := s̃t
′′
∗ ρ̃∗Γ̃Λg,n(vm). We have

ρ̃∗
Γ̃
Λg,n(vm) = ρ̃∗

Γ̃
s̃t

∗
Λ̂g,n(vm)

= (s̃t ◦ ĩ ◦ µ̃ ◦ r̃)∗Λ̂g,n(vm)

= (̂i ◦ µ̂ ◦ p̃r ◦ r̃)∗Λ̂g,n(vm).
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Therefore,

I = s̃t
′′
∗ (̂i ◦ µ̂ ◦ p̃r ◦ r̃)∗Λ̂g,n(vm)

= (r̂ ◦ p̃r ◦ r̃)∗(̂i ◦ µ̂ ◦ p̃r ◦ r̃)∗Λ̂g,n(vm)

= deg(p̃r ◦ r̃)r̂∗µ̂∗ î∗Λ̂g,n(vm) (40)

because p̃r ◦ r̃ is finite and surjective.

For all m in G, let {eα[m]} be a basis for Hm such that {eα[m]} is the disjoint union of a basis

{eµ[m]} for H
C(m)
m and a basis {eν[m]} for H ′

m as in (23), such that for all γ in G,

ρ(γ)eµ[m] = eµ[γ−1mγ]. (41)

Assume that Γ̂ is a tree, then let M
G
+(m′

+) := M
G
g+,n++1(mN+ ,m

′
+) and M

G
−(m′−) :=

M
G
g−,n−+1(m

′−,mN−) for all m′± in m±. Let M
G
±(m±) :=

∐
m′

±∈m± M
G
±(m′±). We can write

M
G
Γ̃cut

= M
G
+(m+) × M

G
−(m−). Similarly, let Λ+(vm+) := Λg+,n++1(vmN+

, vm+) and Λ−(vm−) :=

Λg−,n−+1(vm− , vmN− ) for all vm± in Hm± . Furthermore, let Λ̂±(vm±) be defined by Λ±(vm±) =

s̃t
∗
Λ̂±(vm±) for all vm± in Hm± .

The G-CohFT axioms imply that

I =
∑
α[m±]

s̃t
′′
∗(Λ+(eα[m+])η

α[m+]α[m−]Λ−(eα[m−]))

=
∑
α[m±]

s̃tm+∗Λ+(eα[m+])η
α[m+]α[m−]s̃tm−∗Λ−(eα[m−]),

where we have the natural forgetful morphisms s̃tm+ : M
G
+(m+) � M g+,n++1(BG;mN+ ,m+)

and s̃tm− : M
G
−(m−) � M g−,n−+1(BG;m−,mN−).

Therefore, since Λ is G-equivariant and the fibers of s̃tm± are G-orbits, we have

I =
∑
α[m±]

s̃tm+∗Λ+(πG(eα[m+]))η
α[m+]α[m−]s̃tm−∗Λ−(πG(eα[m−]))

=
∑
µ[m±]

s̃tm+∗Λ+(πG(eµ[m+]))η
µ[m+]µ[m−]s̃tm−∗Λ−(πG(eµ[m−]))

=
∑
µ[m±]

s̃tm+∗s̃t
∗
m+

Λ̂+(πG(eµ[m+]))η
µ[m+]µ[m−]s̃tm−∗s̃t

∗
m−Λ̂−(πG(eµ[m−]))

=
∑
µ[m±]

deg(s̃tm+) deg(s̃tm−)Λ̂+(πG(eµ[m+]))η
µ[m+]µ[m−]Λ̂−(πG(eµ[m− ]))

=
∑
µ[m±]

deg(s̃tm+ × s̃tm−)Λ̂+(πG(eµ[m+]))η
µ[m+ ]µ[m−]Λ̂−(πG(eµ[m−])),

where the first equality holds because s̃t∗Λg,n belongs to H•(M g,n(BG)) ⊗ H
∗⊗n

, and the second
follows from the choice of basis and Proposition 3.7(i).

Furthermore, let s̃t
′′
(m′

+,m
′
−) denote the forgetful morphism

M
G
+(m′

+) × M
G
−(m′

−) � M g+,n++1(BG;mN+ ,m+) × M g−,n−+1(BG;m−,mN−)
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for all m′± in m±, then

deg(s̃tm+ × s̃tm−) =
∑

m′
±∈m±

deg(s̃t
′′
(m′

+,m
′
−)) =

|G|2
|C(m+)|2 deg(s̃t

′′
(m+,m−)),

where in the second equality, we have used that deg(s̃t
′′
(m′

+,m
′
−)) is independent of the choice m′± in

m±, the fact that m′± contains |G|/|C(m±)| elements, and that |C(m)| = |C(m−1)| for all conjugacy
classes m in G. Thus,

I =
∑
µ[m±]

deg(s̃t
′′
)

|G|2
|C(m+)|2 Λ̂+(πG(eµ[m+]))η

µ[m+]µ[m−]Λ̂−(πG(eµ[m− ])), (42)

but s̃t
′′

= r̂ ◦ p̃r ◦ r̃, hence,

I =
∑
µ[m±]

deg(r̂) deg(p̃r ◦ r̃) |G|2
|C(m+)|2 Λ̂+(πG(eµ[m+]))η

µ[m+]µ[m−]Λ̂−(πG(eµ[m−])). (43)

Equating (40) and (43) and canceling factors of deg(p̃r ◦ r̃), we obtain

r̂∗µ̂∗î∗Λ̂g,n(vm) =
|G|2

|C(m+)|2 deg(r̂)
∑
µ[m±]

Λ̂+(πG(eµ[m+]))η
µ[m+]µ[m−]Λ̂−(πG(eµ[m−])). (44)

Let εµ[m±] := πG(eµ[m±]). Note that the left-hand side only depends upon m± because of (41).

Since {eµ[m±]} is a basis for H
C(m±)
m± , then by Proposition 3.7(ii), {εµ[m±]} is a basis for H m± . Let

ηµ[m+]µ[m−] := η(εµ[m+], εµ[m−]) =
1
|G|η(εµ[m+], εµ[m−]) =

|C(m+)|
|G|2 ηµ[m+]µ[m−]

where ηµ[m+]µ[m−] = η(eµ[m+], eµ[m− ]). Therefore, taking inverses,

ηµ[m+]µ[m−] =
|G|2

|C(m+)|η
µ[m+]µ[m−] (45)

and

η̂µ[m+]µ[m−] =
|G|2

|C(m+)|2 η
µ[m+]µ[m−]

by (38), so

r̂∗µ̂∗ î∗Λ̂g,n(vm) = deg(r̂)
∑
µ[m±]

Λ̂g+,n++1(vmN+
, εµ[m+]))η̂

µ[m+]µ[m−]Λ̂g−,n−+1(εµ[m−], vmN− ). (46)

To conclude, note that p̂r = ŝt
′′ ◦ r̂ and deg(p̂r) = deg(ŝt

′
), so

deg(r̂) =
deg(p̂r)

deg(ŝt
′′
)

=
deg(ŝt

′
)

deg(ŝt
′′
)
.

This finishes the tree case.

Suppose now that Γ̂ is a loop and that M
G
Γ̃cut

= M
G
g−1,n+2(m,m+,m−). Following the analogous

steps to the case of the tree, we obtain the counterpart of (43):

I =
∑
µ[m±]

deg(r̂) deg(p̃r ◦ r̃) |G|2
|C(m+)|2 Λ̂g−1,n+2(vm, πG(eµ[m+]), πG(eµ[m− ]))η

µ[m+ ]µ[m−]. (47)
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Proceeding further, the counterpart of (46) is

r̂∗µ̂∗̂i∗Λ̂g,n(vm) = deg(r̂)
∑
µ[m±]

Λ̂g−1,n+2(vm, εµ[m+]), εµ[m−])η̂
µ[m+]µ[m−]. (48)

The rest of the proof is essentially the same as in the case of the tree.

5.2 From M g,n(BG) to M g,n

Definition 5.7. Let (H , η,Λg,n,1) be a G-CohFT. Define Λg,n := ŝt∗Λ̂g,n in H•(M g,n) ⊗ H ∗⊗n.

Theorem 5.8. If (H , η,Λg,n,1) is a G-CohFT, then (H , η,Λg,n,1) forms a CohFT.

Proof. We begin by observing that
1

deg ŝt
i∗ŝt∗ =

1

deg s̃t
′ ŝt

′
∗ î

∗, (49)

since the lower right square is not Cartesian, due to ramification over M Γ.
Next, we observe that

µ∗ŝt′∗ = p̂r∗µ̂
∗, (50)

since the lower left square is Cartesian by definition.
Therefore, for all vm in H m,

ρ∗ΓΛg,n(vm) = ρ∗Γŝt∗Λ̂g,n(vm)

= µ∗i∗ŝt∗Λ̂g,n(vm)

= µ∗
(

deg(ŝt)

deg(ŝt
′
)
ŝt

′
∗ î

∗
)

Λ̂g,n(vm)

=
deg(ŝt)

deg(ŝt
′
)
p̂r∗µ̂

∗î∗Λ̂g,n(vm)

=
deg(ŝt)

deg(ŝt
′
)
ŝt

′′
∗(r̂∗µ̂

∗î∗)Λ̂g,n(vm)

=
deg(ŝt)

deg(ŝt
′
)
ŝt

′′
∗

(
deg(ŝt

′
)

deg(ŝt
′′
)
Λ̂Γ̂cut

)

=
deg(ŝt)

deg(ŝt
′′
)
ŝt

′′
∗Λ̂Γ̂cut

,

where (37) and (39) have been used in the sixth equality.
Assume that Γ̂ is a tree. Adopting the notation from the proof of Theorem 5.5, we obtain

ρ∗ΓΛg,n(vm) =
deg(ŝt)

deg(ŝt
′′
)

∑
β[m+],β[m−]

ŝt
′′
∗(Λ̂+(eβ[m+])η̂

β[m+]β[m−]Λ̂−(eβ[m−]))

=
deg(ŝt)

deg(ŝt
′′
)

∑
β[m+],β[m−]

Λ+(eβ[m+])η̂
β[m+]β[m−]Λ−(eβ[m−]),

where Λ± := stm±∗Λ̂±. This can be rewritten as

deg(ŝt
′′
)ρ∗ΓΛg,n(vm) = deg(ŝt)

∑
β[m+],β[m−]

Λ+(eβ[m+])η̂
β[m+]β[m−]Λ−(eβ[m−]). (51)
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Following [JK02], let

Ωg,n(m) := deg(ŝt) (52)

for all m in Gn. We have

deg(ŝt
′′
) = Ωg+,n++1(mN+,m+)Ωg−,n−+1(m−,mN−),

and (51) becomes, after multiplying both sides by |C(m+)|, using the definition of η̂, and summing
over all conjugacy classes m± such that m− = m−1

+ ,∑
m±:m−=m−1

+

|C(m+)|Ωg+,n++1(mN+ ,m+)Ωg−,n−+1(m−,mN−)ρ∗ΓΛg,n(vm)

= Ωg,n(m)
∑

m±:m−=m−1
+

∑
β[m+],β[m−]

Λ+(eβ[m+])η
β[m+]β[m−]Λ−(eβ[m−]).

However, Lemma 3.5(1) from [JK02] states that∑
m±:m−=m−1

+

|C(m+)|Ωg+,n++1(mN+ ,m+)Ωg−,n−+1(m−,mN−) = Ωg,n(m).

Therefore, by canceling Ωg,n(m) from both sides, we obtain the desired result.

In the case of the loop, we have

ρ∗ΓΛg,n(vm) =
deg(ŝt)

deg(ŝt
′′
)

∑
β[m+],β[m−]

ŝt
′′
∗(Λ̂g−1,n+2(vm, eβ[m+], eβ[m−]))η̂

β[m+]β[m−]

=
deg(ŝt)

deg(ŝt
′′
)

∑
β[m+],β[m−]

Λg−1,n+2(vm, eβ[m+], eβ[m−])η̂
β[m+]β[m−].

Multiplying both sides by deg(ŝt
′′
)|C(m+)|, plugging in deg(ŝt

′′
) = Ωg−1,n+2(m,m+,m−), deg(ŝt) =

Ωg,n(m), and then summing over all conjugacy classes m± such that m− = m−1
+ , we obtain∑

m±:m−=m−1
+

|C(m+)|Ωg−1,n+2(m,m+,m−)ρ∗ΓΛg,n(vm)

= Ωg,n(m)
∑

m±:m−=m−1
+

∑
β[m+],β[m−]

Λg−1,n+2(vm, eβ[m+], eβ[m−])η
β[m+]β[m−].

Since Lemma 3.5(2) from [JK02] states that∑
m±:m−=m−1

+

|C(m+)|Ωg−1,n+2(m,m+,m−) = Ωg,n(m),

we may cancel Ωg,n(m) from both sides to obtain the desired result.

This completes the proof of the factorization axiom of the CohFT.

The invariance under the symmetric group is manifest.
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The flat identity axiom follows from considering the following commuting diagram:

M
G
g,n+1(m, 1)

τ̃ � M
G
g,n(m)

M g,n+1(BG;m, 1)

s̃t1

�
τ̂� M g,n(BG;m)

s̃t

�

M g,n+1

ŝt1

�
τ � M g,n

ŝt

�

The horizontal morphisms are forgetting-tails morphisms and are both flat and proper. The vertical
morphisms are forgetful morphisms and are all quasi-finite, flat, and proper.

By Lemma 5.1, we have

s̃t
∗
1Λ̂g,n+1(vm,1) = Λg,n+1(vm,1)

= τ̃∗Λg,n(vm)

= τ̃∗s̃t∗Λ̂g,n(vm)

= s̃t
∗
1τ̂

∗Λ̂g,n(vm).

By the uniqueness of the classes Λ̂ (again, see Lemma 5.1) we conclude that

τ̂∗Λ̂g,n(vm) = Λ̂g,n+1(vm,1). (53)

On the other hand, while the bottom square of this diagram is not Cartesian, it is almost so:
the stack M g,n+1(BG;m, 1) is the universal orbicurve over M g,n(BG;m), and it is birational to
its coarse moduli space, the universal curve over M g,n(BG;m). Thus, we have

τ∗Λg,n(vm) = τ∗ŝt∗Λ̂g,n(vm) = st1∗τ̂∗Λ̂g,n(vm) = ŝt1∗Λ̂g,n+1(vm,1) = Λg,n+1(vm,1).

The last property that must be verified is

η(vm+, vm−) = Λ0,3(vm+ , vm− ,1) (54)

for all vm± in H ±, where we have identified H•(M 0,3) with the ground ring C. Since this identity
holds trivially if m− 
= m−1

+ , let us assume that m− = m−1
+ .

We have the morphisms∐
m′

+∈m+

ξ0,3(m′
+,m

′−1
+ , 1)

s̃tξ� M 0,3(BG;m+,m
−1
+ , 1)

ŝt� M 0,3,

and we let stξ := ŝt ◦ s̃tξ. Since η is defined by

η(vm+ , vm−) =
∫

[[ξ(m+,m−,1)]]
Λ0,3(vm+ , vm− ,1)stξ∗Λ0,3(vm+ , vm− ,1),

we have

Λ0,3(vm+ , vm− ,1) = ŝt∗Λ̂0,3(vm+ , vm− ,1)

= ŝt∗

(
s̃tξ∗s̃t

∗
ξ

1
deg s̃tξ

)
Λ̂0,3(vm+ , vm− ,1)
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=
1

deg s̃tξ
ŝt∗s̃tξ∗Λ0,3(vm+ , vm− ,1)

=
1

deg s̃tξ
stξ∗Λ0,3(vm+ , vm− ,1)

=
1

deg s̃tξ
η(vm+ , vm−),

but
deg(s̃tξ) = |m+||C(m+)| = |G|,

since a generic point of M 0,3(BG;m+,m−, 1) has automorphism group isomorphic to C(m+).
Therefore, (54) is satisfied.

Remark 5.9. The CohFT (H , η, {Λg,n},1) constructed above has more structure than a generic
CohFT, as it is G-graded; that is, (H , η) is a G-graded vector space with metric, and for all vm
in H m, the class Λg,n(vm) vanishes unless there exist representatives m′

i in mi for all i = 1, . . . , n
such that

∏n
i=1m

′
i belongs to the subgroup [G,G]g . This follows from the fact that M g,n(BG;m)

is empty unless this holonomy condition holds.

Proposition 5.10. Let (H , η, {Λg,n},1) be a G-CohFT. For all nonzero λ in C, (H , λ−2η,
{λ2g−2Λg,n},1) is a G-CohFT.

The proof is immediate from the definition.

Remark 5.11. One can eliminate the annoying factor of 1/|G| in the definition of η by choosing
λ such that λ2 = 1/|G|. In this case, the associated ‘quotient’ by G of the G-CohFT (H , |G|η,
{|G|1−gΛg,n},1) is the CohFT (H , |G|η, {|G|1−gΛg,n},1), but |G|η is equal to the restriction of η
to H .

5.3 Coinvariants of G-Frobenius algebras
Let ((H , ρ), ·,1, η) be a G-Frobenius algebra. We now have two ways to endow its space of coin-
variants H with the structure of a Frobenius algebra. The first is purely algebraic. The tuple
(H , ·,1, η) is a Frobenius algebra where the multiplication on H is inherited by restriction from
the multiplication on H and the metric η is the restriction of the metric on H .

The second is to apply the geometric procedure described in the previous section to H , regarded
as a G-CohFT, to induce the structure of a Frobenius algebra on H . It turns out that these two
Frobenius structures are identical after a rescaling.

In order to simplify the proof, we note that the structure of the G-Frobenius algebra ((H , ρ), ·,
1, η) can also be described as the tuple ((H , ρ), µ,1), where µ belongs to H ∗⊗3 and is defined by

µ(vm1 , vm2 , vm3) := η(vm1 , vm2 · vm3), (55)

since it follows that η(vm1 , vm2) = η(vm1 , vm2 · 1). If µ̃ denotes the restriction of µ to H , then the
data (H , µ̃,1) is an equivalent description of the Frobenius algebra structure on H induced by
restriction.

Proposition 5.12. Let ((H , ρ), µ,1) be a G-Frobenius algebra arising from a G-CohFT (H , η,
{Λg,n},1). The Frobenius algebra structure on H arising from the CohFT (H , η, {Λg,n},1) is
(H , µ,1), where µ = (1/|G|)µ̃, and µ̃ is the restriction of µ to H .

Remark 5.13. The Frobenius algebra (H , µ,1) can also be described as the tuple (H , ·, η,1), where
the multiplication · on H is inherited from the multiplication on H , but where η is the restriction
of (1/|G|)η to H .
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Proof of Proposition 5.12. Since µ(vm) = Λ0,3(vm), after identifying H•(M 0,3) with C, we need
only prove that Λ0,3(vm) = (1/|G|)µ(vm) for all vm in H m. In order to proceed, let us introduce
some notation.

For all m := (m1,m2,m3) belonging to G3 such that m1m2m3 = 1, we have the following
forgetful morphisms

M
G
0,3(m)

s̃t� M 0,3(BG;m)
ŝt� M 0,3,

and we let st := ŝt ◦ s̃t.
Furthermore, if Q is a substack of M

G
0,3(m) then we let s̃tQ denote the restriction of s̃t to Q.

Let ξ :=
∐

m′∈χ(m) ξ(m
′), where χ(m) := {(m′

1,m
′
2,m

′
3) ∈ m | m′

1m
′
2m

′
3 = 1}. Henceforth, fix an

element m in χ(m) once and for all.
Let us adopt the notation that for any vm in H m, and for any m′ ∈ m, the vector vm′ denotes

the m′-graded component of vm; that is, vm =:
∑

m′∈m vm′ . Note that vm′ belongs to the subspace
of C(m′)-invariant vectors in Hm′ , where C(m′) := C(m′

1) × C(m′
2) × C(m′

3).
For all m′ in χ(m), we have µ(v′m) = (1/deg(stξ(m′)))stξ(m′)∗Λ0,3(v′m). Otherwise, µ(v′m) = 0.

Since µ̃ is the restriction of µ to H ,

µ̃(vm) =
∑

m′∈χ(m)

1
deg(stξ(m′))

stξ(m′)∗Λ0,3(vm′)

=
1

deg(stξ(m))

∑
m′∈χ(m)

stξ(m′)∗Λ0,3(vm′)

=
1

deg(stξ(m))
stξ∗Λ0,3(vm),

where the second equality comes from the fact that the degree of st restricted to any connected
component of M

G
0,3(m) is independent of the choice of connected component. This statement follows

from the fact that every connected component of M
G
0,3(m) is ρ(γ)ξ(m) for some γ in G3, but ρ(γ)

is an isomorphism.
However, we have

stξ∗Λ0,3(vm) =
∑

m′∈χ(m)

stξ(m′)∗Λ0,3(vm′)

= |χ(m)|stξ(m)∗Λ0,3(vm)

= |G|Ω0,3(m)stξ(m)∗Λ0,3(vm),

where the second equality follows from the observation that every connected component of ξ can be
obtained by the action of some element of G3, and the fact that vm and Λ0,3 are G3-invariant. The
third equality is from Proposition 3.4 of [JK02], where Ω0,3 is defined in (52). Therefore, we obtain

µ̃(vm) =
|G|Ω0,3(m)
deg(stξ(m))

stξ(m)∗Λ0,3(vm). (56)

On the other hand, the definition of Λ̂0,3 implies that Λ̂0,3(vm) = (1/deg(s̃t))s̃t∗Λ0,3(vm), hence

Λ0,3(vm) = ŝt∗Λ̂0,3(vm)

=
1

deg(s̃t)
ŝt∗s̃t∗Λ0,3(vm),

and we obtain

Λ0,3(vm) =
1

deg(s̃t)
st∗Λ0,3(vm). (57)
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Using the fact that deg(stQ) is independent of the choice of connected component Q of M
G
0,3(m),

we can write
deg(s̃t) = A(m) deg(s̃tξ(m)), (58)

where A(m) is the number of connected components of M
G
0,3(m). Similarly, let I(m) consist of

all elements γ in G3 such that the collection {ρ(γ)ξ(m)} is in one-to-one correspondence with the
connected components of M

G
0,3(m), then

st∗Λ0,3(vm) =
∑
γ∈I(m)

stρ(γ)ξ(m)∗Λ0,3(vρ(γ)m)

=
∑
γ∈I(m)

stξ(m)∗ρ(γ−1)∗Λ0,3(vρ(γ)m)

=
∑
γ∈I(m)

stξ(m)∗ρ(γ)∗Λ0,3(vρ(γ)m)

=
∑
γ∈I(m)

stξ(m)∗Λ0,3(ρ(γ−1)vρ(γ)m)

=
∑
γ∈I(m)

stξ(m)∗Λ0,3(vm)

= A(m)stξ(m)∗Λ0,3(vm), (59)

where the first equality is the sum over contributions from each connected components of M
G
0,3(m),

and the second is from the fact that, for all γ in G3, we have

stξ(m) = stρ(γ)ξ(m) ◦ ρ(γ). (60)

The fourth equality is from the G3-invariance of Λ0,3 and the fifth is from the G3-invariance of vm.
Putting together (57), (58) and (59), we obtain

Λ0,3(vm) =
1

deg(s̃tξ(m))
stξ(m)∗Λ0,3(vm)

=
Ω0,3(m)

deg(stξ(m))
stξ(m)∗Λ0,3(vm),

since
deg(stξ(m)) = deg(s̃tξ(m)) deg(ŝt) = deg(s̃tξ(m))Ω0,3(m).

However,

st∗Λ0,3(vm) =
∑

m′∈χ(m)

stξ(m′)∗Λ0,3(vm′)

= |χ(m)|stξ(m)∗Λ0,3(vm)

= |G|Ω0,3(m)stξ(m)∗Λ0,3(vm).

Putting this all together, we obtain the desired result

Λ0,3(vm) =
Ω0,3(m)

deg(stξ(m))
1

|G|Ω0,3(m)
stξ∗Λ0,3(vm)

=
1
|G| µ̃(vm).

The results of this section can be applied to the example of the group ring G-CohFT and its
associated G-Frobenius algebra to yield the (stringy) orbifold cohomology of a point with trivial
G-action.
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Proposition 5.14. The Frobenius algebra H induced from the G-Frobenius algebra H = C[G]
is the Frobenius algebra Z(C[G]), the center of the group ring, with its induced multiplication,
identity, and the metric η.

The resulting Frobenius algebra is isomorphic to the orbifold (stringy) quantum cohomology of
BG, the classifying stack of G.

We refer the reader to [JK02] where the calculation is worked through in detail.

5.4 The quotient stack [M
G
g,n/Gn]

The process of obtaining a CohFT from aG-CohFT involved the stack M g,n(BG). However, there is
another stack that one could have used instead, namely, the quotient stack Qg,n := [M

G
g,n/G

n] and

its substacks Qg,n(m) := [MG
g,n(m)/Gn]. We show that one can construct a CohFT by replacing

M g,n(BG) by Qg,n(m) := [M
G
g,n(m)/Gn], but that the resulting CohFT is isomorphic to the

original one.
We have the following sequence of forgetful morphisms

M
G
g,n(m)

št′� Qg,n(m)
št� M g,n(BG;m)

ŝt� M g,n, (61)

where s̃t := št ◦ št′. The stack Q is a smooth, Deligne–Mumford stack, and all of these morphisms
are proper and flat. Observe that while the morphism št induces an isomorphism at the level of the
corresponding coarse moduli spaces, they are not isomorphic as stacks, since an object in Qg,n(m)
has a larger automorphism group than the corresponding object in M g,n(BG;m).

Definition 5.15. Let ((H , ρ), η, {Λg,n},1) be a G-CohFT. Define the elements Λ̌g,n in
⊕

m∈Gn

H•(Qg,n(m)) ⊗ H
∗
m via

Λ̌g,n(vm) := št∗Λ̂g,n(vm) (62)

for all vm in H m and m in Gn. Define Λ′
g,n in H•(M g,n)⊗H

∗
m via Λ′

g,n(vm) := (ŝt ◦ št)∗Λ̌g,n(vm).
Let η′(vm+ , vm−) := Λ′

0,3(vm+, vm− ,1) for all vm± in H m± .

Proposition 5.16. Let ((H , ρ), η, {Λg,n},1) be a G-CohFT.

(i) We have the identity Λg,n(vm) = št′∗Λ̌g,n(vm).

(ii) We also have Λ′
g,n(vm) := (

∏n
i=1 1/kmi)Λg,n(vm), where km is the order of the cyclic subgroup

generated by any representative of m in G.

(iii) (H , η′, {Λ′
g,n},1) is a CohFT.

(iv) The linear map φ : H � H , where φ(vm) := kmvm for all vm in H m and m in G, is an

isomorphism between the CohFTs (H , η, {Λg,n},1) and (H , η′, {Λ′
g,n},1).

Proof. Since št′∗Λ̌g,n(vm) = s̃t
∗
Λ̂g,n(vm) = št′∗št∗Λg,n(vm), we obtain Λg,n(vm) = št′∗Λ̌g,n(vm). For

the second part, apply št∗ to both sides of (62) and use the fact that deg(št) =
∏n
i=1 1/kmi to get

št∗Λ̌g,n(vm) = (
∏n
i=1 1/kmi)Λ̂g,n(vm). Thus, Λ̂g,n(vm) = (

∏n
i=1 kmi)št∗Λ̌g,n(vm). However,

Λg,n(vm) = ŝt∗Λ̂g,n(vm)

=
( n∏
i=1

kmi

)
ŝt∗št∗Λ̌g,n(vm)

=
( n∏
i=1

kmi

)
Λ′
g,n(vm).

This establishes the second part of the proposition.
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Clearly, φ∗Λ′
g,n = Λg,n, φ∗η′ = η, and φ(1) = 1. Since (H , η, {Λg,n},1) is a CohFT, so is

(H , η′, {Λ′
g,n},1), and φ is an isomorphism.

Remark 5.17. A similar rescaling was observed in [AGV02], and the previous proposition could be
regarded as its origin in the framework of G-CohFTs.

6. G-stable maps

In this section we briefly describe the main source of examples of G-CohFTs; namely, Gromov–
Witten style classes on the moduli space of G-stable maps.

Definition 6.1. A genus g, n-pointed G-stable map over a base T into a global quotient [X/G]
is a G-equivariant morphism f : E � X from an admissible G-cover π : E � C of a genus
g prestable curve C/T with n sections p̃i : T � E such that the induced morphism of stacks
f̄ : [E/G] � [X/G] with marked points pi := π ◦ p̃i is an n-pointed orbifold (also known as
twisted) stable map of genus g (as defined in [CR04, AGV02]).

We denote the stack of genus g, n-pointed G-stable maps by M
G
g,n(X), and if β ∈ H2(X/G,Z),

then we denote the substack of maps whose image lies in the homology class β by M
G
g,n(X,β).

Theorem 6.2. If the quotient [X/G] admits a projective coarse moduli space X/G, then the stack

M
G
g,n(X,β) is a proper Deligne–Mumford stack, which itself admits a projective coarse moduli

space.

The proof follows from the results of [AGV02] in essentially the same way that Theorem 2.4
follows from the results of [ACV03].

There is a natural forgetful morphism st(X,β) : M
G
g,n(X,β) � M

G
g,n obtained by forgetting

the morphism f and contracting components in a manner similar to that described in the definition
of the forgetting tails morphism of § 2. There are also natural evaluation morphisms evi from
M

G
g,n(X,β) to the inertia variety of X,

X̂ := {(x, g) | x ∈ X, g ∈ stab(x)} =
∐
g∈G

Xg ⊆ X ×G,

with evi((f : E � X, p̃i)) = (f(p̃i),mi), where mi is the monodromy of E around p̃i and Xg is
the fixed point locus in X of the subgroup 〈g〉 ⊆ G. These are compatible in the sense that the
following diagram commutes

M
G
g,n(X,β)

evi � X̂

M
G
g,n

st(X,β)

�
evi � G

pr2

�

where the map pr2 is the projection onto the second factor and the lower map evi is the ith
component of the map e of Definition 2.3.

Definition 6.3. We denote by M
G
g,n(X,β,m) the component st(X,β)

−1(MG
g,n(m)) that maps to

m ∈ Gn via e ◦ st(X,β).

Definition 6.4. Let H (X) := H2•(X̂ ; Θ) =
⊕

m∈GH (X)m, where H (X)m := H2•(Xm; Θ),
and Θ is the usual ring (see [Man99]) associated to X with generators {qβ} over C, satisfying
qβ+β′

= qβqβ
′
.
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Remark 6.5. Of course, one could allow odd-dimensional cohomology classes as well, after inserting
the necessary signs for skew-symmetry, but for simplicity we will work only with even-dimensional
classes.

In a subsequent paper, we will describe the details of how the classes

ΛG,Xg,n (v1, . . . , vn) :=
∑
β

st(X,β)∗

( n∏
i=1

ev∗i (vi) ∩ [MG
g,n(X)]vir

)
qβ

form a G-CohFT, and how the CohFT of coinvariants of {ΛG,Xg,n } agrees with the orbifold Gromov–
Witten classes of Chen–Ruan [CR02].

In the remainder of this section we will briefly treat two special cases. In § 6.1 we describe the
case of β = 0, and show that it gives the ring H•(X,G) of Fantechi and Göttsche, and therefore
the stringy orbifold cohomology of Chen and Ruan, as special cases. In § 6.2 we describe the
G-CohFT {ΛG,Xg,n } for all β in the case that G acts trivially on X.

6.1 The degree zero case, the Fantechi–Göttsche ring, and Chen–Ruan orbifold
cohomology

We now study the case of degree-zero G-stable maps in more detail. We explicitly prove that the
degree-zero G-stable maps endow H (X) with the structure of a G-Frobenius algebra, the genus-zero
part of which agrees with the ring H•(X,G) in [FG03].

Throughout this section, we will use the ground ring C instead of Θ in the definition of H (X),
since we are restricting to degree-zero maps. We also assume that X is a smooth variety with
projective coarse moduli space, unless otherwise stated.

Definition 6.6. Let s̃tX : M
G
g,n(X, 0,m) � M

G
g,n(m) denote the morphism st(X,β=0). We

define ξ(X, 0,m) := s̃t
−1
X (ξ(m)). Similarly, if m,a, b ∈ G are chosen such that m ∈ [a, b], we let

ξ1,1(X, 0, (m,a, b)) := s̃t
−1
X (ξ1,1(m,a, b)).

We also define X〈m〉 to be the locus in X of points fixed by the subgroup 〈m〉 � G generated
by all of the elements m1, . . . ,mn in m.

Since the marked points p̃i in the universal G-cover E over ξ(m) all lie in the same connected
component of E , it is straightforward to see that any G-stable map f into X of degree 0 that maps
by s̃tX to ξ(m) is determined only by the underlying G-cover (the point s̃tX([E → C] ∈ ξ(m)) and
by the point f(p̃1) = · · · = f(p̃n). Moreover, the point f(p̃i) must have a stabilizer that includes
the monodromy element mi, so the following proposition is now easy to see.

Lemma 6.7. The substack ξ(X, 0,m) of M
G
0,3(X, 0,m) is canonically isomorphic to the product

ξ(X, 0,m) = ξ(m) × X〈m〉, and the substack ξ1,1(X, 0, (m,a, b)) is canonically isomorphic to the
product ξ1,1(X, 0, (m,a, b)) = ξ1,1(m,a, b) ×X〈m,a,b〉.

Proof. For an object in M
G
0,3(X, 0,m), the isomorphism is given by the morphism (E

f� X〈m〉;
p̃1, . . . , p̃n) �→ (E; p̃1, . . . , p̃n) × f(p̃1), where E is the G-cover (we have suppressed the under-
lying curve C since it is determined by E), and its inverse is given by (E; p̃1, . . . , p̃n) × q �→
(E

f� X〈m〉; p̃1, . . . , p̃n), where if E′ is the connected component of E containing the marked
points p̃1, . . . , p̃n, then f(E′) := q and f(ρ(γ)p̃′) := ρ(γ)f(p̃′) for all γ in G and p̃′ in E′. The maps
for ξ1,1(X, 0, (m,a, b)) are similar.
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6.1.1 The minimal cover ξ′(m)

Definition 6.8. Let G be a finite group and fix m in Gn such that
∏3
i=1mi = 1, and let G′ := 〈m〉

denote the subgroup of G generated by the components of m. Let ξ′(m) denote the connected
component of M

G′
0,3(m) which is defined in the same way as ξ(m) but with the group G replaced

by G′.

Lemma 6.9. Let G be a finite group m ∈ G3 with
∏3
i=1mi = 1, and G′ = 〈m〉. Consider the

morphism Î : ξ(m) � ξ′(m) taking the object (E � C; p̃1, . . . , p̃n) to the object (E′ � C;
p̃1, . . . , p̃n), where E′ is the connected component of E which contains p̃i for all i = 1, . . . , n. The
morphism Î is an isomorphism.

Proof. Since E′ is a G′-cover (see [FG03, Appendix]), Î is a morphism.
The inverse morphism takes (E′ � C; p̃′1, . . . , p̃′n) to (E � C; p̃1, . . . , p̃n), where E =

E′×G′ G and G′ acts on E from the right in the usual way, G′ acts on G by left multiplication, and
p̃i := [p̃′i, 1] for all i = 1, . . . , n.

Consider the following commutative diagram

X

E ′ ×X〈m〉 Ĩ �

f
′

�

E ×X〈m〉

�

f

C ′ ×Xm

�

C ×Xm

�

ξ′(m) ×X〈m〉

π̃′

�
I �

�

ξ(m) ×X〈m〉

π̃

��

ξ′(m)

prξ′

�
Î � ξ(m)

prξ

�

(63)

where Ĩ and I are the isomorphisms induced by Î, C ′ and C are the universal curves, E ′ and E are
the universal G′ and G covers, respectively, and f , f ′ are the universal stable maps.

Proposition 6.10. We have I∗Rπ̃G∗ (f∗TX) is canonically isomorphic to Rπ̃′G′
∗ (f ′∗(TX)) in the

K-theory of ξ′(m) × X〈m〉, where Rπ̃G∗ denotes the G-invariant derived push-forward, and Rπ̃′G′
∗

denotes the G′-invariant derived push-forward.

Proof. The fiber of I∗Rπ̃G∗ (f∗TX) over ξ′(m)× q for all q in X〈m〉 is H•(E × q,T ), where the sheaf
T over E ×q is f∗(TX). Since E ′ is the connected component of E containing p̃i for all i = 1, . . . , n,
we have T |p̃×q = TqX for all p̃ in E ′. Henceforth, let us regard T as a bundle over E to avoid
notational clutter.
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Observe that T is a G-equivariant trivial bundle on E . Denote the restriction of T to E ′ by T ′

and observe that it is a G′-equivariant bundle. We now construct a bundle from T ′ on E ′ which is
isomorphic as a G-equivariant bundle to T on E as follows.

Consider the bundle T ′ ⊗OG on E ′ ×G. We observe that E ′ is a right G′-space and G is a left
G-space by left multiplication. Similarly, there is a right G′ action on T ′ and a left G′-action on
OG. Therefore, T ′ ⊗ OG over E ′ × G is a G′-equivariant bundle with respect to the diagonal G′

action. Quotienting by G′ and using the identification of OG with C[G], we obtain T ′ ⊗C[G′] C[G]
over E ′×G′G, which is a G-equivariant bundle, where an element γ̃ in G acts upon an element of the
base as [e′, γ] �→ [e′, γγ̃], and similarly in the bundle. We now have the isomorphism of G-equivariant
vector bundles

T ′ ⊗C[G′] C[G]
λ̃ � T

E ′ ×G′ G
�

λ � E
�

where λ̃([v′, γ]) := ρ(γ)v′, and λ([e′, γ]) := ρ(γ)v′, and where ρ(γ) indicates the right G action.
Therefore,

H•(E ,T ) = H•(E ′ ×G′ G,T ′ ⊗C[G′] OG)

= H•(E ′ ×G,T ′ ⊗ C[G])G
′

= (H•(E ′,T ′) ⊗H•(G,OG))G
′

= (H•(E ′,T ′) ⊗ C[G])G
′

= H•(E ′,T ′) ⊗C[G′] C[G].

Taking G-invariants, we have

H•(E ,T )G = (H•(E ′,T ′) ⊗C[G′] C[G])G ∼= H•(E ′,T ′)G
′
.

The latter is precisely the fiber of Rπ̃′G′
∗ (f ′∗(TX)) over ξ′(m) × q.

Proposition 6.11. When β = 0, the sheaf R1π̃G∗ (f∗TX) is locally free on ξ(m)×X〈m〉 = ξ(X, 0,m)
and the virtual fundamental class of ξ(X, 0,m) is simply the top Chern class ctop(R1π̃G∗ (f∗TX)).

Proof. This follows immediately from the construction of M
G
g,n(X) as a fibered product of sections

over M g,n([X/G]), the stack of orbifold stable maps to [X/G], and the fact that the proposition
holds there (see, e.g., [AGV02]).

Definition 6.12. Let c(m) := ctop(R1π̃G∗ (f∗TX)) and c′(m) := ctop(R1π̃′G′
∗ (f ′∗TX)), where ctop

denotes the top Chern class.

Corollary 6.13. For all m in G3 such that
∏3
i=1mi = 1, we have

I∗c(m) = c′(m). (64)

We now prove that the three-point correlator responsible for the multiplication in the
G-Frobenius algebra can be identified by the isomorphism in Lemma 6.7.

Proposition 6.14. For all m in G3 such that
∏3
i=1mi = 1 and αmi in H•(Xmi), let Λξ

′
0,3(αm) in

H•(ξ′(m)) and Λξ0,3(αm) in H•(ξ′(m)) be given by

Λξ
′

0,3(αm) := prξ′∗

( 3∏
i=1

(ev′∗mi
αmi)

)
∪ c′(m))
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and

Λξ0,3(αm) := prξ∗

(( 3∏
i=1

(ev∗mi
αmi)

)
∪ c(m)

)
.

We have

Î∗Λξ0,3(αm) = Λξ
′

0,3(αm),

where evmi : ξ(V, 0,m) � Xmi and ev′mi
: ξ′(m)×X〈m〉 � Xmi are the evaluation morphisms,

and prξ′ : ξ′(m) ×X〈m〉 � ξ′(m) and prξ : ξ(m) ×X〈m〉 � ξ(m) are the projections, which
can be identified with the morphism forgetting the G-stable maps.

Proof.

Î∗Λξ0,3(αm) = Î∗prξ∗

(( 3∏
i=1

(ev∗mi
αmi)

)
∪ c(m)

)

= Î−1
∗ prξ∗

(( 3∏
i=1

(ev∗mi
αmi)

)
∪ c(m)

)

= ((Î−1 ◦ prξ)∗
(( 3∏

i=1

(ev∗mi
αmi)

)
∪ c(m)

)

= (prξ′ ◦ I−1)∗
(( 3∏

i=1

(ev∗mi
αmi)

)
∪ c(m)

)

= prξ′∗I
∗
(( 3∏

i=1

(ev∗mi
αmi)

)
∪ c(m)

)

= prξ′∗

(( 3∏
i=1

((evmi ◦ I)∗αmi)
)
∪ I∗c(m)

)

= prξ′∗

(( 3∏
i=1

((evmi ◦ I)∗αmi)
)
∪ I∗c(m)

)

= prξ′∗

(( 3∏
i=1

(ev′∗mi
αmi)

)
∪ c′(m)

)
= Λξ

′
0,3(αm),

where we have used (64) in the penultimate equality.

Corollary 6.15. For all m in G3 such that
∏3
i=1mi = 1, and for αmi in H (X)mi = H•(Xmi),

we have

µ(αm) =
∫

[[ξ(m)]]
Λξ0,3(αm) =

∫
[[ξ′(m)]]

Λξ
′

0,3(αm),

where µ is defined as in (55).

The multiplication and metric are completely determined by µ. We now prove that it yields a
G-Frobenius algebra.

6.1.2 The genus-zero part of the G-Frobenius algebra. For this section, we can assume, without
loss of generality, that G′ = G in light of the results of the previous section.
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Definition 6.16. Since the virtual fundamental class c(m) belongs to H•(ξ(m) × X〈m〉) ∼=
H•(ξ(m)) ⊗H•(X〈m〉), define c̃(m) in H•(X〈m〉) to be the unique class such that c(m) = 1ξ(m) ⊗
c̃(m), where 1ξ(m) is the unit in H•(ξ(m)).

We now write µ(vm) as an integral over X〈m〉.

Proposition 6.17. For all vm in H (X)m where
∏3
i=1mi = 1, we have

µ(vm) =
∫

[X〈m〉]

( 3∏
i=1

j∗mi
vmi

)
∪ c̃(m), (65)

where jmi : X〈m〉 ⊂ � Xmi is the inclusion and [X〈m〉] is the fundamental class of the variety X〈m〉.
In particular, when mi = 1 for all i = 1, 2, 3, then c̃(1, 1, 1) = 1, the unit in H•(X). The restriction
of the multiplication and metric to the untwisted sector H (X)1 agree with the usual cup product
and metric from H•(X). Furthermore, (H (X), µ,1) is isomorphic as a G-graded Frobenius algebra
to the Chen–Ruan orbifold cohomology of [X/G].

Proof. The first statement is a straightforward calculation. The second follows from the observation
that the appropriate obstruction bundle vanishes when m1 = m2 = m3 = 1. The third follows from
the following remark and [FG03, § 2].

Remark 6.18. The vector bundle R1π̃G∗ (f∗TX) � ξ(m) ×X〈m〉 is not the pullback of a vector
bundle via the projection ξ(m) ×X〈m〉 � X〈m〉 because the automorphism group of a G-cover
(which is isomorphic to H(m)) in ξ(m) acts nontrivially on R1π̃G∗ (f∗TX) � ξ(m) as the action
of the automorphism group commutes with the action of G. Nevertheless, one can interpret the
bundle R1π̃G∗ (f∗TX) � ξ(m) × X〈m〉 as an H(m)-equivariant vector bundle R1π̃G∗ (f∗TX)

� X〈m〉. This bundle can be identified with the bundle F (m1,m2) � X〈m〉 introduced in
[FG03]. Therefore, their cohomology class c(m1,m2) can be identified with c̃(m), which is a class
on X〈m〉, so (65) is consistent with their multiplication.

They also prove that the vector bundle F (m1,m2) restricted to a connected component U of
X〈m〉 has rank a(m1, U) + a(m2, U)− a(m1m2, U)− codim(U ⊆ Xm1m2). To explain this notation,
let X have dimension D, q belong to X, and m belong to the isotropy subgroup of G at q. Denote the
set of eigenvalues of the action of m on TqX by {exp(−2πir1), . . . , exp(−2πirD)} for all j = 1, . . . ,D
where rj belongs to the interval [0, 1). The age of m in q, a(m, q), is defined to be

∑D
j=1 rj . Since

a(m, q) depends only upon the connected component containing q, a(m,U) is defined to be a(m, q)
for any q in U .

Proposition 6.19. The triple (H (X), µ,1) satisfies all of the axioms of a G-Frobenius algebra
except, perhaps, for the trace axiom. Our multiplication, metric, and identity agrees with that [FG03]
on the ring H•(X,G). Furthermore, η on H (X) has nonzero homogeneous components H (X)m+ ⊗
H (X)m−

� C only if m+m− = 1, in which case H (X)m+ = H (X)m− = H•(Xm+ ,C), and η
agrees with the usual Poincaré pairing.

Proof. This result follows from the previous remark and [FG03].

Remark 6.20. Proposition 5.12 explains the origin of the factor of 1/|G| in the definition of η from
the viewpoint of intersection theory. This factor may be removed, if desired, as per Remark 5.11.

6.1.3 The trace axiom. We now prove that the trace axiom, which is a genus-one condition,
holds for (H (X), µ,1) = H•(X,G).

Proposition 6.21. The trace axiom (Definition 4.13(xi)) holds for the triple (H (X), µ,1).
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Proof. The proof of the trace axiom in Theorem 4.16 shows that it suffices for us to check that the
cutting loops property (Definition 4.1(v(a))) holds in the special cases of ρa : ξ(m1, bab

−1, a−1) �

ξ1,1(m1, a, b) and ρb : ξ(m1, b, ab
−1a−1) � ξ1,1(m1, a, b) for the virtual class. We may assume that

G = 〈m,a, b〉, and we denote by m′ the triple (m, bab−1, b−1). Let H denote the subgroup 〈m′〉, so
that ξ(X, 0,m′) = ξ(m′)×XH and ξ1,1(X, 0, (m,a, b)) = ξ1,1(m,a, b)×XG. It suffices to check that

j∗ctop(R1�G
∗ f

′∗TX) ∪ eα ∪ eβηαβ = (ρa × 1)∗ctop(R1πG∗ f
∗TX)

(and the same for ρb), where eα runs over a basis of the Chow ring A∗(Xa) and eβ runs over a basis
for A∗(Xa−1

), and where the morphisms are those of the following diagram.

X

E′ ×X〈m,bab−1,a−1〉 � j̃

f
′

�

E′ ×X〈m,a,b〉

E ×X〈m,a,b〉

φ

�
ρ̃a � E ×X〈m,a,b〉

�

f

ξ(m, bab−1, a−1) ×X〈m,bab−1,a−1〉

�

�
�j ξ(m, bab−1, a−1) ×X〈m,a,b〉

π̃

�
ρa×1� ξ1,1(m,a, b) ×X〈m,a,b〉

π

�

(66)

Here f and f ′ are the universal stable maps from the universal admissible covers E × XG and
E′×XH , respectively. The map j is the obvious inclusion j : ξ(m′)×XG � ξ(m′)×XH , and the
spaces E × XG and E′ × XG are, respectively, the restrictions of the universal admissible covers
E ×XG and E′ ×XH to ξ(m′)×XG. Finally, φ is the composition of ρ2(b) with the normalization
taking the ‘unglued’ admissible cover E′×XG of the three-pointed sphere to the (‘glued’) admissible
cover E ×XG of a nodal genus-one curve.

Since ρa is the composition of a regular embedding and a flat morphism, and j is a regular
embedding, we have

j∗ctop(R1�G
∗ f

′∗TX) = ctop(R1(π̃ ◦ φ)G∗ j̃
∗f ′∗TX)

= ctop(R1π̃G∗ φ∗j̃
∗f ′∗TX),

and

(ρa × 1)∗ctop(R1πG∗ f
∗TX) = ctop(R1π̃G∗ ρ̃

∗
af

∗TX)

= ctop(R1π̃G∗ φ∗j̃
∗f ′∗TX).

We have an obvious short exact sequence on E ×X〈m,a,b〉:

0 → ρ̃∗af
∗TX → φ∗j̃∗f ′

∗
TX → (φ∗j̃∗f ′

∗
TX)/(ρ̃∗af

∗TX) → 0 (67)

Since φ is the normalization of the nodal curve E, obtained by translating a point with mono-
dromy bab−1 by b and then gluing to a point with monodromy a−1, it follows that the quo-
tient (φ∗j̃∗f ′

∗TX)/(ρ̃∗af∗TX) is only supported on the nodal locus, and that the push-forward
π̃G∗ ((φ∗j̃∗f ′∗TX)/(ρ̃∗af∗TX)) is equal (in K-theory) to T (Xbab−1 ×Xa−1

)/TXa|XG
∼= TXa|XG .
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By the long exact cohomology sequence associated to this short exact sequence, we get the
K-theoretic equality

R1π̃G∗ ρ̃
∗
af

∗TX = R1π̃G∗ φ∗j̃
∗f ′∗TX ⊕ π̃G∗ ((φ∗ j̃∗f ′

∗
TX)/(ρ̃∗af

∗TX)) � π̃G∗ φ∗j̃
∗f ′∗TX ⊕ π̃G∗ ρ̃

∗
af

∗TX
(68)

= R1π̃G∗ φ∗j̃
∗f ′∗TX ⊕ TXa|XG � π̃G∗ φ∗j̃

∗f ′∗TX ⊕ π̃G∗ ρ̃
∗
af

∗TX (69)

Furthermore, since H0(E,OE) is isomorphic to the trivial G-module C, and H0(E′,OE′) is
isomorphic to the G-module C[H\G], we have

π̃G∗ ρ̃
∗
af

∗TX ∼= TXG, (70)

and
π̃G∗ φ∗j̃

∗f ′∗TX ∼= TXH |XG . (71)
That is to say,

R1π̃G∗ ρ̃
∗
af

∗TX = R1π̃G∗ φ∗j̃
∗f ′∗TX ⊕ E, (72)

where E is the excess intersection bundle of the diagram

ξ(m′) ×XG j � ξ(m′) ×XH

Xa

q

�
∆ � Xbab−1 ×Xa−1

δ

�

(73)

where the map q is the composition of the obvious inclusion followed by the second projection
ξ(m′) ×XG � ξ(m′) ×Xa � Xa, the map ∆ is the composition of the diagonal followed by
the action ρ(b) in the first factor and inversion in the second: Xa � Xa×Xa � Xbab−1 ×Xa−1

,
and the map δ is the product of the evaluation maps: δ = ev2 × ev3.

The excess intersection formula now gives that

ctop(R1π̃G∗ ρ̃
∗
af

∗TX) = ctop(R1π̃G∗ φ∗j̃
∗f ′∗TX) ∪ j∗δ∗∆∗1, (74)

and it is straightforward to see that this last term is the desired sum eα ∪ eβηαβ .
Remark 6.22. Finally, we note that the G-Frobenius algebra (H (X), µ,1) enjoys some functoriality
properties, as Fantechi–Göttsche have showed that it pulls back along étale maps [FG03, p. 11].

6.1.4 Tensor products. We now work out the tensor products of the equivariant CohFTs de-
scribed above and show that they reduce to the obvious notions of tensor products for G-Frobenius
algebras.

Proposition 6.23. Let X ′ be a smooth, projective variety with a G′-action and let ((H (X ′), ρ′),
µ′,1′) be the G′-Frobenius algebra associated to contributions from maps of degree zero where µ′

is defined by (55). Let X ′′ be a smooth, projective variety with a G′′-action and let ((H (X ′′), ρ′′),
µ′′,1′′) be its similarly associated G′′-Frobenius algebra.

(i) Consider X ′×X ′′ with its G′×G′′ action. The associated G′×G′′-Frobenius algebra ((H (X ′×
X ′′), ρ), µ,1) is canonically isomorphic to the external tensor product of ((H (X ′), ρ′), µ′,1′)
and ((H (X ′′), ρ′′), µ′′,1′′).

(ii) Suppose that G′ = G′′ = G, and consider X ′ ×X ′′ with its diagonal G action. Its associated
G-Frobenius algebra ((H (X ′ ×X ′′), ρ), µ,1) is canonically isomorphic to the tensor product
of ((H (X ′), ρ′), µ′,1′) and ((H (X ′′), ρ′′), µ′′,1′′).
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Proof. To prove the first part, we need to understand the behavior of the obstruction bundle when
g = 0, n = 3, and β = 0.

For all m′ in G′n and m′′ in G′′n, consider the substack ξG
′×G′′

(m′×m′′) of M
G′×G′′
0,3 (m′×m′′),

where we adopt the notation m′×m′′ from Proposition 4.6. Since M 0,3 is a point, ξG
′×G′′

(m′×m′′)
is canonically isomorphic to ξG

′
(m′)×ξG′′

(m′′). Similarly, ξG
′×G′′

(X ′×X ′′, 0,m′×m′′) is canonically
isomorphic to ξG

′
(m′) ×X ′〈m′〉 × ξG

′′
(m′′) ×X ′′〈m′′〉. Thus, we have

X ′ ×X ′′ �f
′×f ′′

E ′ ×X ′〈m′〉 × E ′′ ×X ′′〈m′′〉 π̃′×π̃′′
� ξG

′
(m′) ×X ′〈m′〉 × ξG

′′
(m′′) ×X ′′〈m′′〉,

where E ′ and E ′′ are the universal curves, and f ′ and f ′′ are universal evaluation morphisms. It is
easy to see that there is a canonical isomorphism

R•(π̃′ × π̃′′)G
′×G′′

∗ (f ′ × f ′′)∗(T (X ′ ×X ′′)) ∼= R•π̃′′G
′

∗ (f ′∗(TX ′)) ⊕R•π̃′′G
′′

∗ (f ′′∗(TX ′′)).

By multiplicativity of the top Chern class, we obtain

c(m′ × m′′) = c′(m′) ⊗ c′′(m′′), (75)

where c(m′×m′′) is the virtual fundamental class of ξG
′×G′′

(X ′×X ′′, 0,m′×m′′) ∼= ξG
′
(X ′, 0,m′)×

ξG
′′
(X ′′, 0,m′′), c′(m′) is the virtual fundamental class of ξG

′
(X ′, 0,m′), and c′′(m′′) is the virtual

fundamental class of ξG
′′
(X ′′, 0,m′′).

It is a straightforward exercise using (75) and the identification H (X ′×X ′′) ∼= H (X ′)⊗H (X ′′)
to show that µ = µ′ ⊗ µ′′. The trace axiom then follows immediately from the fact that trace of a
tensor product is the product of the corresponding traces over each tensor factor. This finishes the
proof of the first part of the proposition.

The second part of the proposition follows from Remark 4.11 and the first part of this proposition.

6.2 Trivial G-actions
In the special case that the action of G on X is trivial, the data of a G-stable map to X is the same
as a stable map from the underlying curve C to X and the data of a pointed admissible G-cover,
that is

M
G
g,n(X) = M

G
g,n ×M g,n

M g,n(X).

Moreover, since M
G
g,n is smooth, it is evident that the virtual fundamental class on M

G
g,n(X) is

simply the pullback of the virtual fundamental class of M g,n(X)

[MG
g,n(X)]vir = pr∗2[M g,n(X)]vir,

and the evaluation map M
G
g,n(X) � (X̂)n = (X ×G)n is simply the product of the evaluation

maps e : M
G
g,n

� Gn and ev : M g,n(X) � Xn.

Thus, in this special case, we have

ΛG,Xg,n = st∗ΛXg,n,

where {ΛXg,n} is the usual Gromov–Witten CohFT for X, and st : M
G
g,n

� M g,n is the forgetful
map (st := ŝt ◦ s̃t).

Since G acts trivially, we have H (X)mi = H•(Xmi ; Θ) ∼= H•(X; Θ) for every mi ∈ G. So the
state space H (X) is justH•(X; Θ)⊗C[G] and ΛG,Xg,n ((v1⊗m1), . . . , (vn⊗mn)) = st∗ΛXg,n(v1, . . . , vn)∪
e∗(1), which is clearly just the external tensor product of ΛXg,n with C[G]. Thus, we have proved the
following.
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Proposition 6.24. If X is a smooth, projective variety with a trivial G action, then its associated
G-CohFT is isomorphic to the external tensor product of the CohFT of stable maps associated to
X (regarded as an equivariant CohFT for the trivial group) with C[G], the group ring G-CohFT
(see Example 4.3).

Remark 6.25. In the previous example, the induced CohFT on the space of G-coinvariants agrees
with Proposition 3.7 in [JK02].
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