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Abstract: Steenrod defined in 1947 the Steenrod squares on the mod 2 cohomology of spaces using explicit
cochain formulae for the cup-i products; a family of coherent homotopies derived from the broken symmetry
of Alexander–Whitney’s chain approximation to the diagonal. He later defined his homonymous operations
for all primes using the homology of symmetric groups. This approach enhanced the conceptual understand-
ing of the operations and allowed for many advances, but lacked the concreteness of their definition at the
even prime. In recent years, thanks to the development of new applications of cohomology, having defini-
tions of Steenrod operations that can be effectively computed in specific examples has become a key issue.
Using the operadic viewpoint of May, this article provides such definitions at all primes introducingmultiop-
erations that generalize the Steenrod cup-i products on the simplicial and cubical cochains of spaces.
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1 Introduction
The role Steenrod operations play in Stable Homotopy Theory is hard to overstate. The reason is that, given
the representability of the cohomology functor, these operations together with the Bockstein homomorphism
can be used to give a complete description of the algebraic structure naturally present on themop-p cohomol-
ogy algebra of spaces. For the even prime, Steenrod squares were introduced in [58] via an explicit choice of
coherent homotopical corrections to the broken symmetry of Alexander–Whitney’s chain approximation to
the diagonal, the so-called cup-i products. Later, for odd primes, their definition was given non-effectively
using arguments based on the mod p homology of symmetric groups [59–61]. This viewpoint enhanced
the conceptual understanding of the operations and allowed for many advances [2, 3, 55], but lacked the
concreteness of their definition at the even prime. The purpose of this paper is to fill this gap in the litera-
ture, introducing effective descriptions of multioperations at the cochain level generalizing Steenrod’s cup-i
products defining Steenrod operations at all primes.

In recent years, thanks to the development of new applications of cohomology –most notably in Applied
Topology and Quantum Field Theory – the need to have a definition of Steenrod operations that can be effec-
tively computed in specific examples has gained considerable importance. In Applied Topology, the use of
persistence homology [19, 25] has opened many new interdisciplinary research directions [20, 23, 41], and
the availability of formulae for the cup-i products allowed for the development of a theory of persistence
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Steenrod modules accessing finer features of the data [47]. The chain level viewpoint for the study of homol-
ogy operationswasbrought to the forefront byStringTopology [63], and served as amajor driver of innovation
[32, 65]. In Lattice Field Theory, cup-i products are used in the construction of effective actions [14, 26, 31],
and this connection with physics motivated the development of effective versions of spin bordism [17, 18]
prominently featuring higher derived structures at the cochain level [16, 50].

Following [43], we take amore general approach to Steenrod operations that also includes Araki–Kudo–
Dyer–Lashof operations on the mod p homology of infinite loop spaces [24, 39]. We use the language of
operads [44] to describe at the (co)chain level the integral structure required to define (co)homology opera-
tions at every prime. We then describe effective constructions of this structure on three prominent models of
the E∞ operad, identifying elements in them that represent Steenrod operations in the mod p homology of
their algebras; these are the Barratt–Eccles [12], surjection [45] and U(M) [48] operads. Since the cochains
of simplicial sets are equipped with effective and compatible algebra structures over each of these operads,
we are able to explicitly describe canonical multioperations generalizing the cup-i products of Steenrod to
every prime. An alternative approach based on the Eilenberg–Zilber contraction can be found in [28]. The
p = 2 part of our constructions specialize in the simplicial context to the definition of cup-i products given by
Steenrod [58] and recovered by several authors [12, 45, 53], and in the cubical setting to the cup-i products
of Kadeishvili [30] and Krčál and Pilarczy [38].

A context where the cubical viewpoint arises naturally is the study of loop spaces. This is through Baues’
geometric generalization ofAdams’ cobar construction [1, 9]. By usingBaues’work, an application of the con-
structions presented in this paper is the explicit description of Steenrod operations on the cobar construction
on the coalgebra of chains of reduced simplicial sets [54].

Emphasizing their constructive nature, an implementation of all the constructions in this article can be
found in the specialized computer algebra system ComCH [52].

An outline of the article is presented next. We first introduce, in Section 2, the conventions wewill follow
regarding chain complexes, simplicial sets and cubical sets. Then, in Section 3, we review the key notions
from group homology, which we will use mainly for cyclic and symmetric groups. Section 4 is devoted to
the language of operads and related structures, which we use in Section 5 to introduce the notion of May–
Steenrod structure, an integral structure at the (co)chain level inducing Steenrod operations for every prime.
Section 6, the bulk of this work, presents effective constructions of May–Steenrod structures on the Barratt–
Eccles, surjection and U(M) operads. It also describes a natural U(M)-algebra structure on the cochains of
simplicial and cubical sets inducing natural May–Steenrod structures on them.We end, in Section 7, with an
overview of some connections of this work to certain geometric and combinatorial structures and provide an
outline of future research directions.

2 Preliminaries

2.1 Chain complexes

Let R be a ring. We denote by (ChR , ⊗, R) the symmetric monoidal category of homologically graded chain
complexes of R-modules. The set of R-linear maps between chain complexes as well as the tensor product of
chain complexes are regarded as chain complexes in the usual way:

Hom(A, A󸀠)n = {f | a ∈ Am implies f(a) ∈ A󸀠m+n},
∂f = ∂ ∘ f − (−1)|f|f ∘ ∂,

and

(A ⊗ A󸀠)n = ⨁
p+q=n Ap ⊗ A󸀠q ,

∂(a ⊗ a󸀠) = ∂a ⊗ a󸀠 + (−1)|a|a ⊗ ∂a󸀠.
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We embed the category of R-modules as the full subcategory of ChR with objects concentrated in degree 0.
The endofunctor Hom(−, R) is referred to as linear duality. We notice that if a chain complex is concentrated
in non-negative degrees, then its linear dual concentrates on non-positive ones.

The rings we will mostly be interested in are the group rings ℤ[G] and 𝔽p[G] of finite groups, where p is
prime and 𝔽p is the field with p elements.

2.2 Simplicial sets

The simplex category ∆ is defined to have anobject [n] = {0, . . . , n} for every n ∈ ℕ andamorphism [m]→ [n]
for each order-preserving function from [m] to [n]. The morphisms δi : [n − 1]→ [n] and σi : [n + 1]→ [n]
defined for 0 ≤ i ≤ n by

δi(k) = {
k, k < i,
k + 1, i ≤ k,

and σi(k) = {
k, k ≤ i,
k − 1, i < k,

generate all morphisms in the simplex category.
A simplicial set X is a contravariant functor from the simplex category to the category of sets, and a sim-

plicial map is a natural transformation between two simplicial sets. As is customary, we use the notation

X([n]) = Xn , X(δi) = di , X(σi) = si ,

and refer to elements in the image of any si as degenerate.
For each n ∈ ℕ, the simplicial set ∆n is defined by

∆nk = Hom∆([k], [n]), di(x) = x ∘ δi , si(x) = x ∘ σi ,

and any simplicial set can be expressed as a colimit of these:

X = colim
∆n→X ∆n .

We represent the non-degenerate elements of ∆nk as increasing sequences [v0, . . . , vk] of non-negative inte-
gers each less than or equal to n.

The functor N∙ of normalized chains (with R-coefficients) is defined as follows:

N∙(X; R)n = R{Xn}
R{s(Xn−1)} ,

where s(Xn−1) = ⋃n−1i=0 si(Xn−1) and ∂n : N∙(X)n → N∙(X)n−1 is given by
∂n =

n
∑
i=0(−1)idi .

The functor of normalized cochains N∙ is defined by composing N∙ with the linear duality functor Hom(−, R).
It is convenient to emphasize that

N∙(X; R) = colim
∆n→X N∙(∆n; R).

2.3 Cubical sets

The cube category ◻ is the free strict monoidal category with a bipointed object

1 2 1
δ0

δ1

σ
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such that σ ∘ δ0 = σ ∘ δ1 = id. Explicitly, it contains an object 2n for each non-negative integer n, and its
morphisms are generated by the coface and codegeneracy maps defined by

δεi = id2i−1 ×δ
ε × id2n−1−i : 2n−1 → 2n ,

σi = id2i−1 ×σ × id2n−i : 2n → 2n−1.
A cubical set X is a contravariant functor from the cube category to the category of sets, and a cubical

map is a natural transformation between two cubical sets. As is customary, we use the notation

X(2n) = Xn , X(δεi ) = d
ε
i , X(σi) = si ,

and refer to elements in the image of any si as degenerate.
For each n ∈ ℕ, the cubical set ◻n is defined by

◻nk = Hom◻(2k , 2n), dεi (x) = x ∘ δ
ε
i , si(x) = x ∘ σi .

We represent the non-degenerate elements of ◻n as sequences x1 ⋅ ⋅ ⋅ xn with each xi ∈ {[0], [1], [0, 1]}. For
example, [0][01][1] represents δ1 × id×δ0. Any cubical set can be expressed as a colimit of these:

X = colim◻n→X ◻n .
The functor N∙ of normalized chains (with R-coefficients) is defined as follows: The chain complex N∙(◻1)

is simply the cellular chain complex of the interval, isomorphic to

R{[0], [1]} R{[0, 1]}
[1] − [0] [0, 1].

Set
N∙(◻n; R) = N∙(◻1; R)⊗n

and define
N∙(X; R) = colim◻n→X N∙(◻n; R).

The functor of normalized cochains N∙ is defined by composing N∙ with the linear duality functor
Hom(−, R).

3 Group homology
Fixing notation, let Sr be the symmetric group of r elements and let Cr be the cyclic group of order r thought
of as the subgroup of Sr generated by an element ρ. We denote this inclusion by ι : Cr → Sr.

A resolution in ChR is a quasi-isomorphism P → M with each Pr being a free R-module. We will use the
fact, explained in [29, Section 6.5], that such resolutions exist for any chain complex M concentrated in
non-negative degrees.

Let G be a group and M an R[G]-module. The homology of G with coefficients in M, denoted by H(G;M),
is defined as the homology of the chain complex P ⊗R[G] M where P → R is any resolution in ChR[G]. We will
be particularly interested in the case whenM = 𝔽p(q) is the trivial or sign 𝔽p[Sr]-module depending on if the
parity of q is even or odd, respectively.

We now review the group homology of finite cyclic groups. For any ring R the elements

{
T = ρ − 1,
N = 1 + ρ + ⋅ ⋅ ⋅ + ρn−1, (3.1)

in R[Cr] generate the ideal of annihilators of each other. Therefore, the chain complex of R[Cr]-modules

W(r) = R[Cr]{e0} R[Cr]{e1} R[Cr]{e2} ⋅ ⋅ ⋅T N T (3.2)
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concentrated in non-negative degrees, with the free R[Cr]-module W(r)d generated by an element ed, and
differential induced from

∂(ed) = {
Ted−1, d odd,
Ned−1, d even,

defines a resolutionW(r)→ R in ChR[Cr].
It follows from a straightforward computation that for any prime p and integer q,

Hi(Cp;𝔽p(q)) = 𝔽p .

The homology of Sr is harder to compute. With untwisted coefficients, the method of computation fol-
lowed by several authors was to prove the injectivity of this homology into that of the infinite symmetric
group and take advantage of a natural Hopf algebra structure on it. A powerful result stemming from the
deep connection of this question with infinite loop space theory, is the existence of a homology isomorphism
of spaces

ℤ × BS∞ → Q(S0) = Ω∞Σ∞(S0)
credited to Dyer and Lashof [24] and Barratt, Priddy and Quillen [7].

In this work, we are interested in the mod p homology of Sp (with p a prime) which, as explained in [4],
is detected by a group inclusion ι : Cp → Sp, that is, the map induced in mod p group homology by ι is
a surjection.

Lemma 3.1. Let p be an odd prime and q an integer. Consider

(ι∗)d : Hd(Cp;𝔽p(q))→ Hd(Sp;𝔽p(q)).

Then the following assertions hold:
(i) If q is even, (ι∗)d = 0 unless there is an integer t so that d = 2t(p − 1) or d = 2t(p − 1) − 1.
(ii) If q is odd, (ι∗)d = 0 unless there is an integer t so that d = (2t + 1)(p − 1) or d = (2t + 1)(p − 1) − 1.
Proof. This is proven as [59, Theorem 4.1] where Thom is also credited with a different proof.

In Section 5, we will see how the mod p homology of symmetric groups defines operations on the mod p
homology of algebras that are commutative up to coherent homotopies. Preparing for that, we first develop
the language of Γ-modules, operads and props.

4 Γ-modules, operads and props
In this section, we set up a framework in which the structure responsible for Steenrod operations becomes
most transparent. Given our applications,we considerChR as the base category, remarking that all definitions
in this section apply to general closed symmetric monoidal categories.

4.1 Γ-modules

Recall that a group G can be thought of as a category with a single object and only invertible morphisms, and
that a chain complex of left (resp. right) R[G]-modules is the same as a covariant (resp. contravariant) functor
from G to ChR. Taking inverses allows for the switch between left and right conventions.

A groupoid is a small category where all morphisms are invertible.

Definition 4.1. A Γ-module is a covariant functor to ChR from a groupoid Γ with objects being the natural
numbers and morphisms satisfying Γ(r, s) = 0 for r ̸= s. We denote the category of Γ-modules and natural
transformations by ChΓR.

We are mostly interested in two examples of Γ-modules: those associated to the groupoids S and C defined by

S(r, r) = Sr , C(r, r) = Cr ,
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for every r ∈ ℕ. The inclusion Cr → Sr induces a forgetful functor

ChSR ChCR .

Given an object A in ChR, there are two important Γ-modules associated to it; an Sop-module known
as endomorphism Sop-module EndA, and an S-module known as coendomorphism S-module EndA. These are
defined by

EndA(r) = Hom(A⊗r , A),
EndA(r) = Hom(A, A⊗r),

with respective right and left actions defined by permutation of tensor factors.
Another groupoid of importance to us is S × Sop with covariant functors from it to ChR referred to as

S-bimodules. Notice that the inclusions S→ S × Sop induced by r 󳨃→ (r, 1) and r 󳨃→ (1, r) define forgetful func-
tors

ChS×SopR

ChS
op

R ChSR.
U1 U2

Explicitly, U1(P)(r) = P(r, 1) and U2(P)(r) = P(1, r) for any P in ChS×SopR . Notice that for any object A in ChR
the canonical endomorphism bimodule

EndAA(r, s) = Hom(A⊗r , A⊗s)
forgets via U1 and U2 to EndA and EndA, respectively.

Using the groupoid automorphism sending every morphisms to its inverse, we can identify Γ- and
Γop-modules, and prove that the linear duality functor induces a morphism of S-modules

EndA → EndHom(A,R)
for every object A in ChR. We will use this identification freely in what follows.

A resolution in ChΓR is a morphism ϕ of Γ-modules such that ϕ(r) is a resolution in the category of chain
complexes of R[Γr]-modules for each r ∈ ℕ, where Γr denotes Γ(r, r). A Γ-moduleR is said to be E∞ ifR(0) = R
and there exists a resolutionR→ R where R is the object in ChΓR defined by R(r) = R and R(γ) = idR for every
r ∈ ℕ and γ ∈ Γr.

We have the following evident generalization to the context of groupoids of the resolutions introduced
in (3.2).

Definition 4.2. Theminimal E∞ C-moduleW is the functor in ChCR assigning to r the chain complex

W(r) = R[Cr]{e0} R[Cr]{e1} R[Cr]{e2} ⋅ ⋅ ⋅T N T

concentrated in non-negative degrees.

4.2 Operads and props

Operads and props are respectively S-modules and S-bimodules enriched with further compositional struc-
ture. These structures are best understood by abstracting the compositional structure naturally present in the
endomorphism S-module EndA (or EndA), naturally an operad, and the endomorphism S-bimodule EndAA,
naturally a prop.

Succinctly, an operad O is an S-module together with a collection of R-linear maps

O(r) ⊗ O(s)→ O(r + s − 1)

satisfying suitable associativity, equivariance and unitality conditions. A prop P is an S-bimodule together
with two types of compositions; horizontal

P(r1, s1) ⊗ P(r2, s2)→ P(r1 + r2, s1 + s2)
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and vertical
P(r, s) ⊗ P(s, t)→ P(r, t)

satisfying their own versions of associativity, equivariance and unitality. For a complete presentation of these
concepts, we refer to [42, Definitions 11 and 54].

We add that for any prop P the compositional structure of P defines an operad structure on U1(P) and
U2(P). We will use this automorphism without further notice when dealing with Sop-modules.

We now introduce the type of operads that we are most interested in, which, as we will discuss in the
next section, are used to describe commutativity up to coherent homotopies.

Definition 4.3 ([15, 44]). An operad is said to be E∞ if its underlying S-module is E∞, and a prop P is said to
be E∞ if either U1(P) or U2(P) is an E∞ operad.

4.3 Algebras, coalgebras and bialgebras

A morphism of operads or of props is simply a morphism of their underlying S-modules or S-bimodules
preserving the respective compositional structures.

Given a chain complex A, an operad O and a prop P, an O-algebra (resp. O-coalgebra) structure on A
is an operad morphism O→ EndA (resp. O→ EndA), and a P-bialgebra structure on A is a prop morphism
P→ EndAA.

We remark that the linear duality functor naturally transforms anO-coalgebra structure on a chain com-
plex into an O-algebra structure on its dual.

Algebras over E∞ operads are the central objects of study in this work. To develop intuition for them, let
us consider a chain complex Awith an algebra structure over the constant functor R, thought of as an operad
with all compositions corresponding to the identitymap R → R. The R-algebra structure on A is generated by
a linear map μ : A ⊗ A → A which is (strictly) commutative and associative, and a linear map η : R → A that
determines a (two-sided) unit for μ. Since E∞ operads are resolutions of R, their algebras can be thought of as
usual unital algebras where the commutativity and associativity relations hold up to coherent homotopies.
The two main examples to keep in mind are the cochains of spaces and the chains of infinite loop spaces.

5 May–Steenrod structures
We now introduce an operadic structure giving rise to Steenrod operations based in [43]. In our presentation
we emphasize the integral structure needed to define them at every prime. For a more geometric treatment
we refer the reader to [22, 40, 44], and for a different operadic approach at the even prime to [21].

Let us assume the ground ring to beℤ unless stated otherwise.

Definition 5.1. AMay–Steenrod structure on an operad O is a morphism of C-modules ψ : W→ O for which
there exists a factorization through an E∞ operad

R

W O

ϕι

ψ

such that ι is a quasi-isomorphism and ϕ a morphism of operads.

Remark 5.2. In [27], an operadmorphismAssoc→ O is referred to as amultiplication onO. In this language,
a choice of factorization ϕ ∘ ι of a May–Steenrod structure on O endows it with an E∞ multiplication ϕ.

Definition 5.3. Let A be a chain complex. AMay–Steenrod structure on EndA is referred to as one on A. Given
one such structureψ : W→ EndA, the Steenrod cup-(r, i) product of A is defined for every r, i ≥ 0 as the image
in End(A⊗r , A) of ψ(ei).
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Let A be equipped with a May–Steenrod structure

R

W EndA .

ϕι

ψ

We can relate this structure on A to those considered by May in [43] as follows. The morphism ϕ provides A
with the structure of a homotopy associative algebra defined by the image in Hom(A⊗2, A) of a representa-
tive inR(2) of a generator of its 0-th-homology. Restricting ψ to arity r defines a map θ : W(r) ⊗ A⊗r → A that
makes the pair (A, θ) into an object inMay’s categoryC(Cr ,∞,ℤ) as presented in [43, Definitions 2.1]. Explic-
itly, this means that the pair is such that ψ(e0) ∈ EndA(r) is Cr-homotopic to the iterated product A⊗r → A;
a claim that follows from the iterated product being a representative of a generator of the 0-th-homology of
R(r), and ι being a quasi-isomorphism of C-modules. Furthermore, for r equal to a prime p, tensoring the
integers with 𝔽p makes the pair (A, θ) into an object in May’s category C(Cp ,∞,𝔽p). For any object (A, θ) in
this category, [43, Definition 2.2] defines operations on the mod p homology of A, a construction we review
below. In particular, if A is given by the cochains of a space, these products agree with Steenrod’s original
definitions, and for A being the chains on an infinite loop space, with those defined by Araki–Kudo and
Dyer–Lashof.

For the rest of this section, A denotes a chain complex equipped with a May–Steenrod structure.

Definition 5.4. For any prime p, the 𝔽p-linear map

Dpi : (A ⊗ 𝔽p)→ (A ⊗ 𝔽p)

is defined by sending a to the Steenrod cup-(p, i) product of (a ⊗ ⋅ ⋅ ⋅ ⊗ a) ∈ (A ⊗ 𝔽p)⊗p if i ≥ 0, and to 0
otherwise.

We notice that if a is of degree q, then Dpi (a) is of degree q + (p − 1)q + i.

Definition 5.5. For any integer s, the Steenrod operation

Ps : H∙(A;𝔽2)→ H∙+s(A;𝔽2)
is defined by sending the class represented by a cycle a ∈ (A ⊗ 𝔽2) of degree q to the class represented by
D2
s−q(a).

Notice that the Steenrod operations above, corresponding to Steenrod squares in the context of spaces, are
determined by the Steenrod cup-(2, i) products with 𝔽2-coefficients. These binary operations are known as
cup-i products [53, 58] in the space context. In a similar way, the operations P and βP defined below for
odd primes are determined by the Steenrod cup-(p, k(p − 1) − ε) products for ε ∈ {0, 1}. We can explain the
appearance of these specific Steenrod cup-(p, i) products as follows. The increase on the degree of a q-cycle
after applying Dpk(p−1)−ε to it is (p − 1)(q + k) − ε, which can be rewritten as 2t(p − 1) − ε if q is even, and
(2t + 1)(p − 1) − ε if q is odd. According to Lemma 3.1, these are the only homologically non-trivial cases.

Definition 5.6. For any integer s, the Steenrod operations

Ps : H∙(A;𝔽p)→ H∙+2s(p−1)(A;𝔽p)
and

βPs : H∙(A;𝔽p)→ H∙+2s(p−1)−1(A;𝔽p)
are defined by sending the class represented by a cycle a ∈ (A ⊗ 𝔽p) of degree q to the classes represented
respectively for ε ∈ {0, 1} by

(−1)sν(q)Dp(2s−q)(p−1)−ε(a),
where ν(q) = (−1)q(q−1)m/2(m!)q and m = (p − 1)/2.
Remark 5.7. The use of the coefficient function ν(q) is motivated by the identity Dpq(p−1)(a) = ν(q)a in the
case of spaces (see [59, (6.1)]). The notation βPs is motivated by the relationship of this operator and the
Bockstein of the reductionℤ→ ℤ/pℤ.



R. Kaufmann and A.M. Medina-Mardones, Cochain level May–Steenrod operations | 9

Steenrod operations defined as above satisfy the so-called Adem relations. Below, we present its most com-
mon form and refer to [43, Theorem 4.7] for a complete list.

Lemma 5.8. Let A be equipped with a May–Steenrod structure.
(i) If p = 2 and a > 2b, then

PaPb =∑
i
(

2i − a
a − b − i − 1)Pa+b−iPi .

(ii) If p > 2 and a > pb, then

PaPb =∑
i
(−1)a+i( pi − a

a − (p − 1)b − i − 1)Pa+b−iPi .
Proof. As described after Definition 5.3, for any prime p the pair (A, θ) is an object in May’s category
C(Cp ,∞,𝔽p). Furthermore, since we are demanding a factorization ϕ ∘ ι with ϕ being an operad map from
an E∞ operad to EndA, this is an Adem object in the sense of [43, Definition 4.1]. The statement presented
here is stated and proven as part of [43, Theorem 4.7]

So far we have considered C-modules, operads and related structures over the category of chain complexes. It
is also useful to consider them over the category of coalgebras, that is to say, requiring each chain complex to
be equippedwith a coproduct and all structuremaps to bemorphisms of coalgebras. As described in [43, Def-
inition 1.2], the C-moduleW lifts to this category. A comultiplicative May–Steenrod structure on an operad O

is a morphism of C-modules ψ : W→ O for which there exists a factorization through an E∞ operad over the
category of coalgebras

R

W O

ϕι

ψ

such that ι is a quasi-isomorphism over the category of coalgebras and ϕ is a morphism of operads.
Chain complexes equipped with a comultiplicative May–Steenrod structure satisfy the so-called Cartan

relations.

Lemma 5.9. Let A be equipped with a comultiplicative May–Steenrod structure. For any two mod p homology
classes [α] and [β] we have

Ps([α][β]) = ∑
i+j=s Pi([α])Pj([β]).

Proof. As described after Definition 5.3, for any prime p the pair (A, θ) is an object in May’s category
C(Cp ,∞,𝔽p). Furthermore, since we are demanding a factorization ϕ ∘ ι with ι being a quasi-isomorphism
in the category of C-modules over the category of coalgebras, this is a Cartan object as defined in [43, p. 161].
The statement presented here is stated in [43, p. 165].

For the even prime, effective proofs at the cochain level of the Adem and Cartan relations have been given
respectively in [16] and [50]. Explicitly, these construct cochainswhose coboundaries descend to the relations
in cohomology.

6 Effective constructions
In this section, we construct explicit May–Steenrod structures on three well-known combinatorial E∞
operads: the Barratt–Eccles operad E (see [12]), the surjection operad X (see [45]), and the operad U(M)
associated to the finitely presented E∞ prop M introduced in [48]. We also define a natural and effective
May–Steenrod structure on the normalized cochains of any simplicial or cubical set using that these are
algebras over the operad U(M).

Figure 1 presents a diagrammatical representation of the constructions in this section.
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U(M)

X

E

W EndN∙
∆(X) EndN∙

◻(Y)
ϕ∆
X

ϕ◻
Y

SL

TR

ψ∆
X

ψ◻
Y

ψE ψX

ψU(M)

Figure 1: Summary of effective constructions: May–Steenrod structures on the Barratt–Eccles E, surjection X,
and U(M) operads, and natural May–Steenrod structures on the normalized chains of a simplicial or cubical set.
We remark that the maps TR and SL require different sign conventions.

6.1 Barratt–Eccles operad

In this subsection, we effectively describe aMay–Steenrod structure on the Barratt–Eccles operad via explicit
formulae.

We begin by reviewing the S-module structure underlying the Barratt–Eccles operad and, since we will
not use it in this work, refer to [12] for a description of if composition structure. For a non-negative integer r
define the simplicial set E(Sr) by

{{{
{{{
{

E(Sr)n = {(σ0, . . . , σn) | σi ∈ Sr},
di(σ0, . . . , σn) = (σ0, . . . , σ̂i , . . . , σn),
si(σ0, . . . , σn) = (σ0, . . . , σi , σi , . . . , σn),

(6.1)

with a left Sr-action given by
σ(σ0, . . . , σn) = (σσ0, . . . , σσn).

The chain complex resulting from applying the functor of normalized integral chains to it is the arity r part
of the Barratt–Eccles operad E.

Definition 6.1. For every r ≥ 0, let ψE(r) : W(r)→ E(r) be theℤ[Cr]-linear map defined on basis elements by

ψE(r)(en) =
{{{
{{{
{

∑
r1 ,...,rm
(ρ0, ρr1 , ρr1+1, ρr2 , . . . , ρrm , ρrm+1), n = 2m,

∑
r1 ,...,rm
(ρ0, ρ1, ρr1 , ρr1+1, . . . , ρrm , ρrm+1), n = 2m + 1,

where the sum is over all r1, . . . , rm ∈ {0, . . . , r − 1}.

Theorem 6.2. The morphism of C-modules

ψE : W→ E

defines a May–Steenrod structure on the Barratt–Eccles operad.

Proof. Since E is an E∞ operad, we simply need to prove that theℤ[Cr]-linear map

ψE(r) : W(r)→ E(r)

is a quasi-isomorphism for every r ≥ 0. We simplify notation and write ψ instead of ψE(r). To show that ψ is
a chain map, we proceed by induction. Notice that

ψ(∂e0) = 0 = ∂ψ(e0)
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and assume ψ(∂ek−1) = ∂ψ(ek−1). If k = 2n, we have
∂ψ(e2n) = ∂ ∑

r1 ,...,rn
(ρ0, ρr1 , ρr1+1, . . . , ρrn , ρrn+1)

= ∂ ∑
r2 ,...,rn

p−1
∑
r1=0(ρ0, ρr1 (ρ0, ρ1, . . . , ρrn−r1 , ρrn−r1+1))

= ∂ ∑
r2 ,...,rn
(ρ0, N(ρ0, ρ1, . . . , ρrn , ρrn+1))

= ∑
r2 ,...,rn

N(ρ0, ρ1, . . . , ρrn , ρrn+1) − ∑
r2 ,...,rn
(ρ0, ∂N(ρ0, ρ1, . . . , ρrn , ρrn+1))

= Nψ(e2n−1) − (ρ0, ∂Nψ(e2n−1))
= ψ(Ne2n−1) − (ρ0, ψ(∂Ne2n−1))
= ψ(∂e2n) − (ρ0, ψ(∂2e2n))
= ψ(∂e2n).

If k = 2n + 1, we have

∂ψ(e2n+1) = ∂ ∑
r1 ,...,rn
(ρ0, ρ1, ρr1 , ρr1+1, . . . , ρrn , ρrn+1)

= ∂ ∑
r1 ,...,rn
(ρ0, ρ1(ρ0, ρr1−1, ρr1 , . . . , ρrn−1, ρrn ))

= ∂ ∑
r1 ,...,rn
(ρ0, T(ρ0, ρr1−1, ρr1 , . . . , ρrn−1, ρrn ))

= ∑
r1 ,...,rn

T(ρ0, ρr1−1, ρr1 , . . . , ρrn−1, ρrn ) − ∑
r1 ,...,rn
(ρ0, ∂T(ρ0, ρr1−1, ρr1 , . . . , ρrn−1, ρrn ))

= Tψ(e2n) − (ρ0, ∂Tψ(e2n))
= ψ(Te2n) − (ρ0, ψ(∂Te2n))
= ψ(∂e2n+1) − (ρ0, ψ(∂2e2n+1))
= ψ(∂e2n+1),

where for the third equality we used that for any r1, . . . , rn,

(ρ0, ρ0, ρr1−1, ρr1 , . . . , ρrn−1, ρrn ) = 0.
This map is a quasi-isomorphism since both complexes have the homology of a point and ψ(e0) represents
a generator of the homology.

Example 6.3. Table 1 shows ψE(r)(en) for small values of r and n.

Remark 6.4. The natural construction (6.1) is defined for any group, in particular for finite cyclic groups, and
the inclusion ι : Cr → Sr induces both: a simplicial inclusion E(ι) : E(Cr)→ E(Sr) and one of C-modules

N∙E(ι) : N∙E(C)→ N∙E(S) = E.
We remark that the image of our map ψE lies in the subcomplex N∙E(C), so the map ψE factors as

ψE : W N∙E(C) E.N∙E(ι)
6.2 Surjection operad

In this subsection, we introduce a May–Steenrod structure on the surjection operad. There are two widely
used sign conventions for this operad respectively due to McClure and Smith [45] and Berger and Fresse [12].
Using the Berger–Fresse convention, we can define a May–Steenrod structure on the surjection operad by
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r n = 2 n = 3 n = 4

2 (0,1,0) (0,1,0,1) (0,1,0,1,0)
3 (0,1,2) + (0,2,0) (0,1,2,0) + (0,1,0,1) (0,1,2,0,1) + (0,1,2,1,2) + (0,2,0,1,2) + (0,2,0,2,0)
4 (0,1,2) + (0,2,3) + (0,3,0) (0,1,2,3) + (0,1,3,0) + (0,1,0,1) (0,1,2,3,0) + (0,1,2,0,1) + (0,1,2,1,2) + (0,2,3,0,1)

+ (0,2,3,1,2) + (0,2,3,2,3) + (0,3,0,1,2) + (0,3,0,2,3)
+ (0,3,0,3,0)

Table 1: The elements ψE(r)(en) for small values of r and n, where we are denoting (ρr0 , . . . , ρrn ) simply by (r0 , . . . , rn).
composing themapψEwith the table reductionquasi-isomorphismE→ X introduced in [12, Section1.3].We
define a May–Steenrod structure on the surjection operad in a convention independent way which recovers
the table reduction May–Steenrod structure in the Berger–Fresse case.

Let us start by recalling the definition of the surjection operad. For a non-negative integer r let X(r)n
be the free abelian group generated by all functions from {1, . . . , n + r} to {1, . . . , r} modulo the subgroup
generated by degenerate functions, i.e., those which are either non-surjective or have a pair of equal consec-
utive values. We only describe the McClure–Smith convention since we refer to it in subsequent sections. The
boundarymapand symmetric action in this case is definedusing theKoszul convention regarding a surjection
s : {1, . . . , n + r}→ {1, . . . , r} as the top-dimensional generator in the chain complex

r
⨂
i=1 N∙(∆s−1(i);ℤ). (6.2)

Explicitly, if we think of s as a sequence of integers (s(1), . . . , s(n + r)), the boundary of s is the sum of
sequences obtained by orderly removing one at a time the occurrences of 1with alternating signs, then those
of 2 with starting sign equal to that of the last removal of 1, and so on. Since we do not use the composition
structure, we refer to [45] for it.

Let us recall the chain contraction of X(r) onto X(r − 1) used by McClure and Smith to prove that X is
an E∞ operad and whose introduction is credited to Benson [10]. Let the maps i, p and s be defined on
basis elements, represented by sequences, as follows: i : X(r − 1)→ X(r) places a 1 at the beginning of the
sequence and increases each of the original entries by 1, p : X(r)→ X(r − 1) takes the sequence to 0 unless it
contains a single occurrence of 1, in which case p removes the 1 and decreases each of the remaining entries
by 1, and finally, s : X(r)→ X(r) places a 1 at the beginning of the sequence; if the sequence already begins
with a 1, then the new sequence is degenerate, so s takes it to 0. These maps satisfy

pi = id and id−ip = ∂s + s∂.

The compositions ir−1 and sr−1 define a contraction of X(r) onto X(1) ≅ ℤ with homotopy

h = s + isp + ⋅ ⋅ ⋅ + ir−1spr−1,
i.e., they satisfy

pr−1ir−1 = id and ∂h + h∂ = id−ir−1pr−1.
Definition 6.5. For every r ≥ 0, let ψX(r) : W(r)→ X(r) be theℤ[Cr]-linear map defined recursively on basis
elements by

ψX(r)(e0) = (1, . . . , r),
ψX(r)(e2m+1) = hTψX(r)(e2m),
ψX(r)(e2m) = hNψX(r)(e2m−1),

where T and N are defined in (3.1).

Theorem 6.6. The morphism of C-modules
ψX : W→ X

defines a May–Steenrod structure on the surjection operad.
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r n = 2 n = 3 n = 4

2 (1,2,1,2) (1,2,1,2,1) (1,2,1,2,1,2)
3 (1,2,3,1,2) + (1,3,1,2,3) (1,2,3,1,2,3) + (1,2,1,2,3,1) (1,2,3,1,2,3,1) + (1,2,3,2,3,1,2)

+ (1,2,3,2,3) + (1,2,3,1,3,1) + (1,2,3,1,2,1,2) + (1,3,1,2,3,1,2)
+ (1,3,1,3,1,2,3) + (1,2,3,2,3,2,3)
+ (1,3,1,2,3,2,3)

4 (1,2,3,4,1,2) + (1,3,4,1,2,3) (1,2,3,4,1,2,3) + (1,2,4,1,2,3,4) 25 terms
+ (1,2,3,4,2,3) + (1,4,1,2,3,4) + (1,2,3,4,1,3,4) + (1,2,1,2,3,4,1)
+ (1,2,4,2,3,4) + (1,2,3,4,3,4) + (1,2,3,1,3,4,1) + (1,2,3,4,1,4,1)

Table 2: The values of ψX(r)(en) for small values of r and n.
Proof. Since X is an E∞ operad, we simply need to prove that theℤ[Cr]-linear map

ψX(r) : W(r)→ X(r)

introduced in Definition 6.5 is a quasi-isomorphism for every r ≥ 0. We simplify notation and write ψ instead
of ψX(r). To show that ψ is a chain map, we proceed by induction. Notice that

ψ(∂e0) = 0 = ∂ψ(e0)

and assume ψ(∂en−1) = ∂ψ(en−1). For n = 2m + 1 we have
∂ψ(e2m+1) = ∂hTψ(e2m)

= Tψ(e2m) − ir−1pr−1ψ(e2m) − h∂Tψ(e2m)
= Tψ(e2m) − hTψ(∂e2m)
= Tψ(e2m) − hψ(TNe2m−1)
= Tψ(e2m).

For n = 2m the proof is analogous. The chain map ψ is a quasi-isomorphism since both complexes have the
homology of a point and ψ(e0) = (1, . . . , r) represents a generator of the homology.

For the rest of this paper, we use the McClure–Smith sign convention on X.

Example 6.7. Table 2 shows ψX(r)(en) for small values of r and n.

6.3 The E∞ propM

We start by reviewing the finitely presented E∞ prop introduced in [48]. LetM be the prop generated by

∈M(1, 0)0, ∈M(1, 2)0, ∈M(2, 1)1,

with boundary

∂ = 0, ∂ = 0, ∂ = ,

and restricted by the relations

, , .

The second-named author established in [48, Theorem 3.3] thatM is an E∞ prop as introduced in Defi-
nition 4.3. More precisely, it shows that the associated operad U2(M) = {M(1, r)}r≥0 is an E∞ operad. For the
remainder of this article, we write U(M) instead of U2(M).

We will define a May–Steenrod structure ψU(M) : W→ U(M) by composing the May–Steenrod structure
ψX : W→ X with a morphism SL : X→ U(M) of C-modules (S-modules in fact) that we now define. Given
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a surjection s : {1, . . . , n + r}→ {1, . . . , r}, let SL(s) be the element represented by the immersed connected
(1, r)-graph

1

1 2 ⋅ ⋅ ⋅ k1⋅ ⋅ ⋅
⋅ ⋅ ⋅

⋅ ⋅ ⋅ r

1 2 ⋅ ⋅ ⋅ kr⋅ ⋅ ⋅

1

1 2 3 n + r⋅ ⋅ ⋅
...

that has no internal vertices and such that the n + r strands at the top are orderly connected to the strands at
the bottom following the values of s.

It can be directly verified using the presentation ofM that the boundary of SL(s) is obtained by remov-
ing strands one at a time in the order they are attached at the bottom. This is precisely the image of SL(∂s)
according to (6.2). Furthermore, relabeling the bottom edges agrees with the permutation of preimages of the
associated surjection. Since both operads have the homology of a point and (1, . . . , r) is sent to a represen-
tative of a homology generator, we have proven the following theorem.

Theorem 6.8. The composition

ψU(M) : W X U(M)
ψX SL

defines a May–Steenrod structure on U(M).

Example 6.9. The following immersed (1, 2)-graphs are the elements ψU(M)(2)(en) for small values of n:

n = 0 n = 1 n = 2

6.4 Cochains of simplicial sets

In this subsection, we introduce a natural May–Steenrod structure on the normalized cochains of any simpli-
cial set X. Since a May–Steenrod structure was constructed in the previous section for U(M), we only need to
describe a natural U(M)-algebra structure on N∙(X). Using the linear duality functor, it suffices to construct
a natural U(M)-coalgebra structure on N∙(X) which, in turn, can be derived via a Kan extension argument
from one on each N∙(∆n). We obtain these coalgebra structures by restricting a fullM-bialgebra structure. An
M-bialgebra structure is specified by three linear maps, the images of the generators

, , ,

satisfying the relations in the presentation ofM. For n ∈ ℕ, define the following:
(i) Define the counit ϵ ∈ Hom(N∙(∆n),ℤ) by

ϵ([v0, . . . , vq]) = {
1 if q = 0,
0 if q > 0.

(ii) Define the coproduct ∆ ∈ Hom(N∙(∆n), N∙(∆n)⊗2) by
∆([v0, . . . , vq]) =

q
∑
i=0[v0, . . . , vi] ⊗ [vi , . . . , vq].
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(iii) Define the product ∗ ∈ Hom(N∙(∆n)⊗2, N∙(∆n)) by
[v0, . . . , vp] ∗ [vp+1, . . . , vq] = {(−1)p+|π|[vπ(0), . . . , vπ(q)] if vi ̸= vj for i ̸= j,

0 if not,

where π is the permutation that orders the totally ordered set of vertices, and (−1)|π| its sign.
Proposition 6.10 ([48]). For every n ∈ ℕ, the assignment

󳨃→ ϵ, 󳨃→ ∆, 󳨃→ ∗,

defines a naturalM-bialgebra structure on N∙(∆n), and, via a Kan extension argument, a natural U(M)-algebra
structure ϕ∆ : U(M)→ EndN∙(X) on the cochains of any simplicial set X.
Composing the algebra structure ϕ∆ with theMay–Steenrod structure on U(M) gives a natural May–Steenrod
structure on N∙(X). We record this observation in the following theorem.

Theorem 6.11. The commutative diagram

U(M)

W EndN∙(X)
ϕ∆ψU(M)

ψ∆

defines a natural May–Steenrod structure on N∙(X) for any simplicial set X.
Remark 6.12. The E∞ structure we described in Proposition 6.10, depending solely on three fundamental
maps, generalizes the coalgebra structures of McClure and Smith [45] and Berger and Fresse [12]; please
consult [48] for more details.

Wewill nowgive examples of how thisMay–Steenrod structure defines representatives of Steenrodoperations
for simplicial cochains. For applications related to the cohomology of spaces, it is convenient to introduce the
notation Ps = P−s and βPs = βP−s for Steenrod operations.
Example 6.13. Let us consider the prime 2. The value P1(x)([0, 1, 2, 3, 4]) for a homogeneous cocycle x
in N−3(∆4) is equal to the value of x⊗2 acting on

[0, 1, 2, 3] ⊗ [0, 1, 3, 4] + [0, 2, 3, 4] ⊗ [0, 1, 2, 4]
+ [0, 1, 2, 3] ⊗ [1, 2, 3, 4] + [0, 1, 3, 4] ⊗ [1, 2, 3, 4].

Similarly, the value of P2(y)([0, 1, 2, 3, 4, 5, 6, 7]) for a homogeneous cocycle y in N−5(∆7) is equal to the
value of y⊗2 acting on

[0, 1, 2, 5, 6, 7] ⊗ [0, 1, 2, 3, 4, 5] + [0, 1, 2, 3, 6, 7] ⊗ [0, 1, 3, 4, 5, 6]
+ [0, 1, 2, 3, 4, 7] ⊗ [0, 1, 4, 5, 6, 7] + [0, 2, 3, 5, 6, 7] ⊗ [0, 1, 2, 3, 4, 5]
+ [0, 2, 3, 4, 6, 7] ⊗ [0, 1, 2, 4, 5, 6] + [0, 2, 3, 4, 5, 7] ⊗ [0, 1, 2, 5, 6, 7]
+ [0, 3, 4, 5, 6, 7] ⊗ [0, 1, 2, 3, 4, 5] + [0, 3, 4, 5, 6, 7] ⊗ [0, 1, 2, 3, 5, 6]
+ [0, 3, 4, 5, 6, 7] ⊗ [0, 1, 2, 3, 6, 7] + [0, 1, 2, 3, 6, 7] ⊗ [1, 2, 3, 4, 5, 6]
+ [0, 1, 2, 3, 4, 7] ⊗ [1, 2, 4, 5, 6, 7] + [0, 1, 3, 4, 6, 7] ⊗ [1, 2, 3, 4, 5, 6]
+ [0, 1, 3, 4, 5, 7] ⊗ [1, 2, 3, 5, 6, 7] + [0, 1, 4, 5, 6, 7] ⊗ [1, 2, 3, 4, 5, 6]
+ [0, 1, 4, 5, 6, 7] ⊗ [1, 2, 3, 4, 6, 7] + [0, 1, 2, 3, 4, 7] ⊗ [2, 3, 4, 5, 6, 7]
+ [0, 1, 2, 4, 5, 7] ⊗ [2, 3, 4, 5, 6, 7] + [0, 1, 2, 5, 6, 7] ⊗ [2, 3, 4, 5, 6, 7].

Example 6.14. Let us consider the prime 3. The value βP1(x)([0, 1, 2, 3, 4, 5, 6, 7, 8]) for a homogeneous
cocycle x in N−3(∆8) is equal to the value of x⊗3 acting on

−[0, 6, 7, 8] ⊗ [0, 1, 2, 3] ⊗ [3, 4, 5, 6] + [0, 1, 7, 8] ⊗ [1, 2, 3, 4] ⊗ [4, 5, 6, 7]
− [0, 1, 2, 8] ⊗ [2, 3, 4, 5] ⊗ [5, 6, 7, 8].
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Similarly, the value of P1(y)([0, 1, . . . , 7]) for a homogeneous cocycle y in N−3(∆7) is equal to the value of y⊗3
acting on

− [0, 3, 4, 5] ⊗ [0, 5, 6, 7] ⊗ [0, 1, 2, 3] − [0, 4, 5, 6] ⊗ [0, 1, 6, 7] ⊗ [1, 2, 3, 4]
− [0, 5, 6, 7] ⊗ [0, 1, 2, 7] ⊗ [2, 3, 4, 5] − [0, 1, 4, 5] ⊗ [1, 5, 6, 7] ⊗ [1, 2, 3, 4]
+ [0, 1, 5, 6] ⊗ [1, 2, 6, 7] ⊗ [2, 3, 4, 5] − [0, 1, 6, 7] ⊗ [1, 2, 3, 7] ⊗ [3, 4, 5, 6]
− [0, 1, 2, 5] ⊗ [2, 5, 6, 7] ⊗ [2, 3, 4, 5] − [0, 1, 2, 6] ⊗ [2, 3, 6, 7] ⊗ [3, 4, 5, 6]
− [0, 1, 2, 7] ⊗ [2, 3, 4, 7] ⊗ [4, 5, 6, 7] + [0, 1, 2, 3] ⊗ [3, 4, 5, 6] ⊗ [0, 1, 6, 7]
+ [0, 2, 3, 4] ⊗ [4, 5, 6, 7] ⊗ [0, 1, 2, 7] + [0, 1, 2, 3] ⊗ [3, 4, 5, 6] ⊗ [1, 2, 6, 7]
− [0, 1, 3, 4] ⊗ [4, 5, 6, 7] ⊗ [1, 2, 3, 7] + [0, 1, 2, 3] ⊗ [3, 4, 5, 6] ⊗ [2, 3, 6, 7]
+ [0, 1, 2, 4] ⊗ [4, 5, 6, 7] ⊗ [2, 3, 4, 7] + [0, 1, 2, 3] ⊗ [3, 4, 5, 6] ⊗ [3, 4, 6, 7]
− [0, 1, 2, 3] ⊗ [3, 5, 6, 7] ⊗ [3, 4, 5, 7] + [0, 1, 2, 3] ⊗ [3, 4, 5, 6] ⊗ [4, 5, 6, 7]
+ [0, 1, 2, 3] ⊗ [3, 4, 6, 7] ⊗ [4, 5, 6, 7].

6.5 Cochains of cubical sets

In this subsection, we introduce, closely following the presentation of the previous subsection, a natural
May–Steenrod structure on the normalized cochains of any cubical set. By the same considerations, the
desired construction will follow from a natural M-bialgebra structure on N∙(◻n). These are determined by
three linear maps satisfying the relations in the presentation ofM. For n ∈ ℕ, define the following:
(i) Define the counit ϵ ∈ Hom(N∙(◻n),ℤ) by

ϵ(x1 ⊗ ⋅ ⋅ ⋅ ⊗ xd) = ϵ(x1) ⋅ ⋅ ⋅ ϵ(xn),

where
ϵ([0]) = ϵ([1]) = 1, ϵ([0, 1]) = 0.

(ii) Define the coproduct ∆ ∈ Hom(N∙(◻n), N∙(◻n)⊗2) by
∆(x1 ⊗ ⋅ ⋅ ⋅ ⊗ xn) =∑±(x(1)1 ⊗ ⋅ ⋅ ⋅ ⊗ x(1)n ) ⊗ (x(2)1 ⊗ ⋅ ⋅ ⋅ ⊗ x(2)n ),

where the sign is determined using the Koszul convention, and we are using Sweedler’s notation

∆(xi) =∑ x(1)i ⊗ x(2)i
for the chain map ∆ : N∙(◻1)→ N∙(◻1)⊗2 defined by

∆([0]) = [0] ⊗ [0], ∆([1]) = [1] ⊗ [1], ∆([0, 1]) = [0] ⊗ [0, 1] + [0, 1] ⊗ [1].

By using that N∙(◻n) = N∙(◻1)⊗n, ∆ is the composition

N∙(◻1)⊗n (N∙(◻1)⊗2)⊗n (N∙(◻1)⊗n)⊗2∆⊗n sh

where sh is the shuffle map that places tensor factors in odd position first.
(iii) Define the product ∗ ∈ Hom(N∙(◻n)⊗2, N∙(◻n)) by

(x1 ⊗ ⋅ ⋅ ⋅ ⊗ xn) ∗ (y1 ⊗ ⋅ ⋅ ⋅ ⊗ yn) = (−1)|x| n∑
i=1 x<iϵ(y<i) ⊗ xi ∗ yi ⊗ ϵ(x>i)y>i ,

where

x<i = x1 ⊗ ⋅ ⋅ ⋅ ⊗ xi−1, y<i = y1 ⊗ ⋅ ⋅ ⋅ ⊗ yi−1,
x>i = xi+1 ⊗ ⋅ ⋅ ⋅ ⊗ xn , y>i = yi+1 ⊗ ⋅ ⋅ ⋅ ⊗ yn ,
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with the convention
x<1 = y<1 = x>n = y>n = 1 ∈ ℤ,

and the only non-zero values of xi ∗ yi are

∗([0] ⊗ [1]) = [0, 1], ∗([1] ⊗ [0]) = −[0, 1].

Proposition 6.15 ([51]). For every n ∈ ℕ, the assignment

󳨃→ ϵ, 󳨃→ ∆, 󳨃→ ∗,

defines a naturalM-bialgebra structure on N∙(◻n), and, via a Kan extension argument, a natural U(M)-algebra
structure ϕ◻ : U(M)→ EndN∙(X) on the cochains of any cubical set X.
Composing the algebra structure ϕ◻ with theMay–Steenrod structure on U(M) gives a natural May–Steenrod
structure on N∙(X). We record this observation in the following theorem.

Theorem 6.16. The commutative diagram

U(M)

W EndN∙(X)
ϕ◻ψU(M)

ψ◻

defines a natural May–Steenrod structure on N∙(X) for any cubical set X.
We will now give examples of how this May–Steenrod structure defines representatives of Steenrod opera-
tions for cubical cochains. Recall the notation Ps = P−s and βPs = βP−s for Steenrod operations used when
studying the cohomology of spaces.

Example 6.17. Let us consider the prime 2. The value P1(x)([01]4) for a homogeneous cocycle x in N−3(◻4)
is equal to the value of x⊗2 acting on

[01]1[01][01] ⊗ [01][01]0[01] + [01][01][01]0 ⊗ [01]0[01][01]
+ [01][01][01]0 ⊗ 1[01][01][01] + [01][01]1[01] ⊗ [01]0[01][01]
+ [01][01]1[01] ⊗ 1[01][01][01] + [01][01][01]0 ⊗ [01][01]1[01]
+ [01][01]0[01] ⊗ [01][01][01]1 + [01]1[01][01] ⊗ [01][01][01]1
+ 0[01][01][01] ⊗ [01][01][01]1 + 0[01][01][01] ⊗ [01][01]0[01]
+ 0[01][01][01] ⊗ [01]1[01][01] + [01]0[01][01] ⊗ 1[01][01][01].

Example 6.18. Let us consider the prime 3. The value of βP0(x)([01]2) for a homogeneous cocycle x in
N−1(◻2) is equal to the value of x⊗3 acting on
−[01]1 ⊗ [01]0 ⊗ 1[01] − 0[01] ⊗ [01]0 ⊗ 1[01] + [01]1 ⊗ 0[01] ⊗ [01]1 + 0[01] ⊗ 0[01] ⊗ [01]1.

7 Outlook
This article looked at Steenrod operations from an algebraic viewpoint, a subject with rich geometric and
combinatorial components as well. For example, [33] and [46] independently introduced equivalent geomet-
ric representations of the cup-i products in terms of stabilized arc surfaces [35] and weighted ribbon graphs,
respectively. In fact, an entire E∞ operad (prop) is constructed geometrically in thisway.We can also interpret
theMay–Steenrod structure in U(M) from the “oriented surface" perspective, where the normmap N of cyclic
groups – a key ingredient in Definition 4.2 – was identified in [35] with a Dehn twist operator in connection
with Connes’ cyclic complex.
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In Higher Category Theory, the paper [49] constructs a functor producing strict∞-categories from group-
like cup-i coalgebras in a manner similar to [62]. In particular, the cup-i constructions described in this
article for standard simplices and cubes define, respectively, the Street nerve and cubical nerve of strict
∞-categories. We anticipate that the more general Steenrod (p, i)-products constructed in this work will also
have deep combinatorial interpretations.

There is a functorial approach to the theory using the formalism of Feynman categories [36], which
renders all the structures and notions natural. This includes cyclic, planar cyclic as well as Berger’s pre-
operads [11]. Their interplay is of independent interest [13, 34] andwill be linkeddirectly to the constructions
of this paper.

In physics, Gaiotto andKapustin [26], Kapustin and Thorngren [31], Bhardwaj, Gaiotto andKapustin [14]
and others have considered cellular decompositions of spacetime together with fields represented by cellular
cochains. In order to express subtle interactions between these fields, they have used cup-i products to define
relevant action functionals for topological field theories. We expect that new topological field theories of
interest can be studied using the Steenrod cup-(p, i) products introduced in this work.

In this article, we have not focused on the operations that exist non-trivially for En-algebras with n
finite; see [22, part III]. A treatment close to ours for the E2 case was given in [64]. Effective constructions
for these Dyer–Lashof–Cohen operations should be related to the geometry and combinatorial structure of
configuration spaces [5, 12, 37, 57] and higher categories [6, 8, 56], and will appear elsewhere.
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