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HEGEL ON CALCULUS

Ralph M. Kaufmann and Christopher Yeomans

It is fair to say that Georg Wilhelm Friedrich Hegel’s philosophy of 
mathematics and his interpretation of the calculus in particular have 

not been popular topics of conversation since the early part of the twenti-
eth century. Changes in mathematics in the late nineteenth century, the 
new set-theoretical approach to understanding its foundations, and the 
rise of a sympathetic philosophical logic have all conspired to give prior 
philosophies of mathematics (including Hegel’s) the untimely appear-
ance of naïveté. The common view was expressed by Bertrand Russell:

The great [mathematicians] of the seventeenth and eighteenth cen-
turies were so much impressed by the results of their new methods 
that they did not trouble to examine their foundations. Although their 
arguments were fallacious, a special Providence saw to it that their 
conclusions were more or less true. Hegel fastened upon the obscuri-
ties in the foundations of mathematics, turned them into dialectical 
contradictions, and resolved them by nonsensical syntheses. . . .The 
resulting puzzles [of mathematics] were all cleared up during the nine-
teenth century, not by heroic philosophical doctrines such as that of 
Kant or that of Hegel, but by patient attention to detail (1956, 368–69).

 Recently, however, interest in Hegel’s discussion of calculus has been 
awakened by an unlikely source: Gilles Deleuze. In particular, work 
by Simon Duffy and Henry Somers-Hall has demonstrated how close 
Deleuze and Hegel are in their treatment of the calculus as compared 
with most other philosophers of mathematics. We also believe that 
Hegel’s treatment of the calculus is worthy of serious examination, 
not least because the confusions he finds in early nineteenth-century 
analytical procedures are reproduced in virtually all of the current 
pedagogical presentations of calculus in the United States. Unlike 
Duffy and Somers-Hall, however, we believe that the value of Hegel’s 
discussion turns primarily not on its relation to the methodological 
foundations of metaphysics but on his attempts to forge a connection 
between analytical techniques and the theory of numbers generally. 
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This connection does have a metaphysical payoff, but its beneficiary 
is mathematics rather than philosophy.

1. oBjeCtions to hegel’s interpretation of CalCulus

According to Deleuze, Hegel makes two mistakes in his interpretation 
of the calculus. First, though he sees that there is a true infinite in the 
notion of the infinitesimal, he ruins this insight by forcing his interpreta-
tion into a dialectical logic of contradiction that works on principles at 
odds with those of the calculus (Deleuze 1995, 310n9).1 Second, Hegel 
thinks that mathematical procedures for working with differentials can 
never explain the relation between infinitesimals and reality; thus, he 
thinks that his own conceptual logic is required to show this relation. 
These two mistakes are related, of course, and, on Simon Duffy’s view, 
they are further connected with an historical fact. In Leibniz, integration 
is characterized as both (a) the inverse transformation of differentiation 
and (b) the summation of rectangles under the curve (which rectangles 
have infinitesimal sections of the curve as one side). Hegel follows his 
own contemporaries in viewing (a) as more promising and (b) as unten-
able. But, subsequent to Hegel, Augustin-Louis Cauchy and Bernhard 
Riemann developed (b) with new mathematical techniques that are more 
powerful: sufficiently powerful, on Deleuze’s view, to explain the reality 
of vanishing infinitesimals without recourse to the Hegelian dialectical 
logic of contradiction (Duffy 2009, 566–73).2

 To this same general way of viewing Hegel’s approach to calculus, 
Henry Somers-Hall adds the recognition that, in contrast to the infini-
tesimal interpretation of the calculus, Hegel takes Newton’s conception 
of fluxions and the ultimate ratio of evanescent quantities to provide the 
best available interpretation at his time. However, Newton’s presenta-
tion is afflicted with certain confusions, is thus insufficiently clear in 
its abstraction, and thus requires the dialectical logic of contradiction 
to demonstrate its import. Specifically, that logic tries to do so as a form 
of the unity of the finite and the infinite (Somers-Hall 2010, 561–62). 
But Hegel does not get beyond this opposition—he “only gets as far as 
the vanishing of the quantum [dx], and therefore leaves its status as 
vanished (from the realm of quanta at least) untouched” (Somers-Hall 
2010, 567). For both Duffy and Somers-Hall, Deleuze then responds to 
this failure by building a metaphysics that depends on the distinctive 
and unique status of differentials.

 In response to these objections and that of Russell, we advance the 
following interpretation: neither contradiction nor anything specific 
to Hegelian dialectical method is playing any fundamental role here; 
instead, the crucial notion is quantity itself. Before coming to his ex-
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tended engagement with the calculus, Hegel had already advanced a 
conception of quantity very much in tune with later developments in 
the theory of real numbers. In particular, he advanced such a conception 
that embeds the notion of the limit of a series at the heart of quantitative 
determinacy.3 Hegel’s argument is more indirect than that of Deleuze: 
the calculus brings into greater relief problems that are inherent in 
any notion of quantitative determinacy, and so the same resources that 
must be brought to bear to make sense of the latter can be extended to 
make sense of the former.4 According to Hegel one must look through 
the infelicities of analytical techniques to conceptualize what is actually 
being done, and focusing on the figure of the infinitesimal is a barrier to 
doing so. Once one does pierce the veil of these infelicities, however, Hegel 
thinks he can show the way in which quantity necessarily realizes itself 
as materiality. This is how the metaphysical payoff is to mathematics 
itself, since Hegel’s interpretation seems to explain why mathematics 
has the powerful insight into the nature of reality that it does.

2. hegel’s interpretation

A. Relation

The core of Hegel’s analysis derives from the realization that derivatives 
are given by ratios (dy/dx) and, as such, they can be viewed as giving 
quality to the quantities that are the moments or relata of this relation 
(dy and dx). This depends on Hegel’s conception of quality as the simplest 
form of a relation, that is, as the necessity of contrast for any determinate 
character. Mathematically speaking, it is legitimate to take the limit of 
these ratios, but only if one uses the composite (that is, one can take the 
limit of dy/dx but not dy or dx). This binds the relata to the ratio as mere 
moments (that is, dependent or subsidiary elements), which by them-
selves thus lose their nature as quanta (since quanta are supposed to be 
independent of comparison or variation). In Hegel’s terminology, taking 
the limit (Grenze) of the ratio supersedes the qualitative character of the 
composite and transforms it back into a quantity:

Quite generally: quantum is superseded quality; but quantum is infi-
nite, it surpasses itself, is the negation of itself; this, its surpassing, is 
therefore in itself the negation of the negated quantity, the restoration 
of it; and what is posited is that the externality, which seemed to be 
a beyond, is determined as quantum’s own moment. (WL 21.235–36; 
italics in original)5

This whole process is taken to be definitive of any quantum or number 
as such, and Hegel’s description of the process is just the translation 
into his own jargon of an ordinary mathematical procedure central to 
calculus.
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 It is easy to read such jargon as invoking as a premise basic dialectical 
principles such as the purportedly inevitable negation of the negation, 
when, in fact, these are rather exemplified by the form of calculation that 
is being interpreted. The dialectical language provides a guiding thread 
rather than a driving force. Hegel’s point is simply that symbols like dx 
should only be considered in ratios, and, as such, they are relational in 
nature, which ascribes a qualitative character to them:

Now the conception of limit does indeed imply the stated true category 
of the qualitatively determined relation of variable magnitudes, for 
the forms of it which occur, dx and dy, are supposed to be taken sim-
ply as only moments of , and itself ought to be regarded as one single 
indivisible symbol. (WL 21.265)

The higher-order operations of taking the limit of the related terms 
is a way that the relation surpasses or transcends itself (über sich 
hinausgeht) and generates itself as quantity by dissolving and subsum-
ing the independence of its constituents as specifiable quantities.

 The consideration of ratios naturally leads Hegel back to simple ra-
tios of numbers as an illustration. The difference between the ratios of 
numbers and the ratios of infinitesimals is that hidden in dx is a vari-
able x. The variability of x is fundamental in the usual considerations, 
since, in order to take the limit, one lets x approach certain values, yet 
this variability is an ad hoc property.

 It follows from all of this that infinitesimals are not, by themselves, 
bona fide quantities.6 Indeed, it is very hard to say what a simple in-
finitesimal—usually symbolized by ε, i, or dx— is supposed to be.7 As 
a stand-alone object, they are suspect and certainly not numbers (as 
George Berkeley correctly pointed out).

 In Leibniz and Newton, there is a certain mysticism about this in-
finitesimal quantity, which is why calculus was at first just a way to 
compute (thus, the name), but not strictly well founded even within 
mathematics itself. Leibniz’s version of the Fundamental Theorem of 
Calculus requires the difficult step of calculating the function of a curve 
from its law of tangency, for example, the curve x=y2 with the law of 
tangency x=y3/3:
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=
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=  𝑑𝑑𝑑𝑑2 + 𝑑𝑑𝑑𝑑 ∙ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 +
(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)2

3
= 𝑑𝑑𝑑𝑑2 

 
What is suspect in the calculation is the last equality. To obtain the desired result one 
has to treat dy and hence dy2 as zero. On the other hand, if one does this in the first or 
second line, one obtains problematic expressions. The question that has to be dealt with 
is the following: what is the reason to keep only the first term y2 and drop the second 

two terms ydy and 𝑑𝑑𝑑𝑑𝑦𝑦𝑦𝑦
2

3
?  Going back one equation this becomes the question, why 

ultimately one only keeps the term 3y2dy of the numerator and not the terms with 
higher powers of dy. There is a different rendering of the computations separating dx 
and dy that goes as follows, if y=x3 

𝑑𝑑𝑑𝑑 + 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = (𝑑𝑑𝑑𝑑 + 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)3 = 𝑑𝑑𝑑𝑑3 + 3𝑑𝑑𝑑𝑑2𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 3𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑2 + 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑3  

Using that y=x3, one arrives at dy=3x2dx, but only if one drops the terms with higher 
powers of dx (3𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑2 + 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑3) Rand keeps only the linear term, that is, the term linear in 
dx (3𝑑𝑑𝑑𝑑2𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑). This last step is the one that is under scrutiny, for if dx were a number, then 
dx2=0 would imply that dx itself is zero. Thus for Leibniz, this mysticism comes from the 
fact that an infinitesimal squared is treated as zero, but the infinitesimal itself is not 
(Laubenbacher and Pengelley 2000, 135). And it is this feature that exposes early 
modern accounts to Berkeley’s criticism, namely that there is supposedly some quantity 
or quality that can be disregarded, and which suddenly appears or disappears (Berkeley, 
George 1999, 73). 

To legitimize this last step of the calculus different arguments had been 
presented.  For instance, in Newton the arguments for limits involve the nebulous 
concept of fluxions, and Lagrange legitimizes the different treatment for the various 
terms in the sum by attributing physical meaning to each of them (such as speed, 
acceleration, etc.). Hegel decisively exposes the deficiency in both interpretations and 
hence the inadequacy of the arguments. What these approaches (and others like that of 
Carnot) have in common is that in order to treat these objects sensibly they are 
amalgamated with other properties to make their existence more credible. Hegel 
correctly points out that this amalgamation is an insufficient, confusing and ad hoc 
response. This is summarized nicely in Hegel’s criticism of Wolff’s presentation as 
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of why ultimately one only keeps the term 3y2dy of the numerator and 
not the terms with higher powers of dy. There is a different rendering 
of the computations separating dx and dy that goes as follows, if y=x3

y + dy = (x + dx)3 = x3 + 3x2dx + 3xdx2 + dx3

 Using that y=x3, one arrives at dy=3x2dx, but only if one drops the 
terms with higher powers of dx(3xdx2 + dx3) (and keeps only the linear 
term: that is, the term linear in dx(3x2dx). This last step is the one that 
is under scrutiny, for, if dx were a number, then dx2=0 would imply that 
dx itself is zero. Thus, for Leibniz, this mysticism comes from the fact 
that an infinitesimal squared is treated as zero, but the infinitesimal 
itself is not (Laubenbacher and Pengelley 2000, 135). And this feature 
exposes early modern accounts to Berkeley’s criticism, namely, that 
there is supposedly some quantity or quality that can be disregarded 
and that suddenly appears or disappears (Berkeley 1999, 73).

 To legitimize this last step of the calculus, different arguments had been 
presented. For instance, in Newton, the arguments for limits involve the 
nebulous concept of fluxions, and Joseph-Louis Lagrange legitimizes the 
different treatment for the various terms in the sum by attributing physi-
cal meaning to each of them (such as speed, acceleration, and so on). Hegel 
decisively exposes the deficiency in both interpretations and, hence, the 
inadequacy of the arguments. What these approaches (and others like that 
of Lazare Carnot) have in common is that, in order to treat these objects 
sensibly, they are amalgamated with other properties to make their exis-
tence more credible. Hegel correctly points out that this amalgamation is 
an insufficient, confusing, and ad hoc response. This is summarized nicely 
in his criticism of Christian Wolff’s presentation as employing the latter’s 
“customary way of popularizing things—in effect, by polluting the concept 
and replacing it with false sense-representations” (WL 21.256).

 Subsequently, Hegel offers his own argument for the selection of the 
linear term by appeal to the nature of the relation . But before going into 
the details of this argument, it will be convenient to recall the modern 
definition of a derivative and point out the relevant features for Hegel’s 
philosophical analysis:

 5 

employing the latter’s “customary way of popularizing things – in effect, by polluting the 
concept and replacing it with false sense-representations” (WL 21.256).  

Subsequently Hegel offers his own argument for the selection of the linear term 
by appeal to the nature of the relation 𝑑𝑑𝑑𝑑𝑦𝑦𝑦𝑦

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
. But before going into the details of this 

argument it will be convenient to recall the modern definition of a derivative and point 
out the relevant features for Hegel’s philosophical analysis: 

 
 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

(𝑑𝑑𝑑𝑑0) = lim
𝜀𝜀𝜀𝜀→0

𝑑𝑑𝑑𝑑(𝑑𝑑𝑑𝑑0+𝜀𝜀𝜀𝜀)−𝑑𝑑𝑑𝑑(𝑑𝑑𝑑𝑑0)
𝜖𝜖𝜖𝜖

  
 
The right hand side contains two nested operations, first a ratio and then a limit. The 
left hand side is indeed an un-separated ratio; it is often written as 𝑑𝑑𝑑𝑑𝑦𝑦𝑦𝑦

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
, where one first 

sets 𝑑𝑑𝑑𝑑 = 𝑓𝑓𝑓𝑓(𝑑𝑑𝑑𝑑). The realization that there is a second operation on the previously formed 
ratio that needs to be considered is central to Hegel’s argument. 
 

If we attend to the contrast between this modern way of proceeding and 
Newton’s, we can bring the distinction between Newton and Hegel into relief. Newton 
doesn’t yet have the concept of a limit (this comes from Cauchy), and so Newton’s 
version of the above formula is: 
 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑𝑦𝑦𝑦𝑦

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

In this formula the limit is already inherent in the quantities dx and dy, but only as 
implicit. The problem is that in the calculation on the basis of this formula, higher order 
terms are generated that have to vanish to generate the desired result (as we saw 
above with respect to Leibniz). Without the explicit concept of a limit, Leibniz and 
Newton are denied the possibility of explaining why this vanishing is legitimate. 
Furthermore, they have to explain why, in the determination of the ratio of vanishing, 
higher-order terms are neglected.  

While Hegel embraces the fact that in Newton’s argument a certain quality of 
the differential takes shape as the last value of the ratio (the quacum evanescunt), Hegel 
rejects Newton’s reasoning for the negligibility of the higher order terms legitimizing the 
calculation.  In fact, he ponders what “could have brought Newton to deceive himself 
about such a proof” (WL 21.261). Hegel thinks that had Newton only realized that the 
composite is a quality now – a ratio of the two quantities together that remains as the 
individual constituents vanish – then he would have had an adequate response to 
Berkeley and the other, more sympathetic critics who proposed alternative forms of 
analysis (WL 21.262-3).  If the composite is essentially relational, then there is nothing 
strange in the idea that it might have a determinate character over and above whatever 
determinate character its relata have, and thus a determinate character that might 
remain or even first become clear in the relation between the changes between those 
relata undergo as they get smaller.  

In fact, the way Hegel explains this is the way we currently take the limit of the 
ratio as it goes to zero in contemporary mathematics: 
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argument it will be convenient to recall the modern definition of a derivative and point 
out the relevant features for Hegel’s philosophical analysis: 
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𝜖𝜖𝜖𝜖

  
 
The right hand side contains two nested operations, first a ratio and then a limit. The 
left hand side is indeed an un-separated ratio; it is often written as 𝑑𝑑𝑑𝑑𝑦𝑦𝑦𝑦

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
, where one first 

sets 𝑑𝑑𝑑𝑑 = 𝑓𝑓𝑓𝑓(𝑑𝑑𝑑𝑑). The realization that there is a second operation on the previously formed 
ratio that needs to be considered is central to Hegel’s argument. 
 

If we attend to the contrast between this modern way of proceeding and 
Newton’s, we can bring the distinction between Newton and Hegel into relief. Newton 
doesn’t yet have the concept of a limit (this comes from Cauchy), and so Newton’s 
version of the above formula is: 
 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑𝑦𝑦𝑦𝑦

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

In this formula the limit is already inherent in the quantities dx and dy, but only as 
implicit. The problem is that in the calculation on the basis of this formula, higher order 
terms are generated that have to vanish to generate the desired result (as we saw 
above with respect to Leibniz). Without the explicit concept of a limit, Leibniz and 
Newton are denied the possibility of explaining why this vanishing is legitimate. 
Furthermore, they have to explain why, in the determination of the ratio of vanishing, 
higher-order terms are neglected.  

While Hegel embraces the fact that in Newton’s argument a certain quality of 
the differential takes shape as the last value of the ratio (the quacum evanescunt), Hegel 
rejects Newton’s reasoning for the negligibility of the higher order terms legitimizing the 
calculation.  In fact, he ponders what “could have brought Newton to deceive himself 
about such a proof” (WL 21.261). Hegel thinks that had Newton only realized that the 
composite is a quality now – a ratio of the two quantities together that remains as the 
individual constituents vanish – then he would have had an adequate response to 
Berkeley and the other, more sympathetic critics who proposed alternative forms of 
analysis (WL 21.262-3).  If the composite is essentially relational, then there is nothing 
strange in the idea that it might have a determinate character over and above whatever 
determinate character its relata have, and thus a determinate character that might 
remain or even first become clear in the relation between the changes between those 
relata undergo as they get smaller.  

In fact, the way Hegel explains this is the way we currently take the limit of the 
ratio as it goes to zero in contemporary mathematics: 
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employing the latter’s “customary way of popularizing things – in effect, by polluting the 
concept and replacing it with false sense-representations” (WL 21.256).  

Subsequently Hegel offers his own argument for the selection of the linear term 
by appeal to the nature of the relation 𝑑𝑑𝑑𝑑𝑦𝑦𝑦𝑦
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implicit. The problem is that in the calculation on the basis of this formula, higher order 
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Newton are denied the possibility of explaining why this vanishing is legitimate. 
Furthermore, they have to explain why, in the determination of the ratio of vanishing, 
higher-order terms are neglected.  

While Hegel embraces the fact that in Newton’s argument a certain quality of 
the differential takes shape as the last value of the ratio (the quacum evanescunt), Hegel 
rejects Newton’s reasoning for the negligibility of the higher order terms legitimizing the 
calculation.  In fact, he ponders what “could have brought Newton to deceive himself 
about such a proof” (WL 21.261). Hegel thinks that had Newton only realized that the 
composite is a quality now – a ratio of the two quantities together that remains as the 
individual constituents vanish – then he would have had an adequate response to 
Berkeley and the other, more sympathetic critics who proposed alternative forms of 
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dx

In this formula, the limit is already inherent in the quantities dx and 
dy, but only as implicit. The problem is that, in the calculation on the 
basis of this formula, higher-order terms are generated that have to 
vanish to generate the desired result (as we saw above with respect to 
Leibniz). Without the explicit concept of a limit, Leibniz and Newton 
are denied the possibility of explaining why this vanishing is legitimate. 
Furthermore, they have to explain why, in the determination of the ratio 
of vanishing, higher-order terms are neglected.

 While Hegel embraces the fact that, in Newton’s argument, a certain 
quality of the differential takes shape as the last value of the ratio 
(the quacum evanescunt), Hegel rejects Newton’s reasoning for the 
negligibility of the higher-order terms legitimizing the calculation. In 
fact, he ponders what “could have brought Newton to deceive himself 
about such a proof” (WL 21.261). Hegel thinks that, had Newton only 
realized that the composite is a quality now—a ratio of the two quanti-
ties together that remains as the individual constituents vanish—then 
he would have had an adequate response to Berkeley and the other, 
more sympathetic critics who proposed alternative forms of analysis 
(WL 21.262–63). If the composite is essentially relational, then there is 
nothing strange in the idea that it might have a determinate character 
over and above whatever determinate character its relata have, and 
thus a determinate character that might remain or even first become 
clear in the relation between the changes between those relata undergo 
as they get smaller.

 In fact, the way Hegel explains this is the way we currently take the 
limit of the ratio as it goes to zero in contemporary mathematics:

Since at issue here is a relation and not a sum, the differential is 
completely given by the first term; and where there is the need of 
further terms, of differentials of higher orders, their determination 
does not involve the continuation of a series as sum, but the repetition 
rather of one and the same relation, the only one wanted and the one 
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which is, therefore, already completely determined in the first term 
(WL 21.264; italics in original).

 What is important is not the series qua sequence or quantitative sum, 
but rather the basic form of the relation. That basic form is revealed by 
the operation of taking the limit of the ratio itself as the quantitative val-
ues of both numerator and denominator to zero. More concretely, Hegel 
argues that the linear term (3x2dx) constitutes the relation between dx 
and dy, while the higher terms represent merely repeated applications 
and introduce no new quality or relation.

 Hegel’s solution holds that a quality is given by the ratio but then 
denies that this in any independent way survives when the quantities 
vanish by computing modulo higher-order terms (for example, as a 
Newtonian fluxion). Instead, the quality given by a ratio (Verhältnis) 
becomes the sought-after quantity when taking the limit. A surviving 
independent quality would be something with which the quantity was 
amalgamated (whether that is conceived as fluxion or something else). 
The key is that, for Hegel, the surviving quality is internal to the quan-
tity generated by the limit-taking process rather than something that 
survives the destruction of the quantity in the infinitesimal. Thus (as 
Somers-Hall notes), Hegel does not follow Newton’s argument in full, 
only that to which it points (the ratio with which they vanish); Newton 
just does not know what that means (Somers-Hall 2010, 562). Hegel 
explicitly says that he cannot endorse the fluxions or quacum evanes-
cent—these are still the “something else” with which the differential is 
amalgamated to make it accessible to intuition.

 Thus, two features distinguish Hegel’s view from Newton’s: first, this 
qualitative nature is something intrinsic to the mathematical phenom-
enon (WL 21.310–22), not something with which it is amalgamated in an 
ad hoc manner. Second, it is something essentially conceptual or logical, 
rather than intuitive or physical. But note that the qualitative nature is 
a conceptual or logical feature required to do justice to the mathematical 
phenomenon (that is, it is what is rendered as a limit in contemporary 
mathematics), not for idiosyncratically Hegelian methodological reasons 
(such as the purported inevitability of dialectical contradiction). There is, 
of course, a sense in which this conceptual or logical feature is added to the 
notion of quantity by means of a dialectical process. That process, however, 
works not by forcing the mathematical phenomenon into a preconceived 
pattern but rather by noticing that a widely recognized confusion about 
the phenomenon can be traced back to the tension between qualitative 
and quantitative aspects of that phenomenon. This is the sense in which 
contradiction functions here for Hegel as at most a heuristic thread to 
follow rather than a methodological premise, contra Deleuze.
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 We would do well to pause here and regard Hegel’s analysis in the light 
of modern mathematical practice. Hegel realizes that nesting operations 
are necessary and that the ratio has to be understood as qualitative, and 
it is certainly true that we only get the derivative after taking the limit 
of the ratio as a whole. Before such an operation, we find only a quotient, 
and there is no way to take the limit just as a limit of the numerator 
divided by a limit of the denominator. This would yield the nonsensical 
and derided as Hegel and all critics have pointed out. This Gordian knot 
is cut by modern mathematics almost tautologically by defining the limit 
of a Cauchy sequence to be the class of the sequence itself, just like a deci-
mal expansion defines a real number. In this connection, we should read 
Hegel as offering a philosophical concept (Begriff) to capture the nature 
of this class and an answer to the question of its justification. This answer 
is to insist on the qualitative nature of that composite, or its essential 
character of being a ratio. It then follows that, to take the limit, there 
must be brackets around the ratio, treating it as a whole. And, indeed, it 
is the case that the sequence of ratios is subjected to another ratio like 
equivalence.8 Furthermore, the fact that a derivative is a becoming or 
nascent quantity is also reflected in the modern treatment, as the fact that 
a derivative can only be computed locally. One needs a neighborhood of a 
point to be able to define the derivative at that point; this neighborhood 
can be arbitrarily small, but it is necessary. Technically, this is called a 
germ, which suggests its nascent character.9 Again, there are important 
philosophical and mathematical issues involved in conceptualizing the 
practice of calculus, but Hegel does manage to show that it can be done 
by extending the same logical resources already required to understand 
number as such—here, resources relating to ratios.

B. Variability

Resources related to ratios can be extended to eliminate the ad hoc 
character of the disregarding of all but the linear term, but the ad hoc 
nature of the variability at the heart of calculus remains. Philosophi-
cally, we would like to know why we have the two terms dy and dx in 
the ratio in the first place rather than determinate quantities. But Hegel 
realizes that quanta are themselves inherently variable, and, if it is in 
the basic nature of all quantitative determinacy to be variable, then the 
use of such variability in the methods of differential calculus is not an 
arbitrary and ungrounded novelty in mathematical practice but rather 
an extension of other mathematical uses of numbers that brings into 
relief one of their essential properties. Thus, Hegel gives a philosophical 
meaning to Newton’s fluxions by reinterpreting it: on this interpretation, 
the quacum evanescent is not a vanishing but a creation; it is a becoming 
(Werden) that is inherent in quanta. But if that is true, then the logical 
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form expressed so confusingly by infinitesimals should be amenable to 
treatment by the techniques that Hegel had already developed in his 
discussions of number. Here, unfortunately, we can no longer avoid one 
of the classic tropes of Hegelian metaphysics, namely, the distinction 
between true and false infinites; but we can also illuminate it from the 
modern mathematical perspective.

 Hegel investigates the role of the infinite in both ratios and derivatives, 
frequently making use of his distinction between false and true infini-
ties. The main examples for the former are series, whereas true infinities 
have to include a certain aspect of transcendence or change from mere 
quantity to quality and vice versa. The series do not have this property; 
they are merely truncated quantities. Here one would naturally be in-
clined to criticize Hegel for not realizing that the real numbers are about 
convergent sequences (to be precise, Cauchy sequences). However, one 
would miss an important point: the real numbers are not sequences, but 
classes of sequences, which is a quality of the sequences in Hegel’s terms. 
And so it is quite right of Hegel to point out, for instance, that a decimal 
expansion, of, for example, one-third or one-seventh is not a true infinity, 
but that actually the ratio is much closer, since it contains a quality. In 
modern mathematical terminology, this is encoded by the fact that rational 
numbers are classes.10 As Hegel explains it, quotients as rational numbers 
are constituted of three parts (the two relata and the value of their rela-
tion, which Hegel calls the exponent); this gives them a qualitative aspect. 
Their value, the class, is then again a quantity, but, for this, one needs an 
infinite process of taking classes of ratios. Hegel then simply applies this 
result from his number theory to infinitesimals by observing that one must 
add the variability of the constituent (here, the variability of x in dx). The 
variability is thus conceptually necessary rather than ad hoc. This insis-
tence on variability resolves the nature of quantity of the constituents of 
the compound object given by the relation. The constituents are in these 
considerations just moments (WL 21.325). Only after the infinite process 
of taking classes of ratios of do we find a quantity.

 In modern terms, it is true that, before taking the limit of the ratio 
, the ratio is that of functions and, in that sense, they are not finite 
quanta or real numbers; they become such only after evaluation. After 
this intermediate step of evaluation, one again gets a function. Unac-
countably, Hegel tries to bypass this point. This is a shame because it 
would have helped him bring out some consequences of the necessity 
of that variability. Specifically, it is actually not true that dx contains a 
free variable x in any way; otherwise, if y is viewed as some other vari-
able, there would be no relationship of dx to dy. Indeed 
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employing the latter’s “customary way of popularizing things – in effect, by polluting the 
concept and replacing it with false sense-representations” (WL 21.256).  

Subsequently Hegel offers his own argument for the selection of the linear term 
by appeal to the nature of the relation 𝑑𝑑𝑑𝑑𝑦𝑦𝑦𝑦
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. But before going into the details of this 

argument it will be convenient to recall the modern definition of a derivative and point 
out the relevant features for Hegel’s philosophical analysis: 
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The right hand side contains two nested operations, first a ratio and then a limit. The 
left hand side is indeed an un-separated ratio; it is often written as 𝑑𝑑𝑑𝑑𝑦𝑦𝑦𝑦
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sets 𝑑𝑑𝑑𝑑 = 𝑓𝑓𝑓𝑓(𝑑𝑑𝑑𝑑). The realization that there is a second operation on the previously formed 
ratio that needs to be considered is central to Hegel’s argument. 
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Newton’s, we can bring the distinction between Newton and Hegel into relief. Newton 
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version of the above formula is: 
 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑𝑦𝑦𝑦𝑦

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

In this formula the limit is already inherent in the quantities dx and dy, but only as 
implicit. The problem is that in the calculation on the basis of this formula, higher order 
terms are generated that have to vanish to generate the desired result (as we saw 
above with respect to Leibniz). Without the explicit concept of a limit, Leibniz and 
Newton are denied the possibility of explaining why this vanishing is legitimate. 
Furthermore, they have to explain why, in the determination of the ratio of vanishing, 
higher-order terms are neglected.  

While Hegel embraces the fact that in Newton’s argument a certain quality of 
the differential takes shape as the last value of the ratio (the quacum evanescunt), Hegel 
rejects Newton’s reasoning for the negligibility of the higher order terms legitimizing the 
calculation.  In fact, he ponders what “could have brought Newton to deceive himself 
about such a proof” (WL 21.261). Hegel thinks that had Newton only realized that the 
composite is a quality now – a ratio of the two quantities together that remains as the 
individual constituents vanish – then he would have had an adequate response to 
Berkeley and the other, more sympathetic critics who proposed alternative forms of 
analysis (WL 21.262-3).  If the composite is essentially relational, then there is nothing 
strange in the idea that it might have a determinate character over and above whatever 
determinate character its relata have, and thus a determinate character that might 
remain or even first become clear in the relation between the changes between those 
relata undergo as they get smaller.  

In fact, the way Hegel explains this is the way we currently take the limit of the 
ratio as it goes to zero in contemporary mathematics: 
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convergent sequences (to be precise: Cauchy sequences). However, one would miss an 
important point, namely that the real numbers are not sequences, but classes of 
sequences, which is a quality of the sequences in Hegel’s terms.  And so it is quite right 
of Hegel to point out for instance that a decimal expansion, of, for example, 1/3 or 1/7, 
is not a true infinity, but that actually the ratio is much closer, since it contains a quality. 
In modern mathematical terminology this is encoded by the fact that rational numbers 
are classes.10  As Hegel explains it, quotients as rational numbers are constituted of 
three parts (the two relata and the value of their relation, which Hegel calls the 
exponent); this gives them a qualitative aspect. Their value, the class, is then again a 
quantity, but for this one needs an infinite process of taking classes of ratios). Hegel 
then simply applies this result from his number theory to infinitesimals by observing 
that one must add the variability of the constituent (here, the variability of x in dx).  The 
variability is thus conceptually necessary rather than ad hoc. This insistence on 
variability resolves the nature of quantity of the constituents of the compound object 
given by the relation. The constituents are in these considerations just moments (WL 
21.325). Only after the infinite process of taking classes of ratios of  𝑑𝑑𝑑𝑑𝑦𝑦𝑦𝑦
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In modern terms, it is true that before taking the limit of the ratio 𝑑𝑑𝑑𝑑𝑦𝑦𝑦𝑦
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, the ratio is 
that of functions and in that sense they are not finite quanta or real numbers; they 
become such only after evaluation. After this intermediate step of evaluation, one again 
gets a function.  Unaccountably, Hegel tries to bypass this point.  This is a shame, 
because it would have helped him to bring out some consequences of the necessity of 
that variability. Specifically, it is actually not true that dx contains a free variable x in any 
way; otherwise if y is viewed as some other variable there would be no relationship of 
dx to dy. Indeed 𝑑𝑑𝑑𝑑𝑦𝑦𝑦𝑦
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intermediate step left out by Hegel and other users of the 𝑑𝑑𝑑𝑑𝑦𝑦𝑦𝑦
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

 notation is 𝑑𝑑𝑑𝑑 = 𝑓𝑓𝑓𝑓(𝑑𝑑𝑑𝑑), 
which expresses y as a dependent variable.  This only makes the depth of the relational 
tie between dy and dx (and thus their qualitative nature) clearer.  Thus the variability of 
quantity is deeply tied to its essentially relational nature.  

C.  Powers 

So far, we have seen the application of the resources Hegel developed to 
comprehend ratios and variability to the case of the ratio 𝑑𝑑𝑑𝑑𝑦𝑦𝑦𝑦

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
 and its varying numerator 

and denominator in particular.  In another extension, Hegel takes up his understanding 
powers (WL21.197-203) and applies them to calculus.  In fact, Hegel claims that 
derivatives can be exhaustively analyzed into powers and thus treated algebraicially.11 
There are two points of contact between derivatives and powers; one is mathematical, 
and the other is more philosophical.  

The mathematical point is that differentiation picks out the information about 
the exponent.  This is obvious in the equation that Hegel uses for his demonstration:  
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑛𝑛𝑛𝑛 = 𝑛𝑛𝑛𝑛𝑑𝑑𝑑𝑑𝑛𝑛𝑛𝑛−1𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (WL 21.273).  As Hegel correctly points out, this is not as simple as it 

. The intermediate 
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sets 𝑑𝑑𝑑𝑑 = 𝑓𝑓𝑓𝑓(𝑑𝑑𝑑𝑑). The realization that there is a second operation on the previously formed 
ratio that needs to be considered is central to Hegel’s argument. 
 

If we attend to the contrast between this modern way of proceeding and 
Newton’s, we can bring the distinction between Newton and Hegel into relief. Newton 
doesn’t yet have the concept of a limit (this comes from Cauchy), and so Newton’s 
version of the above formula is: 
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In this formula the limit is already inherent in the quantities dx and dy, but only as 
implicit. The problem is that in the calculation on the basis of this formula, higher order 
terms are generated that have to vanish to generate the desired result (as we saw 
above with respect to Leibniz). Without the explicit concept of a limit, Leibniz and 
Newton are denied the possibility of explaining why this vanishing is legitimate. 
Furthermore, they have to explain why, in the determination of the ratio of vanishing, 
higher-order terms are neglected.  

While Hegel embraces the fact that in Newton’s argument a certain quality of 
the differential takes shape as the last value of the ratio (the quacum evanescunt), Hegel 
rejects Newton’s reasoning for the negligibility of the higher order terms legitimizing the 
calculation.  In fact, he ponders what “could have brought Newton to deceive himself 
about such a proof” (WL 21.261). Hegel thinks that had Newton only realized that the 
composite is a quality now – a ratio of the two quantities together that remains as the 
individual constituents vanish – then he would have had an adequate response to 
Berkeley and the other, more sympathetic critics who proposed alternative forms of 
analysis (WL 21.262-3).  If the composite is essentially relational, then there is nothing 
strange in the idea that it might have a determinate character over and above whatever 
determinate character its relata have, and thus a determinate character that might 
remain or even first become clear in the relation between the changes between those 
relata undergo as they get smaller.  

In fact, the way Hegel explains this is the way we currently take the limit of the 
ratio as it goes to zero in contemporary mathematics: 
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 and its 
varying numerator and denominator in particular. In another extension, 
Hegel takes up his understanding powers (WL21.197–203) and applies 
them to calculus. In fact, he claims that derivatives can be exhaustively 
analyzed into powers and thus treated algebraically.11 There are two 
points of contact between derivatives and powers; one is mathematical, 
and the other is more philosophical.

 The mathematical point is that differentiation picks out the informa-
tion about the exponent. This is obvious in the equation that Hegel uses 
for his demonstration: dxn = nxn–1dx (WL 21.273). As Hegel correctly 
points out, this is not as simple as it sounds, because it pertains to the 
relation of the variable x of the function and the power n that defines the 
function. Hegel reduces this special relation to binomials and then gives 
a clever argument assimilating it to his previous discussion of powers. 
A payoff for Hegel is that, in this line of reasoning, he can construct his 
own interpretation of the fundamental step of picking out the linear 
term and, moreover, its coefficient. The argument proceeds in several 
steps.

 (1) He first observes that, in a variable quantity, it is inherently al-
ways possible to consider adding to them and, hence, one inherently is 
led to reflect upon the function of a sum as in (x + a)n. This expression 
can be expanded by considering the binomial expansion (x + a)n = xn + 
nxn–1a + …. This is crucially inherent in quantity itself as quantities can 
be taken to their nth power, as argued previously.

 (2) The linear term nxn–1a can now be taken to be a relation between 
a and x. Hegel now asks: Why should we consider this linear term to be 
fundamental? The first answer is that this is the fundamental relation 
between powers and the leading and following terms are all iterates of 
this fundamental relation (this step is the more developed version of 
the argument from ratios we considered in § IIA). Indeed, as he points 
out, formally this follows from the product rule.

 (3) Hegel’s second answer is that it is not the position of the terms 
in the expansion that is fundamental, but rather the relation that each 
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term and its successor stand. This relationship is fully contained in the 
power being considered: the power n for the first two terms, the power 
n-1 for the second and third term, and so on. Here, there is a role reversal 
in which each term is essential for its successor.

 (4) In calculus, usually a is replaced by an infinitesimal dx and ex-
panded only to the first order, but Hegel posits that one may as well set 
a equal to 1, or the unit. This is, in a sense, more natural, since now one 
is augmenting by units (Einheiten). This circumvents the introduction of 
infinitesimals and directly yields the expression xn + nxn–1a + …, which 
only involves different powers of x and thus eliminates the need for an 
infinitesimal.

 (5) The coefficients are now the relations between the different powers 
of x and in particular the coefficient n of the linear term, which gives 
the relation between the nth power and the n-1st power. This is why 
we are justified in picking out the linear term and discarding the rest: 
which relation one picks depends on the power one is considering, but, 
for the function at hand, that power is n, which, therefore, constitutes 
the primate. The first successor is then fundamental and the further 
successors higher-derived quantities. This is the meaning of his iden-
tification of “the reduction of the magnitude to the next lowest power 
[die Herabsetzung der Größe auf die nächst niedrigere Potenz]” (WL 
21.282.12–13) as the main driver of the analytical technique.

 It would be good at this point to connect this positive argument with 
Hegel’s earlier criticism of Newton and others for their amalgamation 
of sensible or otherwise nonmathematical qualities with the derivative 
that remains as the ratio goes to zero. The argument Hegel provides 
replaces this nonmathematical quality with a mathematical one: namely, 
the relation between a power and the next-lowest power. The argument 
from ratios tells you why the series qua series is not that important (that 
is, it tells you why what is important is the relation at which the series 
points), and the argument from powers tells you that that relation is 
to be found in the linear term (that is, in the relation between the nth 
and n-1th powers). So one can consider Hegel to have an overarching a 
two-step argument. The first step tells you the point of the mathematical 
formalism, and the second tells you the part of the formalism to isolate 
to determinate its content.

 This connects with the earlier point that the progression of the 
ratio to 0/0 is the mathematical form of the divergence of measures 
(for example, in phase transitions), which is itself the way that Hegel 
introduces a nonmathematical concept, namely, essence (Wesen). What 
Hegel might have seen given his own analysis of powers is that the 
taking of the limit is itself a way to generate the concrete conception 
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of the relation between dramatically different scales that is built into 
the notion of an essence. This would be a different route to a far more 
Deleuzian metaphysics, in which strictly mathematical tools do more 
work than the more traditionally metaphysical concepts Hegel em-
ploys in the Doctrine of Essence. But, instead of using the divergence 
of measures, he turns to a different mathematical resource developed 
earlier in his number theory: the relation between unit and amount.

 This leads us to the philosophical point of contact between de-
rivatives and powers, which concerns the coincidence of the two 
conceptual aspects of number (Einheit and Anzahl, or unit and amount) 
(WL 21.275). This is given by noticing that, in a multiplication one 
factor is the unit) and the other is the amount. When these two coin-
cide, then their difference in quality is resolved, and this transforms 
multiplication to power and to a quantity. Thus, in computing squares, 
there is a similar transcendence as in ratios. In this treatment, power 
(namely, squares) and, with it, higher powers now become an inherent 
property of quanta (by their variability and their relation to units), 
namely, that they can be units, thus giving rise to powers, and that they 
can be augmented by units, thus giving rise to the binomial expansion 
and the arguments above. Here the mechanism that produces a quan-
tity from the ratio becomes the underlying principle for the definition 
of powers. Thus, calculus becomes all about powers, which are inher-
ent in the variability of quanta, which was inherent in quanta to start 
with. Nothing in the way of fundamental principles has to be added 
that is specific to the calculus itself. The power analysis thus works 
together with the ratio analysis to show that calculus can be handled 
by extension of the same basic techniques required for defining real 
numbers.

 But, in the same way that no additional mathematical principles 
have to be added, it is important to Hegel that neither do any geo-
metrical or physical ideas have to be added. This was also important to 
Lagrange, as one can see from the subtitle of his “Théorie des Fonctions 
Analytiques: Principes du Calcul différentielle, dégagés de toute consi-
dération d’infiniment petits, d’évanouissantes, de limite et de fuxions, 
réduits à l’analyse algébrique des quantités finies” (Theory of Analytic 
Functions: The Principles of Differential Calculus, Set apart from All 
Considerations of Infinitesimals, Effervescents, Limits and Fluxtions 
and Reduced to an Algebraic Analysis of Finite Algebraic Quantities). 
Hegel also rids calculus of these superfluous terms. Furthermore, he 
establishes algebra’s primacy over geometry, which is also the approach 
of modern mathematics.12 As mentioned before, the algebraic approach 
both Hegel and Lagrange pursue is only valid for analytic functions.
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 Hegel, however, differentiates himself from Lagrange by claiming 
that the introduction of power series is unnecessary and misleading; 
only individual powers, and not power series, are required. Hegel is 
right on this point, which deserves some untangling. The power series 
are only necessary to make taking a derivative an algebraic operation, 
not to define derivatives. They are key to extend differential to the 
wider class of analytic functions, which contains exponentials sine and 
cosine for instance, in contrast to polynomials. In this setting, one ad-
ditionally needs theorems to say that one can interchange summation 
and differentiation, effectively separating the two concepts. These are 
developments in analysis, as even the modern definition of a function, 
which were not quite worked out to a modern level or rigor yet at Hegel 
and Lagrange’s time. Correctly, these theorems deal with two types of 
infinities that Hegel bemoans as being confounded. The modern math-
ematical analysis actually does not confound them, but rather realizes in 
a precise way that they are two different limits whose interchangeability, 
as order of operations, is not always guaranteed. Thus, Hegel is right 
that the series are not the reason for the negligibility of higher orders. 
Their interplay is, however, tantamount to establishing the algebraic 
nature of differentiation for a suitable class of functions. Furthermore, 
Lagrange does make the mistake that Hegel could have foreseen of 
defining the functions as power series instead of using classes of these. 
The fact that different power series can give different functions and not 
all functions are represented by power series was the reason the Cauchy 
wrote his textbook and refuted Lagrange’s view.

D. Integration

Hegel completes his interpretation of calculus with a treatment of integra-
tion. This serves a two-fold purpose of demonstrating the applicability of 
his reasoning that the “reduction” of powers is the fundamental concept 
(which is inverse to the coincidence of amount and unit in the forming 
of powers) while also showing the primacy of algebraic thought over ge-
ometry. This inversion of the reduction and the coincidence of unit and 
amount ties into the property of the integral being an antiderivative. Using 
the method of Bonaventura Cavalieri,13 he discusses integration as a sum 
of infinitesimals,14 and he observes that, in these manipulations, the dx 
in ∫fdx naturally has different flavors depending on whether one is using 
them to compute area, length, or volume. In Cavalieri’s principle, it is not 
so much that one is multiplying lines by lines to get an area, but that one 
is again reflecting upon the ratio of two areas (usually to say that they 
are equal). This ties back into the application of Hegel’s primate of the 
next leading power, which is most apparent in the calculation of area as 
the integral over the function giving the boundary. Here one imagines 
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vertical lines making up the area; these are then “summed” together. The 
integral then is the transition of a sum of lengths to an area, which is 
exactly going up one power from length to area=(length)2.

 From a modern perspective, there are two correct results here. When 
defining integrals, one is actually defining areas or lengths, again a 
point missed in most explanations and textbooks. The area of a square 
or volume of a higher dimensional version is defined by an integral, and 
Hegel holds this identification to be a real insight: “The true merit of 
mathematical acumen is that, from results already known elsewhere, 
it has found that certain sides of a mathematical object stand to each 
other in the relationship of original and derived function, and it has 
found which these sides are” (WL 21.295). The way to obtain the results 
“known” from geometry is that one fixes the normalization that the 
length of the interval from zero to one is indeed one. The other integrals 
then can be viewed as products and transformations of this integral and, 
hence, as ratios. Again, the power analysis, thus, works together with 
the ratio analysis to show that calculus can be handled by extension of 
the same basic techniques required for defining real numbers.

 The second correct result of Hegel’s construal of Cavalieri’s method 
is one that Hegel himself misses (but would have been accessible for 
him at this point): the resolution of Cavalieri’s paradox by means of the 
chain rule. The paradox pertains to the area of the two subtriangles of a 
triangle created by an altitude of its largest angle. The lines parallel to 
the height are in 1–1 correspondence, and, under this correspondence, 
line segments of equal height are paired. So, one could argue, the areas 
of the two subtriangles should be the same.15 But this is only the case 
for isosceles triangles, and not triangles in which the base is otherwise 
cut into two unequal parts, ab and bc. This is illustrated in Figure 1.

Figure 1

 This can be resolved using the chain rule. If one segment ab is taken 
as the unit, the other bc is some multiple of it, say k, and hence if dx is 
the infinitesimal (or measure) on the first and dy is the infinitesimal on 
the other, then the chain rule says that dx=kdy and hence 
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of powers, one can see that the “infinite sum” represented by the integral can have 
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ratio of areas. Second, in the chain rule, it becomes apparent that dx and 
dy are actually bound together by their ratio; it is this ratio, which is k, 
that is meant by  
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𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
, where one first 

sets 𝑑𝑑𝑑𝑑 = 𝑓𝑓𝑓𝑓(𝑑𝑑𝑑𝑑). The realization that there is a second operation on the previously formed 
ratio that needs to be considered is central to Hegel’s argument. 
 

If we attend to the contrast between this modern way of proceeding and 
Newton’s, we can bring the distinction between Newton and Hegel into relief. Newton 
doesn’t yet have the concept of a limit (this comes from Cauchy), and so Newton’s 
version of the above formula is: 
 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑𝑦𝑦𝑦𝑦

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

In this formula the limit is already inherent in the quantities dx and dy, but only as 
implicit. The problem is that in the calculation on the basis of this formula, higher order 
terms are generated that have to vanish to generate the desired result (as we saw 
above with respect to Leibniz). Without the explicit concept of a limit, Leibniz and 
Newton are denied the possibility of explaining why this vanishing is legitimate. 
Furthermore, they have to explain why, in the determination of the ratio of vanishing, 
higher-order terms are neglected.  

While Hegel embraces the fact that in Newton’s argument a certain quality of 
the differential takes shape as the last value of the ratio (the quacum evanescunt), Hegel 
rejects Newton’s reasoning for the negligibility of the higher order terms legitimizing the 
calculation.  In fact, he ponders what “could have brought Newton to deceive himself 
about such a proof” (WL 21.261). Hegel thinks that had Newton only realized that the 
composite is a quality now – a ratio of the two quantities together that remains as the 
individual constituents vanish – then he would have had an adequate response to 
Berkeley and the other, more sympathetic critics who proposed alternative forms of 
analysis (WL 21.262-3).  If the composite is essentially relational, then there is nothing 
strange in the idea that it might have a determinate character over and above whatever 
determinate character its relata have, and thus a determinate character that might 
remain or even first become clear in the relation between the changes between those 
relata undergo as they get smaller.  

In fact, the way Hegel explains this is the way we currently take the limit of the 
ratio as it goes to zero in contemporary mathematics: 

. Third, they should not exist alone but are bound by 
the integral sign, which lends them sense. Finally, as in the case of powers, 
one can see that the “infinite sum” represented by the integral can have 
three interpretations: (1) the sum giving the unit and the lines giving the 
different amounts, as a product (as such this is an area, albeit normalized 
differently in the two triangles); or (2) regarding this as a sum, we would 
obtain a line composed of all the pieces, which is not meant, neither in 
algebra nor in geometry; but (3), finally, the integral sign gives the mag-
nitude of this line, which is a number. Again, there is a normalization (in 
Hegel’s terminology, this is the degree [Grad]).

3. ConClusion

One of the great difficulties in interpreting Hegel’s understanding of 
calculus and of mathematics generally is that he wrote right on the 
cusp of some of the great technical and conceptual breakthroughs in 
mathematics in the mid-nineteenth century, breakthroughs that Rus-
sell rightly credits with having resolved difficulties that had lingered 
throughout the history of mathematics and in sharpened form through 
the early modern period. Chief among these fundamental problems 
was the problem of understanding mathematical continuity. Although 
we have many intuitive presentations of continuity (for example, in 
geometrical figures), it had always seemed difficult to understand 
such continuity in terms of the discrete numbers that seem, equally 
intuitively, to be paradigmatic (for example, the natural numbers). For 
example, the attempt to build up a continuous line out of extension-
less points seems incoherent. Hegel thought that, on this point and on 
the attempts to demonstrate the reality of infinitesimals by means of 
the amalgamated properties such as fluxions, mathematics foundered 
on the contradictions of its own practice and it fell to philosophy to 
explain the objective reality of mathematical concepts (WL 21.237, 
252, 256–57, and 272). As strong as Hegel’s analysis is, nonetheless it 
is at this point perhaps at its weakest, since he denies mathematics 
even the basic capability to treat these topics adequately. Of course, 
as Russell rightly points out, this has been proven wrong by subse-
quent developments. Modern mathematics has solved the problems 
of continuity by using limits and an appropriate definition of the real 
numbers, yet Hegel’s position on calculus still provides constructive 
insights into the subject that remain relevant. This hinges on the fact 
that the modern mathematical treatment is at heart very technical 
and in a sense tautological—a fact that is glossed over in the usual 
education where recourse is taken to older forms of justifications of 
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calculus—and such a technical and tautological account is in no posi-
tion to explain the relation of calculus to reality.

 The fact that the solutions developed to the problem of the continuum 
are tautological and thus not intrinsically informative is glossed over in 
the standard way most of us learned calculus, at least in English-speaking 
countries. To exemplify this, consider from a Hegelian perspective what 
is now used as the standard high school and early college definition of a 
derivative of a function as the slope of the tangent line to graph. This tan-
gent is considered as a limit of secant lines. This is a plausible geometric 
construction, but how is this legitimized? The key question is what this 
limit is. In modern mathematical terms, one chooses a local parameter-
ization, that is, a representation in terms of functions and then takes the 
derivative of these functions. The derivative itself is a limit. If this limit 
exists, then it gives the direction of the tangent line. The exact mathemati-
cal background is actually not that important for the discussion at hand; 
we only need that the calculation uses a nongeometric representation 
and a limit. At this point, one should recall that historically there was a 
struggle to define the real numbers, and one of the two definitions of real 
numbers that come to be used is Cauchy sequences modulo null sequences. 
The limit is then a real number by virtue of representing such a sequence, 
which is the tautological part of the definition mentioned above. Bypass-
ing these modern achievements, we still are used to handling the real 
number line as a basically pre-existing geometric object. The derivation 
used today for derivative in calculus instruction either uses spontaneous 
velocity (already debunked by Zeno) or the characteristic triangle of which 
Hegel rightfully says does not hold up to rigorous scrutiny.

 These, then, also enter into both common and intellectual debate. 
More than that: in the guise of infinitesimal variations, as in Jean Le 
Rond d’Alembert’s principle, they are alive and well in physics. One of 
the struggles of mathematical physics has been to make sense of these 
variations and integrals in infinite dimensional spaces as needed for a 
rigorous definition of path integrals. These older forms of justification 
are susceptible to valid criticisms, which have been voiced from Zeno 
to Berkeley and in a very detailed way by Hegel. But Hegel does more 
than criticize: he draws attention to the key issue, namely, how infini-
tesimals as limits are employed, and offers a fundamental philosophical 
treatment that has a metaphysical payoff for mathematics itself.

 Though Hegel is clearly opposed to the amalgamation of conceptual 
structures of mathematics with physical or dynamic notions intended to 
make those structures more intuitive, this very opposition has a materi-
alist motivation. So long as such physical or dynamic notions are taken 
as given and then merely combined with the conceptual structures, 
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Hegel thinks that the problem of showing the reality of such structures 
is insoluble; the question has simply been begged. In contrast, Hegel at 
several points provides an argument that what we mean by physical or 
material objects has largely to do with the integrity and continuity that 
such conceptual structures describe. This is clearest in his discussion of 
measure, where he argues that to be a physical object just is for something 
to define its own scale and metric (WL 21.345–46). But Hegel pursues 
a similar argument in his discussions of calculus (WL 21.255 and 279), 
which date from the same late revision to the Science of Logic. There is no 
space here to pursue the issue, but it is clear that Hegel means to provide 
his own argument for the objectivity of mathematics that circumvents the 
Kantian reference via intuition to space and time. Space and time provide 
the privileged contexts in which mathematical relations can be observed 
and tested with greatest clarity, but the objectivity of those relations is 
secured more directly, by the way that they constitute the very core of our 
conception of a material object as such.

Purdue University

Keywords: Hegel, calculus, Newton, mathematics, Deleuze

NOTES

1. Though more sympathetic, similar interpretations of Hegel’s view as 
driven by extraquantitative methodological concerns are found in Lacroix (2000) 
and Moretto (2013).

2. Or, as Henry Somers-Hall puts it, which are sufficient to “finesse the 
paradoxes resulting from [the infinitesimal interpretation of the calculus]” 
(2010, 560).

3. See Kaufmann and Yeomans (2017). Deleuze takes the view that “the 
limit must be conceived not as the limit of a function but as a genuine cut” ( 
1995, 172), and Hegel appears to agree (see WL 21.265).

4. Compare Somers-Hall: “For [Hegel], the difficulty of differentials ap-
pearing in the resultant formulae is resolved . . .through recognizing that the 
status of the nascent ratio differs from that of normal numbers” (2010, 570–71).

5. Citations to Hegel’s Science of Logic (WL) are to Hegel 1968, vol. 21; 
English translations are modified from Hegel (2010).

6. Of course, there is nonstandard analysis, which gives a mathematical 
home to infinitesimals, but only in a very construed or particular way. There is 
also an algebraic way to counter the problem of the square of an object being 
zero, with the object itself not being zero, in the ring of so-called dual numbers. 
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The latter is again a local technique that does not undermine the general point 
that dx is not a number.

7. As dx, there is another mathematical interpretation, namely, that of 
a one form as used in integrals. Hegel treats this interpretation in the third 
remark added to the discussion of the infinite (WL 21.299–309).

8. The equivalence in mathematics goes through the definition of function, 
which is given by evaluation. The differentiation is defined pointwise. Here 
Hegel did not foreshadow this development but discards it (WL 21.259).

9. This is the extra structure of a topology on the real numbers that is 
needed to capture continuity. See Kaufmann and Yeomans (2017).

10. Hegel’s argument for this as a conceptual truth is one of the high points 
of his philosophy of mathematics. See Kaufmann and Yeomans (2017)

11. This is not quite true, though it arguably applies to so-called analytic 
functions.

12. Its independence and yet relevance for physics is an entirely different 
matter, but the current view within mathematics is one that fits well with 
Hegel’s general analytical framework.

13. Cavalieri’s principle in two dimensions states that two regions in a plane 
are included between two parallel lines in that plane. If every line parallel to 
these two lines intersects both regions in line segments of equal length, then 
the two regions have equal areas. An example is two parallelograms with the 
same height and base.

Figure 2

14. The integral sign invented by Leibniz as an elongated S stands, indeed, 
for summa.

15. This conclusion is prohibited by Cavalieri’s principle, since he assumes 
that the line segments have to be cut by the same line.
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