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On several varieties of cacti and their relations

Ralph M. Kaufmann

Abstract Motivated by string topology and the arc operad, we introduce
the notion of quasi-operads and consider four (quasi)-operads which are
different varieties of the operad of cacti. These are cacti without local zeros
(or spines) and cacti proper as well as both varieties with fixed constant size
one of the constituting loops. Using the recognition principle of Fiedorow-
icz, we prove that spineless cacti are equivalent as operads to the little discs
operad. It turns out that in terms of spineless cacti Cohen’s Gerstenhaber
structure and Fiedorowicz’ braided operad structure are given by the same
explicit chains. We also prove that spineless cacti and cacti are homotopy
equivalent to their normalized versions as quasi-operads by showing that
both types of cacti are semi-direct products of the quasi-operad of their
normalized versions with a re-scaling operad based on R>0 . Furthermore,
we introduce the notion of bi-crossed products of quasi-operads and show
that the cacti proper are a bi-crossed product of the operad of cacti without
spines and the operad based on the monoid given by the circle group S1 .
We also prove that this particular bi-crossed operad product is homotopy
equivalent to the semi-direct product of the spineless cacti with the group
S1 . This implies that cacti are equivalent to the framed little discs operad.
These results lead to new CW models for the little discs and the framed
little discs operad.
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Introduction

The cacti operad was introduced by Voronov [V] descriptively as treelike config-
urations of circles in the plane to give an operadic interpretation of the string
bracket and Batalin-Vilkovisky (BV) structure found by Chas and Sullivan
[CS] on the loop space of a compact manifold. The key tool connecting the
two is an “Umkehr” map in homology by using a Thom-Pontrjagin construc-
tion [V, CJ]. Studying combinatorial models of the moduli space of bordered
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surfaces, we constructed the Arc operad, which is an operad built on surfaces
with arcs, and showed that this operad naturally carries compatible structures
of a Gerstenhaber (G) and a BV algebra up to homotopy on the chain level
[KLP]. Moreover the structures above were given by explicit generators for
the operations and explicit homotopies for the relations. The structure of these
generators and relations for the BV operations bear formal resemblance to those
of the cacti operad. With the help of an additional analysis, we were indeed
able to give a map of the operad of cacti into the Arc which embeds the former
as a suboperad (up to an overall re-scaling) [KLP] and embeds Cacti into the
operad DArc = Arc×R>0 . This result defined the topology of Cacti in terms
of metric ribbon graphs. A brief review of this construction of [KLP] is con-
tained in Appendix B. The operations defining the Gerstenhaber bracket lie in
a very naturally defined smaller suboperad of Arc than the one corresponding
to cacti. Moreover, adding a generator to this suboperad which is the element
that becomes the BV operator we obtain the suboperad corresponding to cacti.
The construction of these spaces and the relation between them is also briefly
reviewed in Appendix B. Going back to string-topology, one can expect to be
able to find a suboperad of cacti responsible for the G-bracket. This is the
operad of spineless cacti.

Setting these observation in relation to the theorems of F. Cohen [C1, C2]
and E. Getzler [Ge] —which state that Gerstenhaber algebras coincide with
algebras over the homology of the little discs operad and BV algebras coincide
with algebras over the framed little discs operad— leads us to a comparison
of the operad of cacti and the suboperad mentioned above to the framed little
discs operad and its suboperad of little discs. The equivalence of spineless cacti
and the little discs operad is one of the main points of this paper. Furthermore,
we also give a proof for the Theorem announced by Voronov [V, SV] that cacti
and the framed little discs are equivalent.

One further striking fact about the explicit chain homotopies used in [KLP] is
that they have one more restriction in common, that of a normalization. This
property is, however, not stable under composition.

The considerations above prompt us to define several different species of cacti
and to study their relations to each other and their relation to the little discs
and the framed little discs operad. These different species consist of the original
cacti, cacti without additionally marked local zeros which we call cacti without
spines and lastly for both versions their normalized counterparts, which are
made up of circles of radius one. It is actually a little surprising that one
can go through the whole theory with normalized cacti. For the normalized
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versions the gluing rules are slightly different though and are only associative
up to homotopy.

To systematically treat these objects, we introduce the notion of quasi-operads
and define direct, semi-direct and bi-crossed products of quasi-operads. In this
setting, the normalized versions of cacti and spineless cacti are homotopy asso-
ciative quasi-operads, so that their homology quasi-operads are in fact operads.

In order to define the topological spaces underlying spineless cacti and cacti, we
use a reformulation of the original approach of [V] in terms of graphs and trees
[K1]. In this setting, the spaces for normalized spineless cacti are constructed
as CW-complexes whose cells are indexed by trees. The underlying spaces for
the other versions of cacti are then in turn given as products of these CW com-
plexes with circles and lines. Moreover the quasi-operad structure of normalized
spineless cacti induced on the level of cellular chains is already associative and
provides an operad structure [K1].

As to the relation of (spineless) cacti and their normalized versions, the exact
statement is that the non-normalized versions of cacti are isomorphic as oper-
ads to the quasi-operadic semi-direct product of the normalized version with a
scaling operad. The scaling operad is defined on the spaces R

n
>0 and controls

the radii of the circles. We also show that this semi-direct product is homo-
topic to the direct product as quasi-operads. This makes the normalized and
non-normalized versions of (spineless) cacti homotopy equivalent as spaces, but
furthermore the products are also compatible up to homotopy, so that the two
versions are equivalent as quasi-operads.

One main result we prove is that the spineless cacti are equivalent in the sense
of [F2] to the little discs operad using the recognition principle of Fiedorowicz
[F2]. For the proof, we take up the idea of [SV] to use the map contracting the
n + 1-st lobe of a cactus with n + 1 lobes. We analyze this map further and
prove that although it is not a fibration that it is a quasi-fibration. This is done
using the Dold-Thom criterium [DT].

In this way, the cellular chains of normalized spineless cacti provide a model
of the chains of the little discs operad. This fact together with indexing of the
chains by trees is the basis for a natural topological solution to Deligne’s conjec-
ture on the Hochschild cohomology of an associative algebra [K1]. Furthermore,
in the same spirit the cellular chains of normalized cacti form an operad which
is a model for the framed little discs which can in turn be used to prove a cyclic
version of Deligne’s conjecture. The content of this Theorem [K2] is that there
is a cell model of the framed little discs which acts on the Hochschild complex
of a Frobenius algebra.
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The theorem about the equivalence of spineless cacti and the little discs operad
and its proof also nicely tie together the results of [C1, C2] and [F1, F2] in a
geometrical setting on the chain level. By the results of F. Cohen [C1, C2] the
algebras over the homology of the little discs operad are Gerstenhaber algebras
and by the recognition principle of Fiedorowicz [F2] an operad is equivalent
to the little discs operad if its universal cover is a contractible braided operad
with a free braid group action. In our realization, the Gerstenhaber bracket is
made explicit on the chain level. It is in fact given by the signed commutator
of a non-commutative product ∗ which is defined by a path between point and
its image under a transposition under the action of the symmetric group. This
path is also the path needed to lift the symmetric group action to a braid action.
Moreover, the odd Jacobi identity of the Gerstenhaber bracket is proved by a
relation for the associator of ∗. In terms of the paths this equation is the same
equation as the braid relation needed to ensure that the universal cover is a
braided operad.

The relationship between framed little discs and little discs is that the framed
little discs are a semi-direct product of the little discs with the operad built
on the circle group S1 [SW]. Actually, for this construction, which we review
below, one only needs a monoid. This example is a special case of a semi-direct
product of quasi-operads.

The relationship for the cacti and spineless cacti is more involved. To this
end, we define the notion of bi-crossed products of quasi-operads which is an
extension of the bi-crossed product of groups [Ka, Tak]. We show that cacti are
a bi-crossed product of spineless cacti with an operad built on S1 . By analyzing
the construction of the operads built on monoids in a symmetric tensor category
where the tensor product is a product, we can relate the particular bi-crossed
structure of cacti to the semi-direct product with the circle group. To be precise
we show that the particular bi-crossed product giving rise to cacti is homotopy
equivalent to the semi-direct product of cacti without spines and the group
operad built on S1 .

The characterization above allows us to give a proof of the theorem announced
by Voronov [V, SV] which states that the operad of cacti is equivalent to the
framed little discs operad. This is done via the equivariant recognition principle
[SW]. Vice-versa the theorem mentioned above together with the characteri-
zation of Cacti as a bi-crossed product imply that cacti without spines are
homotopy equivalent to the little discs operad.

Along the way, we give several other pictorial realizations of the various types
of cacti including trees, ribbon graphs and chord diagrams, which might be
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useful to relate this theory to other parts of mathematics. In particular the
trees with grafting are reminiscent of the Connes-Kreimer operads [CK] and in
fact as we have shown in [K1] they are intimately related, see also section 2.5
below. The chord diagram approach is close to Kontsevich’s graph realization
of the Chern-Simons theory (cf. e.g. [BN]) and to Goncharov’s algebra of chord
diagrams [Go].

Interpreting the above results inside the Arc operad, one obtains that the
bi-crossed product corresponding to cacti is realized as the suboperad corre-
sponding to cacti without spines and a Fenchel-Nielsen type twist.

The paper is organized as follows:

In the first section, we introduce the notion of quasi-operads and the operations
of forming direct, semi-direct and bi-crossed products of quasi-operads which
we need to describe the cacti operads and their relations. In section 2 we then
define all the varieties of cacti we wish to consider, cacti with and without
spines and normalized cacti with and without spines. In addition, we provide
several pictorial realizations of these objects, which are useful for their study
and relate them to other fields of mathematics. The third section contains the
proof that the operad of spineless cacti is equivalent to the little discs operad.
In paragraph 4, we collect examples and constructions which we generalize in
paragraph 5 in order to study the relations between the various varieties of
cacti. We start by introducing an operad called operad of spaces which can
be defined in any symmetric tensor category with products such as topological
spaces with Cartesian product. This operad lends itself to the description of
the semi-direct product with a monoid whose construction we also review. In
the last section, section 5 we then prove that the non-normalized versions of the
(spineless) cacti operads are the semi-direct products of their normalized version
and a re-scaling operad built on R

n
>0 . Moreover we show that this semi-direct

product is homotopy equivalent to a direct product. This section also contains
the result that cacti are a bi-crossed product of cacti without spines and the
operad built on the group S1 . Moreover, we show that this bi-crossed product
in turn is homotopic to the semi-direct product of these operads. These results
are then used to give a proof that cacti are equivalent to the framed little discs.

We also provide two appendices. Appendix A is a compilation of the relevant
notions of graphs and gives the interpretation of cacti as marked treelike ribbon
graphs with a metric. In Appendix B, we briefly recall the Arc operad and the
suboperads corresponding to the various cacti operads and show how to map
cacti to elements of Arc and vice-versa. This short presentation slightly differs
in style from [KLP], since we use the language of graphs of Appendix A to
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simplify the constructions in the situation at hand. As such it might also
be useful to a reader acquainted with [KLP]. Furthermore, the Arc operad
provides a straightforward generalization of cacti to higher genus and even
allows to additionally introduce punctures.
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1 Quasi-operads and direct, semi-direct and

bi-crossed products

In our analysis of the various types of cacti, we will need a structure which
is slightly more relaxed than operads. In fact, in the normalized versions of
cacti the compositions will fail to be associative on the nose, although they are
associative up to homotopy. This leads us to define and study quasi-operads.
These quasi-operads afford certain constructions such as semi-direct products
and bi-crossed products which are not necessarily defined for operads. On the
other hand semi-direct products and bi-crossed products of quasi-operads may
yield operads. If one is mainly interested in the homology operads, it is natural
to consider quasi-operads which are associative up to homotopy. Lastly, in
certain cases quasi-operads can already provide operads on the chain level as
our normalized spineless cacti below [K1].

1.1 Quasi-operads

We fix a strict monoidal category C and denote by Sn the symmetric group on
n letters. A quasi-operad is an operad where the associativity need not hold.
More precisely:
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1.1.1 Definition A quasi-operad C is a collection of objects O := {O(n) :
O(n) ∈ C, n ≥ 1} together with an Sn action on O(n) and maps called compo-
sitions

◦i : O(m)⊗O(n)→ O(m + n− 1), i ∈ {1, . . . m} (1.1)

which are Sn -equivariant: if opm ∈ O(m) and opn ∈ O(n)

σm(opm) ◦i σ′
n(opn) = σm ◦i σ′

n(opm ◦σm(i) opn) (1.2)

where σm ◦i σ′
n ∈ Sm+n−1 is the permutation that the block or iterated permu-

tation

(1, 2, . . . , i− 1, (1′, . . . ,m′), i + 1 . . . , n) 7→

σn(1, 2, . . . , i− 1, σ′
m(1′, . . . ,m′), i + 1 . . . , n) (1.3)

induces on (1′′, . . . , (m + n− 1)′′) where

j′′ =





j 1 ≤ j ≤ i− 1

j − i + 1′ i ≤ j ≤ i + n− 1

j − n i + n ≤ j ≤ m + n− 1

A quasi-operad is called unital if an element id ∈ O(1) exists which satisfies for
all opn ∈ O(n), i ∈ {1, . . . , n}

◦i(opn, id) = ◦1(id, opn) = opn

1.1.2 Remark If a quasi-operad in the topological category is homotopy
associative then its homology has the structure of an operad. In certain cases,
like the ones we will consider, the structure of an operad already exists on the
level of a chain model.

1.1.3 Definition A morphism of quasi-operads is a map which preserves all
structures.

An isomorphism of quasi-operads is an invertible morphism of quasi-operads.
This will be denoted by ∼=.

A quasi-operad morphism A→ B is said to be an equivalence if for each k ≥ 0,
A(k) → B(k) is a Sk -equivariant homotopy equivalence. This relation will be
denoted by ≃.

1.1.4 Definition Two quasi-operad structures ◦i and ◦′i on a fixed collection
of Sn -spaces O(m) are called homotopy equivalent (through quasi-operads)
denoted by ∼ if there is a homotopy of maps

◦i(t) : O(m)⊗O(n)→ O(m + n− 1) (1.4)
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for t ∈ [0, 1] such that ◦i(0) = ◦i, ◦i(1) = ◦′i and such that for any fixed t the
◦i(t) give the O(n) the structure of a quasi-operad.

1.1.5 Remark Two homotopy equivalent quasi-operads induce isomorphic
structures on the homology level.

1.1.6 Definition An operad is a quasi-operad for which associativity holds,
i.e. for opk ∈ O(k), op′l ∈ O(l) and op′′m ∈ O(m)

(opk ◦i op′l) ◦j op′′m =





(opk ◦j op′′m) ◦i+m−1 op′l if 1 ≤ j < i

opk ◦i (op′l ◦j−i+1 op′′m) if i ≤ j < i + l

(opk ◦i−l+1 op′l) ◦j op′′m if i + l ≤ j

(1.5)

An operad morphism is a map of collections preserving all the operad structures.

1.1.7 Remark Note that our operads correspond to the pseudo-operads of
[MSS]. In case a unit exists these two notions coincide [MSS]. We drop the
“pseudo” in our nomenclature in order to avoid confusion between quasi- and
pseudo-operads. In a strict sense, our quasi-operads are quasi-pseudo-operads
which is certainly an expression we wish to avoid.

We will use the following terminology of [F2].

1.1.8 Definition An operad morphism A → B is said to be an equivalence
if for each k ≥ 0, A(k)→ B(k) is a Sk -equivariant homotopy equivalence. We
say that an operad A is En (n = 1, 2, 3, . . . ,∞) if there is a chain of operad
equivalences (in either or both directions) connecting A to the Boardman-Vogt
little n-cubes operad Cn (cf. [BV]).

1.2 Direct products

1.2.1 Definition Given two quasi-operads C(n) and D(n) in the same cat-
egory, we define their direct product C × D to be given by (C × D)(n) :=
C(n)×D(n) with the diagonal Sn action, i.e. the action of Sn induced by the
diagonal map Sn → Sn × Sn , and the compositions

(c, d) ◦i,C×D (c′, d′) := (c ◦i,C c′, d ◦i,D d′)

Since the compositions are componentwise it follows that:

1.2.2 Proposition The direct product of two operads is an operad.
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1.3 Semi-direct products

1.3.1 Definition Fix two quasi-operads C(n) and D(n) in the same cate-
gory together with a collection of morphisms:

◦Di : C(n)×D(n)× C(m) → C(n + m− 1) i = 1, . . . n

(c, d, c′) 7→ ◦Di (c, d, c′) =: c ◦di c′ (1.6)

which satisfy the analog of equation (1.2) for the action of Sn × Sm with Sn

acting diagonally on the first two factors.

Note that we used the superscripts to indicate that we view the dependence of
the map on D as a perturbation of the original quasi-operad structure.

We define the semi-direct product C ⋊ D with respect to the ◦Di to be given
by the collection (C × D)(n) := C(n) × D(n) with diagonal Sn action and
compositions

◦i : (C ×D)(n)× (C ×D)(m) = C(n)×D(n)× C(m)×D(m)

−→ C(n + m− 1)

(c, d) ◦i (c′, d′) = (c ◦di c′, d ◦i d′) (1.7)

where we use the upper index on the operations to show that we use the uni-
versal maps (1.6) with fixed middle argument.

In case we are dealing with unital (quasi) operads we will also require that
1C × 1D is a unit in the obvious notation, and that ◦1D

i = ◦i .

1.3.2 Remark In general the semi-direct product of two operads need not
be an operad. This depends on the choice of the ◦Di . Of course the direct
product of two operads is a semi-direct product of quasi-operads which is an
operad. If the quasi-operad D fails to be associative, then any semi-direct
product C ⋊ D will fail to be an operad. However if D is an operad and C is
just a quasi-operad, it is possible that there are maps ◦Di s.t. C ⋊ D will be an
operad.

1.3.3 Definition We call a quasi-operad C normal with respect to an operad
D and maps of the type (1.6) if the semi-direct product C ⋊ D with respect to
these maps yields an operad, i.e. is associative.

1.3.4 Examples Examples of this structure are usually derived if the operad
D acts on the quasi-operad C and the twisted operations are defined by first
applying this action. The semi-direct product of an operad with a monoid [SW]
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is such an example (see below) as are the semi-direct products of [KLP] and
the (spineless) cacti with respect to their normalized versions (see below).

A sometimes useful criterion is:

1.3.5 Lemma Consider two operads C and D with left actions of D(n) on
C(m),

ρi : D(n)× C(m)→ C(m) i ∈ {1, . . . , n}

s.t. the maps

◦Di : C(n)×D(n)× C(m) → C(m) :

(c, d, c′) 7→ c ◦i ρi(d)c′

are Sn × Sm equivariant in the sense of 1.1.1 with Sn acting diagonally on the
first two factors and for c′ ∈ C(l), i ≤ j < i + l

ρi(d)(c′) ◦j−i+1 (ρj(d ◦i d′)c′′) = ρi(d)[c′ ◦j−i+1 ρj−i−1(c
′′)] (1.8)

then C ⋊ D with respect to c ◦di c′ is an operad.

Proof Since the action is compatible with the Sn actions it remains to check
the associativity. The first and third case of the equation (1.5) clearly hold and
the second case follows from the equation (1.8).

1.3.6 The right semi-direct product There is a right version of the semi-
direct products using maps

◦Ci : D(n)× C(m)×D(m) → D(n + m− 1) i = 1, . . . n

(d, c, d′) 7→ ◦Ci (d, c, d′) =: d ◦ci d′ (1.9)

which again define compositions on the products (C ×D)(n) := C(n)×D(n)
via

◦i : (C ×D)(n)× (C ×D)(m) = C(n)×D(n)× C(m)×D(m)

−→ C(n + m− 1)

(c, d) ◦i (c′, d′) = (c ◦i c′, d ◦c
′

i d′) (1.10)

We call a quasi-operad D normal with respect to C if there are maps of the
type (1.9) such that the maps (1.10) give an operad structure to the product
C×D . Given an operad C an a quasi-operad D normal with respect to C , we
call the product together with the operad structure (1.7) the right semi-direct

product of C and D which we denote C ⋉ D .

This structure typically appears when one has a right action of the operad C
on the quasi-operad D .
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1.4 Bi-crossed products

1.4.1 Definition Consider two quasi-operads C(n) and D(n) together with
a collection of maps:

◦Di : C(n)×D(n)× C(m) → C(n + m− 1) i = 1, . . . n

(c, d, c′) 7→ ◦Di (c, d, c′) =: c ◦di c′ (1.11)

◦Ci : D(n)× C(m)×D(m) → C(n + m− 1) i = 1, . . . n

(d, c, d′) 7→ ◦Ci (d, c, d′) =: d ◦ci d′ (1.12)

where the operations (1.11) satisfy the analog of equation (1.2) for the action of
Sn × Sm with Sn acting diagonally on the first two factors and the operations
(1.12) satisfy the analog of equation (1.2) for the action of Sn × Sm with Sm

acting diagonally on the second two factors.

Again we used the superscripts to indicate that we view the dependence on the
other quasi-operad as a perturbation of the original quasi-operad structure.

We define the bi-crossed product C ⊲⊳ D with respect to the operations ◦Di , ◦Cj
to be given by the collection (C × D)(n) := C(n) × D(n) with diagonal Sn

action and compositions

◦i (C ×D)(n)× (C ×D)(m) = C(n)×D(n)× C(m)×D(m)

−→ C(n + m− 1)

(c, d) ◦i (c′, d′) = (c ◦di c′, d ◦c
′

i d′) (1.13)

where we use the upper index on the operations to show that we use the uni-
versal maps (1.11) with fixed middle argument.

In the case we are dealing with unital operads we will also require that the
perturbed compositions are such that 1C×1D is a unit in the obvious notation,
and that ◦1C

i = ◦i and ◦1D

i = ◦i .

1.4.2 Remark Again it depends on the choice of the ◦Di , ◦Cj if the bi-crossed

product of two operads is an operad. In the case that ◦Di , ◦Cj are given by
actions as in Lemma 1.3.5 then this is guaranteed if the condition (1.8) and its
right analog hold.

Furthermore it is possible that the bi-crossed product of two quasi-operads is
an operad.

1.4.3 Definition We call two quasi-operads C and D matched with respect
to maps of the type (1.11) and (1.12) if the quasi-operad C ⊲⊳ D is an operad.

Algebraic & Geometric Topology, Volume 5 (2005)



248 Ralph M. Kaufmann

1.4.4 Examples

1) Factoring the multiplication maps through the first and third projection
and using the structure maps of the two operads we obtain the direct
product.

2) If D is the operad based on a monoid and choosing the maps ◦Ci to be
unperturbed and defining the maps ◦Di as in (4.6) we obtain the semi-
direct product.

3) If C and D are concentrated in degree 1 and happen to be groups then
the bi-crossed product is that of matched groups [Ka, Tak]. Otherwise
we obtain that of matched monoids.

4) Below we will show that the cacti operad is a bi-crossed product of the
cactus operad and the operad built on S1 as a monoid and thus these
operads are matched with respect to the specific perturbed multiplications
given below.

2 Several varieties of cacti

2.1 Introduction

The operad of Cacti was first introduced by Voronov in [V] as pointed treelike
configurations of circles. In the following we will first take up this description
and introduce Cacti and several versions of related operads in this fashion.
This approach is historical and lends itself to describe actions on the loop space
of a compact manifold [CJ, V] of cacti. For other purposes, especially giving
the topology on the space of cacti, other descriptions of a more combinatorial
nature are more convenient. In the following section, we will both recall the
traditional approach as well the sometimes more practical definition in terms
of graphs.

2.2 General setup for configurations of circles

2.2.1 Notation By an S1 in the plane we will mean a map of the standard
S1 ⊂ R

2 with the induced metric and orientation which is an orientation pre-
serving embedding f : S1 → R

2 . A configuration of S1 ’s in the plane is given
by a collection of finitely many of these maps which have at most finitely many
intersection points in the image. I.e. if fi : 1 ≤ i ≤ n is such a collection, then
if i 6= j : fi(θi) = fj(θj) for only finitely many points θi .
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By an S1
r in the plane we will mean a map of the standard circle of radius

r : S1
r ⊂ R

2 with the induced metric and orientation which is an orientation
preserving embedding f : S1

r → R
2 . A configuration of S1

r s in the plane is
a collection of finitely many of these maps which have at most finitely many
intersection points in the image.

2.2.2 Re-parameterizations Notice that a circle in a plane comes with
a natural parameter. This is inherited from the natural parameter θr of the
standard parametrization of S1

r : (r cos(θr), r sin(θr)). Sometimes we have to re-
parameterize a circle, so that its length changes. To be precise let f : S1

r → R
2

be a parametrization of a circle in the plane. Then fR : S1
R → R

2 , called the
re-parametrization to length R, is defined to be the map fR = f ◦ repR

r with
repR

r : S1
R → S1

r given by θR 7→ θr .

2.2.3 Dual black and white graph Given a configuration of S1s in the
plane, we can associate to it a dual graph in the plane. This is a graph with
two types of vertices, white and black. The first set of vertices is given by
replacing each circle by a white vertex. The second set of vertices is given by
replacing the intersection points with black vertices. The edges run only from
white to black vertices, where we join two such vertices if the intersection point
corresponding to the black vertex lies on the circle represented by the white
vertex.

We remark that all the S1s are pointed by the image of 0 = (0, 1). On any
given S1 in the plane we will call this point and its image local zero or base
point.

If we are dealing with circles of radii different from one we will label the vertices
of the trees by the radius of the respective circle.

2.2.4 Cacti and trees The configurations corresponding to cacti will all
have trees as their dual graphs. We would like to point out that these trees
are planar trees, i.e. they are realized in the plane or equivalently they have a
cyclic order of each of the sets of edges emanating from a fixed vertex.

Moreover we would like to consider rooted trees, i.e. trees with one marked
vertex called root. Recall that specifying a root induces a natural orientation
for the tree and a height function on vertices. The orientation of edges is
toward the root and the height of a vertex is the number of edges traversed by
the unique shortest path from the vertex to the root. Due to the orientation we
can speak of incoming and outgoing edges, where the outgoing edge is unique
and points toward the root. Naturally the edges point from the higher vertices
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to the lower vertices. A rooted planar tree has a cyclic order for all edges
adjacent to a given vertex and a linear order on the adjacent edges to any given
vertex except the root. A planar rooted tree with a linear order of the incoming
edges at the root is called a planted tree. The leaves of a rooted tree are the
vertices which only have outgoing edges.

We call a configuration of S1s in the plane rooted if one of the circles is marked
by a point, we also call this point the global zero. In this case, we include a
black vertex in the dual graph for this marked point and make this the root,
so that the dual graph of a rooted configuration is a rooted tree. This tree
is actually also planted by the linear order of the incoming edges of the root
provided by making the component on which the root lies the smallest element
in the linear order.

Given such a rooted configuration of S1
r s in the plane we call the images of the 0s

(fi(0)) together with the image of the marked point and the intersection points
the special points of the configuration. We also call the connected components of
the image minus the special points the arcs of the configuration. If fi|(θ1, θ2) =
a then we define |a| := 1

2π
(θ2− θ1) to be the length of a. In the same situation

we define ā := fi|[θ1, θ2] to be the closure of a.

2.2.5 Definition Given a configuration of S1s in the plane whose dual graph
is a tree, we say that an S1 is contained in another S1 if the image first circle
is a subset of the disc bounded by the image of the second circle.

A configuration of S1 s in the plane is called tree-like if its dual graph is a
connected tree and no S1 is contained in another S1 .

2.2.6 The perimeter or outside circle and the global zero For a
marked tree-like configuration of S1

r s in the plane let R =
∑

ri then there
is a surjective map of S1

R to the image of this configuration which is a local
embedding. This map is given by starting at the marked point or global zero of
the root of the configuration going around this circle in the positive sense until
one hits the first intersection point and then starting to go around the next cir-
cle in the cyclic order again in the positive direction until the next intersection
point and so on until one again reaches the zero of the root.

We will call this map and, by abuse of notation, its image the perimeter or the
outside circle of the configuration. We will also call the zero of the perimeter
the global zero.
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2.3 Normalized cacti without spines

We will now introduce normalized spineless cacti as configurations. Later, to
give a topology, we will reinterpret these configurations in terms of graphs.

2.3.1 Definition We define normalized cacti without spines to be labelled
rooted collections of parameterized S1s grafted together in a tree like fashion
with the gluing points being the zeros of the S1 . More precisely we set:

Cact1(n) := {rooted tree-like configurations of n labelled S1s in the plane
such that the root (global zero) coincides with the marked point (zero) of the
component it lies on, the points of intersection are such that the circles of
greater height all have zero as their point of intersection.}/ isotopies preserving
the incidence conditions.

Here and below preserving the incidence conditions means that if fi,t : S1
ri
×I are

the isotopies and fi,0(p) = fi(p) = fj(q) = fj,0(q) then for all t: fi,t(p) = fj,t(q)
and vice-versa if fi,0(p) = fi(p) 6= fj(q) = fj,0(q) then for all t: fi,t(p) 6= fj,t(q).

We will take the conditions “without spines” and “spineless” to be synonymous.

2.3.2 Remark We would like to point out that there is only one zero which
is not necessarily an intersection point, namely that of the root. It can however
also be an intersection point. Moreover, one could rewrite the condition of
having a dual black and white graph that is a tree in the form: given any two
circles their intersection is at most one point.

2.3.3 Remark There are several ways to give a topology to this space. One
way to give it a topology is by describing the degenerations of the above config-
urations, as was done originally in [V]. This is done by allowing the intersection
points and the root to move in such a way that they may collide, and “pass”
each other moving along on the outside circle. If an intersection point collides
with the marked point from the positive direction, i.e. the length of the arc go-
ing counterclockwise from the root to the intersection point goes to zero, then
the root passes to the new component.

The quickest way is to give the topology to the spaces Cact1 as subspaces of the
operad DArc as defined in [KLP]. A brief review of the necessary constructions
is given in the Appendix B below for the reader’s convenience.

Lastly, one can define the topology in terms of combinatorial data by gluing of
products of simplices indexed by trees as first explained in [K1]. For definiteness,
we will use this construction to fix our definitions.
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2.3.4 Notation Recall that the dual tree of a cactus is a bi-colored (b/w)
bi-partite planar planted tree. Such a tree has a natural orientation towards
the root. We call an edge white if it points from a black to a white vertex
in this orientation and call the set of these white edges Ew . Let Vw be the
set of white vertices. For a vertex v we let |v| be the set of incoming edges,
which is equal to the number of white edges incident to v and is also equal
to the total number of edges incident to v minus one. We call T (n) the set
of planar planted bi-partite trees with white leaves, black root, and n white
vertices which are labelled from 1 to n.

2.3.5 Definitions The topological type of a spineless normalized cactus in
Cact1(n) is defined to be the tree τ ∈ T (n) which is its dual b/w planar planted
tree together with the labelling of the white vertices induced from the labels of
the cactus.

We define T (n)k to be the elements of T (n) with |Ew| = k .

Let ∆n denote the standard n-simplex, |∆n| its standard realization in R
n+1

as {(t1, . . . tn+1)|
∑

i ti = 1}. We denote the interior of |∆n| by |∆̇n|.

For τ ∈ T we define

∆(τ) := ×v∈Vw(τ)|∆
|v|| (2.1)

Notice that dim(∆(τ)) = |Ew(τ)| and that the set Ew has a linear order which
defines an orientation of ∆(τ).

We also let

∆̇(τ) := ×v∈Vw(τ)|∆̇
|v|| (2.2)

2.3.6 Lemma A normalized spineless cactus is uniquely determined by its
topological type and the length of the arcs.

Proof It is clear that each normalized spineless cactus gives rise to the de-
scribed data. Vice versa given the data, one can readily construct a representa-
tive of a spineless cactus with the underlying data. A quick recipe is as follows.
Realize the given tree in the plane. Blow up the white vertices to circles which
do not intersect and do not contain any of the black points. Mark the segments
of the circles between the edges by the label of the second edge bounding the
arc in the counterclockwise orientation. Mark the intersection point of the first
edge in the linear order of the root with the unique circle it intersects. Delete
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the part of the edges inside these circles. Now contract the edges and if nec-
essary deform the circles during the contraction such that they do not touch.
This is only a finite problem and thus such choices can be made. We will call
the images of the circles lobes. The lobes are labelled from 1 to n by the label of
the vertices. There are obvious maps of S1 onto each lobe, which have lengths
of arcs between the special points (intersection or marked) corresponding to the
labelling. This gives a representative. Since the data is invariant under isotopy
preserving the intersections, we have constructed the desired cactus and hence
shown the bijection.

2.3.7 Lemma For a normalized spineless cactus the lengths of the segments
lying on a given lobe represented by a vertex v are in 1-1 correspondence with
points of the open simplex ∆̇|v| .

Proof The lengths of the arcs have to sum up to the radius of the lobe which
is one and the number of arcs on a given lobe is |v|+ 1.

2.3.8 Remark The Lemma above also gives an identification of the arcs of a
cactus with the edges of the tree τ specifying its topological type. Here we fix
that an edge e incident to a white vertex vw and a black vertex vb corresponds
to the arc on the lobe of vw running from the special point (intersection or
root) preceding vb to vb .

2.3.9 Proposition As sets Cact1(n) = ∐τ∈T (n)∆̇(τ).

Proof Immediate by the preceding two Lemmas.

2.3.10 Degenerations By the above we can identify the vertices of ∆(τ)
and therefore the coordinates of points of ∆(τ) with the arcs of a cactus of
topological type τ .

Given a cactus c and an arc a with length |a| < 1 of c we define the degen-
eration of c with respect to a to be the configuration of S1s obtained by a
homotopy contracting the closure of the arc ā to a point p, but preserving all
other incidence conditions, together with the following root. If a is not the first
arc on the outside circle, then the root remains unchanged. If a is the first arc
of the outside circle and a′ is the second arc of the outside circle which lies in
the image of the map fj , then the new root is defined to be the point which is
the pre-image of p under the map fj , i.e. f−1

j (p).
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2.3.11 Degeneration of trees There is also a purely combinatorial way to
describe the degeneration of the b/w bi-partite planar planted tree by cutting
and re-grafting [K1]. An abbreviated non-technical version is as follows. Given
τ ∈ T (n) and an edge e in τ incident to a white vertex vw with |vw| > 0 the
contraction of τ with respect to e is given by the following procedure. First
let vw, vb be the white and black vertices e is incident to and let e′ be the
edge immediately preceding e in the cyclic order at vw . Let vw and v′b be the
vertices of e′ . The contraction of τ with respect to e is given by the tree in
which the edge e and the vertex vb are removed and the remaining branches
of vb are grafted to v′b in such a way that they keep their linear order and
immediately precede the edge e′ in the cyclic order at v′b .

2.3.12 Remark The reader can readily verify that the degeneration of cacti
in the arc and combinatorial interpretations agree.

2.3.13 A CW-Complex Given a cell ∆(τ) and a vertex v of any of the
constituting simplices of ∆(τ) we define the v -th face of ∆(τ) to be the subset
of ∆(τ) whose points have v -th coordinate equal to zero.

We let K(n) be the CW complex whose k-cells are indexed by τ ∈ T (n)k

with the cell C(τ) = |∆(τ)| and the attaching maps eτ defined as follows. We
identify the v -th face of ∆(τ) with ∆(τ ′) where τ ′ is the topological type of
the cactus c′ which is the degeneration of a cactus c of topological type τ with
respect to the arc a that represents the vertex v .

We denote by ėτ the restriction of eτ to the interior of ∆(τ). Notice that ėτ

is a bijection.

2.3.14 Theorem The elements of Cact1(n) are in bijection with the elements
of the CW complex K(n).

Proof Immediate from the Proposition 2.3.9 above.

2.3.15 Definition We will use the above theorem to give Cact1 the topology
induced by the above bijection, that is we define the topological space Cact1(n)
as

Cact1(n) := K(n).

2.3.16 The action of Sn There is an action of Sn on Cact1(n) which acts
by permuting the labels.
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2.3.17 Gluing We define the following operations

◦i : Cact1(n)× Cact1(m)→ Cact1(n + m− 1) (2.3)

by the following procedure: given two normalized cacti without spines we re-
parameterize the i-th component circle of the first cactus to have length m and
glue in the second cactus by identifying the outside circle of the second cactus
with the i-th circle of the first cactus.

These gluings do not endow the normalized spineless cacti with the structure of
an operad, but with the slightly weaker structure of a quasi-operad of section
1.

By straightforward computation we have the following:

2.3.18 Proposition The glueings make the spaces Cact1(n) into a topolog-
ical quasi-operad.

2.3.19 Remark The above gluing operations are indeed not strictly asso-
ciative as the example in Figure 1 shows. As in this example, the gluings are
associative up to homotopy in general, as we will discuss below.
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Figure 1: An example for non-associativity in Cact1

2.3.20 Remark It is shown in [K1] that there is an operad structure on
normalized spineless cacti on the cellular chains of K .

This together with the Theorem 3.2.1 provides the basis for a proof of Deligne’s
conjecture on the Hochschild cohomology of an associative algebra [K1].
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2.4 Cacti without spines

2.4.1 Definition We define cacti without spines by an analogous procedure
to that of normalized cacti only this time taking S1

r s, i.e. circles of different
radii.

As a set Cact(n) := {rooted tree-like configurations of n labelled S1
r s in the

plane such that the root (global zero) coincides with the marked point (zero)
of the component it lies on and that the points of intersection are such that the
circles of greater height all have zero as their point of intersection }/ isotopies
preserving the incidence conditions.

Again Sn acts via permuting the labels.

2.4.2 Lemma Cact(n) = Cact(n)1 × R
n
>0 .

Proof As in the previous case of normalized spineless cacti, such a configura-
tion is given bijectively by its topological type and the lengths of its arcs. Each
arc belongs to a unique lobe and the sum of the lengths of the arcs belonging
to a lobe is the radius of the given S1 . Let li := (li1 , . . . , lis) be the collections
of lengths of the arcs of the lobe i whose radius is ri =

∑
j lij then li corre-

sponds to a unique point in ∆s−1 × R>0 given by ((li1/ri, . . . , lis/ri), ri). This
establishes the claimed bijection.

2.4.3 Definition As a topological space, we define Cact(n) to be

Cact(n) := Cact(n)1 × R
n
>0

with the product topology.

2.4.4 Remark A description of the topology on this space is given, by al-
lowing the intersection points and the global zero to move and collide and pass
each other along the outside circle as before, with the same rule for the global
zero as before and also letting the radii vary. This topology agrees with the
product topology Cact(n) = Cact1(n)×R

n
>0 above.

It also agrees with the one induced by the embedding of the operad into DArc
[KLP], see also Appendix B.

2.4.5 Gluing We define the following operations

◦i : Cact(n)× Cact(m)→ Cact(n + m− 1) (2.4)
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by the following procedure: given two cacti without spines we re-parameterize
the outside circle of the second cactus to have length ri which is the length of
the i-th circle of the first cactus. Then glue in the second cactus by identifying
the outside circle of the second cactus with the i-th circle of the first cactus.

Notice that this gluing differs from the one above, since now a whole cactus
and not just a lobe is re-scaled.

2.4.6 Proposition The gluing endows the spaces Cact(n) with the structure
of a topological operad.

Proof Straightforward calculation.

2.4.7 Remark There is an obvious map from normalized spineless cacti to
spineless cacti. This map is not a map of operads, since the gluing procedures
differ. There is however a homotopy of one gluing to the other by moving the
intersection points around the outside circle of the cactus which is glued in, so
that the two structures of quasi-operads do agree up to homotopy. This means
that the spaces Cact1 form a homotopy associative quasi-operad and thus the
homology of this quasi-operad is an operad. On the homology level normalized
spineless cacti are thus a sub-operad of spineless cacti and moreover, since the
factors of R

n are contractible this sub-operad coincides with the homology
operad of spineless cacti, as we show below.

The fact mentioned before, that the cellular chains of Cact1 form an operad [K1]
can be seen from the discussion of the inclusion of Cact1 into Cact mentioned
above which is explained in detail below.

2.5 Different pictorial realizations

As exhibited in the previous paragraph, there are two pictorial descriptions of
Cact1 and Cact given by circles in the plane and the dual black and white planar
planted tree whose edges are marked by positive real numbers - the lengths of
the arcs. There are more pictorial realizations for (normalized) spineless cacti,
which are useful.

2.5.1 The tree of a cactus without spines In the case that the config-
uration of circles is a cactus without spines there is a dual tree that we can
associate to it that is a regular tree with markings that is not black and white,
but is just planar and planted.
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This is done as follows. The vertices correspond to the circles. They are labelled
by the radius of the respective circle. We will draw an edge between two vertices
if the circles have a common point and if one circle is higher than the other in
the height of the dual graph. We will label the edge by the length of the arc
on the lower circle between the intersection point and the previous intersection
point where we now also allow the length of the arcs to be zero if these two
points coincide. Here we also consider the global zero as an intersection point.
In this procedure we give the edges the cyclic order that is dictated by the
perimeter. This means that now the labels on the edges are in R≥0 with the
restriction that at each vertex the label (radius) of that vertex is strictly greater
than the sum of the labels (weights) of the incoming edges. For normalized
spineless cacti the labels on the vertices are all 1 and can be omitted. Using
this structure we can view the space of normalized cacti as a sort of “blow
up of a configuration space”. The “open part” is the part with only double
points. In this case, the weight on the edges are restricted by the equations
0 <

∑
wi < 1. Allowing intersections of more than two components at a time

amounts to letting wi → 0. In the limit
∑

wi → 1 the tree is identified with
the tree where the last incoming edge is transplanted to the other vertex of the
outgoing edge in such a way that it is the next edge in the cyclic order of that
vertex. Lastly if the weight on the first edge of the root goes to zero, the root
vertex will be the other vertex of that edge.

If we do not want to use the height function of the black and white tree, we can
still define a height function via the outside circle. Start at height zero for the
root. If the perimeter hits a component for the first time, increase the height
by one and assign this height to the component. Each time you return to a
component decrease the height by one.

Given a planar planted tree whose vertices and edges are labelled in the above
fashion, it gives a prescription on how to grow a cactus. Start at the root and
draw a based loop of length given by the label of the root. For the first edge
mark the point at the distance given by the label of the edge along the loop.
Then mark a second point by travelling the distance of the label of the second
edge and so on. Now at the next level of the tree draw a loop based at the
marked point of the previous level and again mark points on it according to the
outgoing edges. This will produce a cactus without spines.

Lastly, we wish to point out that now the composition looks like the grafting
of trees into vertices as in the Connes-Kreimer [CK] tree operads. In fact, we
have recently shown [K1] that indeed there is a cell decomposition of spineless
normalized cacti whose cellular chains form an operad and whose symmetric
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top dimensional cells are isomorphic as an operad to the operad of rooted trees
whose Hopf algebra is that of Connes and Kreimer [K1].

2.5.2 The chord diagram of a cactus There is yet another representation
of a cactus. If one regards the outside loop, then this can be viewed as a
collection of points on an S1 with an identification of these points, plus a marked
point corresponding to the global zero. We can represent this identification
scheme by drawing one chord for each pair of points being identified as the
beginning and end of a circle this chord is oriented from the beginning point of
the lobe to the end point of the lobe. Note that one of the two segments of the
outside loop defined by the chord corresponds to the lobe. There is a special
case for the chord diagram which is given if there is a closed cycle of chords.
This happens if two or more lobes intersect at the global zero. Here one can
delete the first chord, if so desired, we call this the reduced chord diagram.

The chord diagram comes equipped with a decoration of its arcs by their length
thus giving a map of S1

R to the outside circle. Here R =
∑

i ri where the ri

are the radii of the lobes. To obtain a cactus from such a diagram, one simply
has to collapse the chords.

This kind of representation is reminiscent of Kontsevich’s formalism of chord di-
agrams (cf. eg. [BN]) as well as the shuffle algebras and diagrams of Goncharov
[Go]. We wish to point out that although the multiplication is similar to Kont-
sevich’s and also could be interpreted as cutting the circle at the global zero
resp. the local zero, it is not quite the same. However, the exact relationship
and the co-product deserve further study.

Lastly, we can recover the a planar rooted tree above as the dual tree of the
chord diagram. This is the dual tree on the surface which is given by the disc
whose boundary is the outside circle. The chords on the surface then divide the
disc up into chambers — the connected components of the complement of the
chords. The dual tree on this surface has one vertex for each such chamber and
an edge for each pair of chambers separated by a common chord. If the global
zero lies on only one lobe the root of the tree is the vertex of the complementary
region whose boundary includes the global zero. If there are two components
meeting at the global zero the root of the tree is given by the vertex whose
chamber has the global as left boundary on the outside circle. In a special case
for the chord diagram which is given if there is a closed cycle of chords, i.e. three
or more lobes intersect at the global zero, the root vertex will be the unique
vertex inside the closed cycle. These trees are in fact planted due to the linear
order they inherit from the embedding of the chord diagram. The planar tree is
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the tree obtained from the bi-partite planted planar tree by removing the black
vertices with the exception of the root.

A representation of a cactus without spines in all possible ways including its
image in the DArc operad can be found in Figure 2.
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Figure 2: I: A cactus without spines II: Its black and white tree III: Its dual tree
IV: Its chord diagram V: Its image in DArc

2.6 Cacti with spines

The following definition is the original definition of cacti due to Voronov.
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2.6.1 Definition [V] Define Voronov cacti or cacti with spines or simply

cacti in the same fashion as cacti without spines, but without requiring that
the zeros be the intersection points.

In addition, and this is key, we add a global zero/base point to the configuration,
which means that we mark a circle and a point on that circle. The circle with
the global base point will be the root. We call the n-th component of this
operad Cacti(n).

As a set Cact(n) := {rooted tree-like configurations of n labelled S1
r s in the

plane}/ isotopies preserving the incidence conditions.

The perimeter or outside circle will be given by the same procedure as 2.2.6 by
starting at the global zero.

2.6.2 Remark To define the topology we remark that the cacti with spines
are as a set in bijective correspondence to spineless cacti times a product of

S1s: Cacti(n)
1−1
←→ Cact(n)× (S1)×n .

The bijection is given by mapping the underlying spineless cactus, which is
obtained by forgetting all local zeros and the induced coordinates of the local
zeros, and fixing a coordinate on S1 for every lobe which gives the length of
the arc starting at the unique intersection point with the lobe of lower height
(or the root) going counter-clockwise to the local zero.

2.6.3 Definition As a topological space we set

Cacti(n) := Cact(n)× (S1)×n.

2.6.4 Remark Originally the topology was introduced by describing that
the lobes, the special points and the root can move with the caveat that the
root passes to a new component if the intersection point of the lobe collides
with the root from the right — just as for spineless cacti. Of course these two
descriptions are compatible. Again one can also realize Cacti ⊂ DArc and
obtain the same topology as above in this way.

2.6.5 Gluing We define the following operations

◦i : Cacti(n)× Cacti(m)→ Cacti(n + m− 1) (2.5)

by the following procedure which differs slightly from the above: given two
cacti without spines we re-parameterize the outside circle of the second cactus
to have length ri which is the length of the i-th circle of the first cactus. Then

Algebraic & Geometric Topology, Volume 5 (2005)



262 Ralph M. Kaufmann

glue in the second cactus by identifying the outside circle of the second cactus
with the i-th circle of the first cactus. We stress that now the local zero of
the i-th circle is identified with the global zero. viz. the starting point of the
outside circle. This local zero need not coincide with the intersection point with
the lobe of lower height (or the global zero).

2.6.6 Proposition [V] The cacti form a topological operad.

2.7 Normalized cacti

2.7.1 Definition We define the spaces of normalized cacti denoted by
Cacti1(n) ⊂ Cacti(n) to be the subspaces of cacti with the restriction that
all circles have radius one.

As spaces
Cacti1(n) = Cact1(n)× (S1)×n.

2.7.2 Glueings We define the compositions by scaling as for normalized
spineless cacti and then gluing in the second cactus into the i-lobe of the first,
but now using the identification of the outside circle of the second cactus with
the circle of the i-th lobe by matching the local zero of the i-th lobe of the first
cactus with the global zero of the second.

2.7.3 Proposition Together with the Sn action permuting the labels and
the glueings above normalized cacti form a topological quasi-operad.

Proof Straightforward computation.

2.7.4 Remark The contents of Remark 2.4.7 applies analogously in the cacti
situation.

2.7.5 Remark There are natural forgetful morphisms from cacti to cacti
without spines forgetting all the local zeros. We arrange the map in such a
way, that the global zero becomes the base-point of the spineless cactus. This
works for the normalized version as well. These maps are not maps of operads.
The precise relationship between the different varieties is that of a bi-crossed
product of section 1.4, see Theorem 5.3.4 below.

There is, however, an embedding of spineless cacti into cacti as a suboperad by
considering the global zero to be the zero of the root and by making the first
intersection point at which the perimeter reaches a lobe of the cactus the local
zero of that circle.
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2.8 Different pictorial realizations

2.8.1 The tree of a cactus The missing information of a cactus without
spines relative to a cactus proper is the location of the local zeros. We just add
this information as a second label on each vertex. Notice that the local zero of
the root component then need not be the global zero. The label we associate
to the root is the position of the local zero with respect to the global zero.

2.8.2 The chord diagram The chord diagram of a cactus again is the chord
diagram of a cactus without spines, where the location of the spines is addi-
tionally marked on the S1 . There is a choice if the local zero coincides with
an intersection point. Just to fix notation we will mark the first occurrence of
the endpoint of a chord, where first means in the natural orientation starting
at the global zero.

A representation of a cactus (with spines) in all possible ways including its
image in DArc can be found in Figure 3.

3 Spineless cacti and the little discs operad

In this section, we will show that Cact is an E2 operad using the recognition
principle of Fiedorowicz [F2]. To assure the needed assumptions are met we
mimic the construction of [F1] which shows that the universal covers of the
little discs operad naturally form a B∞ operad.

3.1 The E1 structure

3.1.1 Definition A spineless corolla cactus (SCC) is a spineless cactus whose
points of intersection all coincide with the global zero.

Since the condition of being an SCC is preserved when composing two spineless
corolla cacti:

3.1.2 Lemma Spineless Corolla Cacti are a suboperad of spineless Cacti.

We define SCC(n) ⊂ Cact(n) to be the subset of spineless corolla cacti and
denote the operad constituted by the SCC(n) with the permutation action of
Sn and the induced gluing by SCC(n).

3.1.3 Theorem The suboperad SCC(n) of corolla cacti is an E1 operad.
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Figure 3: I: A cactus (with spines) II: Its black and white tree III: Its dual tree IV:
Its chord diagram V: Its image in DArc

Proof We will use the recognition principle of Boardman-Vogt [BV]. First
notice that we have a free action of Sn . If the lobes are all grafted together at
the root then the only parameters are the sizes of the lobes. These sizes together
with the labelling fixes a unique spineless corolla. Two spineless corollas lie in
the same path component if and only if the sequence of the labels of the lobes
as read off from the outside circle agree. Thus SCC(n) = ∐σ∈SnR

n
>0 . And

thus each path component is contractible and thus the action of Sn is free and
transitive on π0(SCC(n)).

3.1.4 Remark The Theorem above has immediate applications to operads
built from moduli spaces (see Appendix B) giving them an A∞ -structure.
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3.1.5 Corollary The operad of the decorated moduli space of bordered,
punctured surfaces with marked points on the boundary M̃ s

g,r which is proper
homotopy equivalent to Arc# contains an E1 operad. Thus so does the operad
Arc.

The same is true for the operad of the moduli spaces Mn
g,n of genus g curves with

n punctures and a choice of tangent vector at each puncture and its restriction
to genus 0.

Finally the spaces Mg,n form a partial operad which is an E1 operad.

Proof By the Appendix B there is an operad map Cacti→ Arc# ⊂ Arc which
is an equivalence onto its image. Furthermore it is shown that Arc# is proper
homotopy equivalent to the mentioned moduli space in [P]. This establishes
the first part.

The second claim follows from the identification of the suboperad of bordered
surfaces with marked points on the boundary and no further punctures Arc0

#

with Mn
g,n via marked ribbon graphs [K3].

The last statement comes from the fact that the SCCs are ribbon graphs and as
such index cells of Mg,n . The operad structure of SCCs thus defines a partial
operad structure on Mg,n .

This also means that on the chain level algebras over these operads will be A∞

operads.

3.2 The E2 structure

The main result of this section is the following.

3.2.1 Theorem Cact is an E2 operad.

We will use the recognition principle of Fiedorowicz [F2] to prove this theorem
(see also [SW]). For this one needs the notion of a braid operad, which is given
by replacing the symmetric groups in the definition of operads by braid groups
(see [F1] or [SW]).

3.2.2 Definition [F1] A collection B(n) a B∞ operad if the B(n) form a
braid operad in the sense of [F1] with the properties

i) the spaces B(n) are contractible.
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ii) The braid group action on each B(n) is free.

3.2.3 Proposition [F2] An operad A is an E2 operad if and only if each
space A(k) is connected and the collection of covering spaces {Ã(k)} form a
B∞ operad.

Adapting the proof of [F1] that the universal covers of the little disc operad
form a B∞ operad one arrives at the following proposition, which is essentially
contained in [F1] and in spirit in [MS].

Let τi ∈ Sn denote the transposition which transposes i and i + 1.

3.2.4 Proposition Suppose we are given an operad D(n) with the proper-
ties:

i) The Sn action on each D(n) is free.

ii) D affords a morphism of non-Σ operads I : C1 → D where C1 is an E1

operad.

iii) D(n)/Sn is a K(Brn, 1) for the braid group Brn where the braid action
covers the symmetric group action.

iv) The spaces are D(n) are homotopy equivalent to CW complexes.

Then the collection of universal covers D̃(n) is a B∞ operad and hence D is
equivalent as an operad to C2 , the little 2-cubes operad.

Proof Let p : D̃(n)→ D(n) be the universal cover. We have to show that the
spaces D̃(n) form a braid operad and that they are contractible. The latter fact
is true since by iii) the spaces D̃(n) are weakly contractible and by assumption
iv) the D(n) are homotopic to a CW complex, so that the D̃(n) are indeed
contractible. For each n choose a component of p−1(I(C1(n)) which we call
C̃1 .

The C̃1 allow to lift the operad composition maps by letting γ̃

D̃(k)× D̃(j1) · · · × D̃(jk)
γ̃

−−−−→ D̃(j1 + · · ·+ jk)yp

yp

D(k)×D(j1) · · · ×D(jk)
γ

−−−−→ D(j1 + · · ·+ jk)

be the unique lift which takes C̃1(k)× C̃1(j1) · · · × C̃1(jk) to C̃1(j1 + · · ·+ jk).
To write out the braid action fix a point cn ∈ C1(n) and for each i a path αi

from I(cn) to τiI(cn) which lifts a non-null homotopic path of D(n)/Sn . Notice
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that these satisfy the conditions that for each n and i the paths τiτi+1(αi) ·
τi(αi+1)·αi and τi+1τi(αi+1)·τi+1(αi)·αi+1 are path homotopic (where · denotes
concatenation of paths) due to condition iii). The explicit paths τi then provide
the Brn action on D̃(n) again by using C̃1(n) as “base-points” to lift the Sn

action. It is now a straightforward computation that the compositions γ̃ and
the braid group action define a braid operad. Furthermore the braid group
actions are free by iii) and thus the D̃(n) form a B∞ operad.

Proof of Theorem 3.2.1 As announced we will check the conditions of Prop-
osition 3.2.4. In our case the operad D will be the operad of spineless cacti Cact.
The condition i) is obvious, since Sn acts freely on the labels. We showed above
that SCC is an E1 operad which is a suboperad of Cact. This establishes ii).
The condition iii) follows from Proposition 3.3.19 below. Lastly, the condition
iv) follows from the definition of the spaces Cact(n) = Cact1(n)× R

n
>0 .

3.3 The forgetful quasi-fibration

This section is devoted to showing that the spaces Cact(n)/Sn are K(Brn, 1).

3.3.1 Definition The completed chord diagram of a cactus c without spines
is the topological space obtained as follows. Cut the outside circle at the global
zero, mark the two endpoints and add a chord az between them. If a chord
started at the global zero, then the new starting point will be the right endpoint
of az , if ended on the root then the new endpoint will be the left endpoint of
az .

Identify each marked point (that is the added endpoints of az and the endpoints
of the chords) of the circle with a 0-simplex and each arc connecting two marked
points with a 1-simplex joining the two 0-simplices. Now for any sequence
of chords connecting k points of the outside circle glue in a k − 1 simplex,
by identifying the vertices of the simplex with these points. For any chord
including az this means that the sub-one-simplex given by the two endpoints
of the chord can be identified with the chord. We let the diagram have the
co-induced topology.

For an example of a completed diagram, see Figure 4.

3.3.2 Definition We define the spine of a completed chord diagram to be
the following subspace. For each maximal k-simplex, fix the barycenter. First
connect the barycenter to all the vertices of the simplex by a straight line, then
connect the vertices of the simplices by the arcs of the outside circle to obtain
the spine.
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Figure 4: A cactus without spines and its completed chord diagram

3.3.3 Lemma A completed chord diagram of a cactus c is homotopy equiv-
alent to its spine which is homotopy equivalent to the image of c.

Proof By retracting to the spine, the first claim follows. For the second claim
in one direction we contract of the straight lines of the spine to retrieve the
underlying cactus. For the homotopy inverse identify the vertices of the cactus
with the barycenters. Each arc of the cactus a corresponds to a unique arc a′

on the outside circle of the chord diagram. Let v1, v2 be the starting- and the
endpoint of the directed arc. Now map each arc a of the cactus between two
vertices to the path between the barycenters representing these vertices which
first goes from the barycenter to the vertex v1 , then along the arc a′ , and finally
from v2 to the second barycenter. .

Now we will consider the surjective map pn+1 : Cact(n + 1) → Cact(n), which
contracts the n + 1-st lobe of the cactus. We call the image of the contracted
lobe the marked point. If the root happens to lie on the component n + 1 then
the root after the contraction is fixed to be the marked point.

3.3.4 Forgetful maps Define a map

pT : T (n + 1)→ T (n)

by mapping a labelled tree τ ∈ T (n + 1) to pT (τ) ∈ T (n) which is the tree
obtained from τ by coloring the vertex vn+1 labelled by n+1 black, forgetting
the label and contracting all the edges incident to this vertex. If the image
of the vertex vn+1 under the contraction only has one adjacent edge, we also
delete this vertex and this edge to define pT (τ).
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This induces projection maps p∆(τ) : ∆(τ)→ ∆(pT (τ)) projecting to the prod-
uct of the first n simplices, i.e. forgetting the coordinates of the flags of v .
Formally, let E(τ) be the edges of τ , and E(v) be the edges incident to v .
We map the point with coordinates (xe), e ∈ E(τ) in ∆(τ) to the point with
coordinates (x′

e = xe), e ∈ E(pT (τ)) in ∆(pT (τ)), where we identified the non-
contracted edges of τ with those of pT (τ).

Now we define a map p′ : Cact1(n + 1) → Cact1(n) as follows. For c′ ∈ Cact1

let τ be its topological type. Set

p′(c′) := epT (τ) ◦ p∆(τ) ◦ ė−1
τ (c)

Finally let c = (c, (r1, . . . , rn+1)) ∈ Cactn+1 . We define

p(c′, (r1, . . . , rn+1)) = (p′(c′), (r1, . . . , rn))

This defines the map p : Cact(n + 1)→ Cact(n) mentioned above.

3.3.5 Proposition The fiber of the map p over a spineless cactus c is home-
omorphic to the completed chord diagram of c times R>0 . The fiber of the
map p′ over a normalized spineless cactus c is homeomorphic to the completed
chord diagram of c.

Proof This follows directly from the above description of the map p′ as pro-
jecting out the simplex for the vertex vn+1 labelled by n + 1.

A detailed description is as follows: Fix a cactus c ∈ Cact(n). The fiber over
it can then be characterized in the following way. First there is a factor of
R>0 which fixes the radius of the cactus. Then there is an interval which
parameterizes the cacti where the lobe n + 1 has no lobe above it and does
not contain the root. The parametrization is via a marked point on the outside
circle. In the case that the root is only on one lobe this interval is glued together
with another interval to form a circle. The second interval parameterizes the
pre-images obtained by gluing the n + 1st lobe to the root and then moving
the root around that lobe. If the root is moved all the way around, the limit
is the same configuration as the one in which the lobe has been moved all the
way around the outside circle. Also keeping the root at the intersection point is
the same configuration as the initial point of the first interval. Thus we obtain
a circle glued from two intervals.

If the pre-image is such that the n + 1st lobe has higher lobes attached to it,
then the marked point is necessarily a point of intersection on the cactus. First
assume that this intersection point is not the global zero. This means that we
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can blow up this intersection point to a circle and arrange the lobes attached
to it keeping their order according to the outside circle. Such a configuration
is determined by the length of the arcs between the attached circles. These
lengths add up to the total radius and thus are parameterized by points in a
k -simplex, if the number of lobes meeting at this point is k +1. At the vertices
of this simplex each lobe is again attached to the common intersection point.
These configurations coincide with the points of the chord diagram to which
the chords are attached. In the case that the global zero is at the intersection
of k > 1 lobes, then we again “blow up” the global zero to a k -simplex. One of
the edges of this simplex is the interval in which the n + 1 lobe is attached to
the global zero and the global zero is moved around this lobe as discussed above
and identified with the arc replacing the global zero when completing the chord
diagram. The k− 2 vertices which are not on this edge are then identified with
the k−2 vertices of the closed sequence of chords excluding the global zero.

3.3.6 Corollary The fiber of the map p over a spineless cactus c is homotopy
equivalent to the image of the cactus c in R

2 and is thus homotopy equivalent
to a bouquet of n circles

∨
n S1 .

Proof The first equivalence follows from Lemma 3.3.3. The second equivalence
is straightforward.

3.3.7 Remark Let UCact(n) be the set obtained from Cact(n + 1) by con-
tracting the simplices of the completed chord diagrams in each fiber of the map
p : Cact(n + 1)→ Cact(n). Let ρn+1 : Cact(n + 1)→ UCact(n) be the induced
surjection and endow UCact(n) with the quotient topology. The map p factors
though ρ, that is pn+1 = p̃n ◦ ρn+1 where p̃n : UCact(n)→ Cact(n) is the uni-
versal map whose fiber over a spineless cactus c is the image of that spineless
cactus and whose total space is UCact(n) =

⋃
c∈Cact(n) Im(c). A point in this

space is a cactus together with an additional marked point on the cactus. The
map p̃ forgets this point.

Then p : Cact(n + 1) → Cact(n) is fiberwise homotopy equivalent to the uni-
versal map p̃n : UCact(n)→ Cact(n).

3.3.8 Remark The maps p and p′ are not fibrations. We will show that
they are, however, quasi-fibrations.

3.3.9 Definition Let c, c′ ∈ Cact1 and τ, τ ′ be their topological types. We
say that c′ can be derived from c and also that τ ′ can be derived from τ
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if eτ ′(∆(τ ′)) ⊂ eτ (∆(τ)) ⊂ Cact1 . Here ∆(τ) is the product of simplices as
defined in equation (2.1).

If the inclusion is proper, we say that c′ is a degeneration of c and also say τ ′

is a degeneration of τ .

3.3.10 Remark The notion of degeneration induces a partial order on T
where τ ′ ≺ τ if τ ′ is a degeneration of τ .

3.3.11 Definition If there is a τ ′′ s.t. c, c′ ∈ eτ ′′(∆(τ ′′)) we say c, c′ share
the common type τ ′′ and also say that τ, τ ′ share the common type τ ′′ .

In case c and c′ share a common type τ ′′ , we let dτ ′′(c, c′) be the distance
between their lifts into ∆(τ ′′).

3.3.12 Definition For c ∈ Cact(n), τ with c ∈ eτ (∆(τ)) and ǫ > 0 we
define

U(c, ǫ, τ) := {c′ ∈ eτ (∆(τ))|dτ (c, c′) < ǫ} and

U(c, ǫ) :=
⋃

τ :c∈eτ (∆(τ))

U(c, ǫ, τ) (3.1)

It is clear that the U(c, ǫ) are open.

We call ǫ small for c if c′ ∈ U(c, ǫ) implies that c is a degeneration of c′ .

3.3.13 Remark The set of small ǫ for a fixed c is non-empty. For instance
if A is the set of arcs of c, any ǫ < 1

2 min(|a| : |a| 6= 0) will do, since one cannot
move the root or a lobe more than the length of any arc and hence cannot
create new degenerations without going beyond the distance ǫ.

3.3.14 Lemma

i) The sets U(c, ǫ) with ǫ small for c are open and contractible.

ii) The sets U(c, ǫ) with c ∈ Cact1(n) cover Cact1(n).

iii) If c′′ ∈ U(c, ǫ) ∩ U(c′, ǫ′) then there exists an ǫ′′ s.t. c′′ ∈ U(c′′, ǫ′′) ⊂
U(c, ǫ) ∩ U(c′, ǫ′).

Proof The fact that these sets are open and cover is immediate. For the
contraction we define h : U(c, ǫ) × I → U(c, ǫ) as follows: for c′ ∈ U(c, ǫ) with
topological type τ ′ , we set c′(t) to be the image of the point of ∆(τ ′) which
is at distance ǫ − t/ǫ from the point corresponding to c in ∆(τ ′) along the
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unique line joining these two points. This map is easily seen to be continuous
and contracts U(c, ǫ) onto c.

For part ii) let τ, τ ′, τ ′′ be the respective topological types. If dτ ′′(c, c′′) = d1

and dτ ′′(c′, c′′) = d2 fix any ǫ′′ < min(
√

ǫ2 − d2
1,

√
ǫ′2 − d2

2). Then the inclusion
follows from the fact that ≺ is a partial order, i.e. if τ ′′ � τ ′′′ then also τ � τ ′′′

and τ ′ � τ ′′′ since τ � τ ′′ and τ ′ � τ ′′ .

3.3.15 Remark The contraction simultaneously contracts all those arcs of c′

which do not appear in c, i.e. those which correspond to the edges of τ ′ which
are contracted to obtain τ .

3.3.16 Lemma The pair (p′−1(U(c, ǫ)), p′−1(c)) is homotopy equivalent to
(p′−1(c), p′−1(c)).

Proof We define the homotopy

H : (p′−1(U(c, ǫ)), p′−1(c)) × I → (p′−1(U(c, ǫ)), p′−1(c))

as follows. Given ĉ′ ∈ p′−1(U(c, ǫ)) write it as the tuple (c′, ch(c′)) where
c′ = p′(ĉ′) and ch(ĉ′) is the point in the fiber over c′ . By Proposition 3.3.5
ch(ĉ′) is a unique point of the completed chord diagram Chord(c′) of c′ . We
let H(t)(c′) = (c′(t), ch(c′)(t)) where c′(t) := h(c′, t) is the cactus as in Lemma
3.3.14 and ch(ĉ′)(t) ∈ Chord(c′(t)) is defined as follows. First notice that
during the homotopy h the topological type τ ′ of c′ does not change as long as
t 6= 1 and therefore there are natural homeomorphisms hchord(t) : Chord(c′)→
Chord(c′(t)) obtained by a homogeneous re-scaling of the arcs of the outside
circle by factors xa(c)(t)/xa(c) -where again the xa are the coordinates in ∆(τ).
For t 6= 1 we set ch(ĉ′)(t) := hchord(t)(ch(ĉ′)).

In order to extend to t = 1 notice that the chords of Chord(c′) and those of
Chord(c) are in 1-1 correspondence as 1-simplices, as they correspond to the
labels 1 through n. Therefore the simplices of Chord(c′) uniquely correspond to
faces of the simplices or simplices of Chord(c). We let hchord(1) : Chord(c′)→
Chord(c) be the map that first contracts the arcs of the outside circle which
are indexed by arcs a with xa(c) = 0 and then identifies the result of this
contraction with a subset of Chord(c) by identifying the arcs of the outside
circle with the same labels and identifying the simplices of Chord(c′) with the
respective faces of Chord(c). Finally set ch(ĉ′)(1) = hchord(1)(ch(ĉ′)). It is
now easy to check that the defined map is indeed a homotopy.

3.3.17 Remark The effect of the contraction above is to contract the arcs
not belonging to c while keeping the lobe n + 1 in its relative place.
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3.3.18 Proposition p′ : Cact1(n + 1) → Cact1(n) and p : Cact(n + 1) →
Cact(n) are quasi-fibrations.

Proof First let’s handle p′ : p′|p′−1(U(c, ǫ)) is a quasi-fibration by the Lemma
3.3.16 above. This fact together with Lemma 3.3.14 shows that the conditions
of the Dold-Thom criterium [DT][Satz 2.2] are met and hence p′ is a quasi-
fibration. Now fix some base-point c = (c′, ~r), then the claim follows from the
following equalities:

πi(Cact(n + 1), p−1(c)) = πi(Cact1(n + 1)× R
n+1
>0 , p−1(c′, ~r))

= πi(Cact1(n + 1), p′−1(c′)) = πi(Cact1(n), c′) = πi(Cact(n), (c, ~r)) (3.2)

where the first equality holds by definition, the second holds since the pair
(Cact1(n + 1)×R

n+1
>0 , p−1(c′, ~r)) is homotopy equivalent to the pair (Cact1(n +

1), p′−1(c′)) by contracting the factors R>0 to the point 1, the third equation
holds, since p′ is a quasi-fibration and finally the last equation holds since again
by contraction of the factors R>0 the pair (Cact1(n), c′) is homotopy equivalent
to the pair (Cact(n), (c, ~r)).

3.3.19 Proposition The spaces Cact(n) are K(PBrn, 1) spaces and the
spaces Cact(n)/Sn are K(Br, 1) spaces.

Proof Since by Proposition 3.3.18 p is a quasi-fibration, we have the long
exact sequence of homotopy groups [DT]

→ πi+1(Cact(n))→ πi(
∨

n

S1)→ πi(Cact(n + 1))→ πi(Cact(n))

where we inserted πi(p
−1(c)) = πi(

∨
n S1).

The fibration p admits a section, for instance attaching the (n+1)st lobe at
the root and letting the root lie on the new (n+1)st lobe. Thus the long exact
sequence for this quasi-fibration splits.

First notice that since Cact(1) = ∗, Cact(2) = S1 by induction πi(Cact(n)) = 0
for k ≥ 2 and so also πi(Cact(n)/Sn) = 0 for k ≥ 2 .

For the first homotopy group, we fix some data. Choose the spineless corolla
cactus with radii all equal to one and labelling 1, 2, . . . , n as the base point cn

of Cact(n) and choose the paths αi as indicated in Figure 5 which makes the
braid action explicit.

Note that the braid condition that for each n and i the paths τiτi+1(αi) ·
τi(αi+1) · αi and τi+1τi(αi+1) · τi+1(αi) · αi+1 are path homotopic (where ·
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Figure 6: The braid homotopy

denotes concatenation of paths) is verified explicitly in Figure 6 were we have
only drawn the relevant three lobes and indicated the other lobes by dots.

Now we proceed by induction on n assuming π1(Cact(n)) = PBrn where PBrn

is the pure braid group and π1(Cact(n)/Sn) ≃ Brn with the explicit maps
Brn → π1(Cact(n)/Sn) is given by bi 7→ αi . Notice π1(Cact(2)) ≃ Z = PBr2
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generated by τ1(α1) · α1 and π1(Cact(2)/S2) ≃ Br2 ≃ Z generated by α1 .

First we treat π1(Cact(n + 1)). For this consider the following diagram:

1 −−−−→ π1(
∨

n S1) −−−−→ PBrn+1 −−−−→ PBrn −−−−→ 1
∥∥∥

y
y

1 −−−−→ π1(
∨

n S1) −−−−→ π1(Cact(n + 1)) −−−−→ π1(Cact(n)) −−−−→ 1

Here the second line follows from the long exact sequence and the first line
is a classic fact. It follows e.g. from regarding the long exact sequence for
the forgetful map between the configuration spaces of n + 1 and n ordered
points in R

2 which forgets the n + 1st point. By induction we know the map
Brn → π1(Cactn/Sn) sending the generator bi which maps to the transposition
τi in Sn to [αi] ∈ Cact(n)/Sn is an isomorphism. The right down arrow is
its restriction to PBrn which is the isomorphism sending the generators ξij =
bibi+1 . . . bj−1b

2
jb

−1
j−1 . . . b−1

i : 1 ≤ i < j ≤ n of PBrn to the class [αij ] ∈

π1(Cact(n)) where αij is the closed path τi+1 . . . τj−1τ
2
j τ−1

j−1 . . . τ−1
i (αi) · . . . ·

τj . . . τi(αj) · τj−1 . . . τi(αj) · . . . · τi(αi+1)α
−1
i . Choosing the base point of the

fiber to be the cactus cn we see that the generators of π1(Chord(cn)) can be
identified with the paths αin+1 hence identifying the left isomorphism as ξin+1

maps to [αin+1]. Hence we have a diagram of group extensions and the middle
arrow which sends ξi,j to [αij ] for 1 ≤ i < j ≤ n + 1 is also an isomorphism.

For the fact that π1(Cact(n+1)/Sn+1) = Brn+1 consider the following diagram
of group extensions

1 −−−−→ PBrn+1 −−−−→ Brn+1 −−−−→ Sn+1 −−−−→ 1
y

y
∥∥∥

1 −−−−→ π1(Cact(n + 1)) −−−−→ π1(Cact(n + 1)/Sn+1) −−−−→ Sn+1 −−−−→ 1

where the left arrow was shown to be an isomorphism above and the commu-
tativity follows from the explicit mapping of the upper to the lower row which
sends bi to the respective class of αi . Hence the middle arrow is an isomor-
phism, proving the claim.

3.3.20 Remark In our proof, we chose the E1 operad of spineless corollas. If
we want to use little intervals there is an obvious map by assigning the lengths
of the little intervals to be the sizes the lobes, but this map is only an operad
map up to homotopy due to the different scalings. To remedy the situation,
we could augment the spineless cacti operad to a larger homotopy equivalent
model. In this model the outside circle will be additional data. It will have to
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be orientation preserving but not necessarily injective. The parameterizations
will be allowed to have stops at the intersections points and the start (the global
zero).

3.4 The Gerstenhaber structure

Due to the theorem of Cohen [C1, C2] identifying Gerstenhaber algebras with
algebras over the homology of the little discs operad and the Theorem 3.2.1
above, we know that algebras over the homology of the operad of spineless
cacti are Gerstenhaber algebras.

3.4.1 The explicit presentation of the operations in normalized spine-

less cacti Parallel to [CS, V, KLP], we can give explicit generators for the op-
erations on the chain level yielding the Gerstenhaber structure on the homology
spineless cacti (see Figure 7).

IIIIII

1

1 1

1 2 1
1

2
1

1−s
s

Figure 7: I: The identity II: The product · III: The operation ∗

We would like to emphasize that the product · is associative on the nose already
on the chain level. As usual, the multiplication ∗ defines the bracket via the
odd commutator.

{a, b} := a ∗ b− (−1)(|a|+1)(|b|+1)b ∗ a (3.3)

where we denoted the degree of a and b by |a| and |b|. Its iterations are given
in Figure 8 from which one can also read off the associator (pre-Lie) relation
which guarantees the odd Jacobi identity.

Using the dual graph construction of Appendix B all the other chain homotopies
can be made explicit by translating them from [KLP] to normalized cacti.

Just like Corollary 3.1.5 one obtains:

3.4.2 Corollary The operad of the decorated moduli space of bordered,
punctured surfaces with marked points on the boundary M̃ s

g,r which is proper
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Figure 8: The associator in normalized spineless cacti

homotopy equivalent to Arc# contains an E2 operad. Thus so does the operad
Arc.

The same is true for the operad of the moduli spaces Mn
g,n of genus g curves

with n punctures and n tangent direction and its restriction to genus 0.

Finally the spaces M1
g,n of surfaces of genus g , n marked points and a tangent
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vector at the first marked point form a partial operad which is an E2 operad.

Proof The proof of all but the last statement is analogous to the proof of
Corollary 3.1.5. For the last statement we need to use the fact that there is a
cell model for M1

g,n by ribbon graphs with one marking (cf. [K3]) and that the
rooted tree-like ribbon graphs given by Cact form an operad structure which
gives partial operad on the whole space.

3.4.3 Remark Using Cohen’s Theorem this means that on the cell level
algebras over these operads will be Gerstenhaber algebras up to homotopy
and on the homology level Gerstenhaber algebras. In particular the operads
themselves possess these properties.

The operad Mg,n is not included in Corollary 3.4.2, since we do need the mark-
ings of a global root on the ribbon graphs in order to define the gluing. For
spineless cacti one such marking is enough, however.

3.4.4 Remark We wish to point out that the chain defining the product
∗ is exactly the path α1 for Cact(2) and diagram for the associator Figure 8
coincides up to re-parametrization with the braid relation for the paths α1 and
α2 in Cact(3).

One can obtain all paths α and all braid relation by taking quasi-operadic
products with spineless corolla cacti whose radii are all one. These can be
viewed as a quasi-sub-operad of the quasi-operad of normalized spineless cacti.
In fact, the base-points cn suffice for this, i.e the path αi in Cact(n) is cn−2◦iα1

and likewise one obtains the braid relation.

This nicely ties together the point of view of [F1] and [C1, C2] in relating the
Gerstenhaber structure directly to the braided structure.

4 Examples and constructions

In this section, we collect constructions and results which we will modify and
use in section 5 to relate our different varieties of cacti in terms of semi-direct
and bi-crossed products.

Algebraic & Geometric Topology, Volume 5 (2005)



On several varieties of cacti and their relations 279

4.1 Operads of spaces

The following procedure is motivated by topological spaces with Cartesian prod-
uct, but actually works in any strict symmetric monoidal category where the
monoidal product is a product (i.e. we have projection maps).

Let X be a topological space, then we can form the iterated Cartesian product
X × · · · ×X . We simply denote the n-fold product by X(n). This space has
an action of Sn by permutation of the factors. We denote the corresponding
morphism also by elements of Sn . Given a subset I ⊂ {1, . . . , n} we denote the
projection πI : X(n)→ X(I) = ×i∈IX .

◦̄i : X(n)×X(m)
π{1,...,n}\i
→ X(n − 1)×X(m)→ X(m + n− 1)

σ
→ X(m + n− 1) (4.1)

where σ ∈ Sm+n−1 is the permutation that shuffles the last m factors into the
place i. I.e.

((x1, . . . , xn)◦̄i(x
′
1, . . . , x

′
m)) = (x1, . . . xi−1, x

′
1, . . . , x

′
m, xi+1, . . . , xn). (4.2)

4.1.1 The cyclic version Using X((n)) = X(n + 1) with the Sn+1 action
and the gluing above, one obtains a cyclic version of the construction.

4.2 Operads built on monoids

Let S be a monoid with associative multiplication µ : S×S → S . For simplicity
we will denote this multiplication just by juxtaposition: s, s′ ∈ S; ss′ := µ(s, s′).
We will take S to be an object in a strict symmetric monoidal category.

We set S(n) := S×n and endow it with the permutation action.

4.2.1 An operad defined by a monoid We consider the following maps:

◦i : S(n)× S(m) → S(n + m− 1)

((s1, . . . , sn), (s′1, . . . , s
′
m)) 7→ (s1, . . . si−1, sis

′
1, . . . , sis

′
m, si+1, . . . , sn)

It is straightforward to check that these maps define an operad in the same
category as S . This operad is unital if S is unital.

4.2.2 Examples

1) One standard example is that of a Lie group in topological spaces.
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2) Another nice example is that of a field k . Then k(n) = kn and the gluing
is plugging in vectors into vectors scaled by scalar multiplication. There
are Z-graded and super versions of this given by including the standard
supersign for the permutation action where in the Z-graded version one
uses the induced Z/2Z-grading.

3) The example S1 is particularly nice. In this case (see e.g. [KLP]), we can
see that for the monoid S1 the homology operad H∗(S

1(n), Z/2Z) of its
induced operad S1(n) is isomorphic, though not naturally, to the operad
built on Z/2Z and that for a field k , H∗(S

1(n), k) is isomorphic to the
direct product of the operads Comm and the operad built on the monoid
Z/2Z.

4.2.3 Remark There are several other natural versions of operads and cyclic
operads which can be defined analogously to the operads built on circles which
are presented in [KLP].

4.3 Semi-direct products with monoids

We now turn to the situation where the monoid S acts on all the components
of an operad.

I.e. Let Op(n) be an operad in a symmetric monoidal category C and let S be
a monoid in the same category such that S acts on Op(n).

S ×Op(n)
ρ
→ Op(n)

s.t. the following diagrams are commutative

S × S ×Op(n)
µ×id
−−−−→ S ×Op(n)

id×ρ

x
yρ

S ×Op(n)
ρ

−−−−→ Op(n)

S ×Op(m)×Op(n)
id×◦i−−−−→ S ×Op(m + n− 1)

ρ
−−−−→ Op(m + n− 1)

∆×id×id

y ◦i

x

S×S×Op(m)×Op(n)
σ23−−−−→ S×Op(m)×S×Op(n)

ρ×ρ
−−−−→ Op(m)×Op(n)

Consider the action

ρi : S(n)×Op(m) → Op(m)

((s1, . . . , sn), o) 7→ ρ(si)(o) (4.3)
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and the twisted multiplications

◦si : Op(n)×Op(m) → Op(n + m− 1) (4.4)

(o, o′) = (O ◦i ρ(s,O′)) (4.5)

It is straightforward to check that the action ρ satisfies the conditions of Lemma
1.3.5.

4.3.1 Definition We define the semi-direct product Op⋊S of an operad Op
with a monoid S in the same category to be given by the spaces

(Op ⋊ S)(n) := Op(n)× S(n)

with diagonal Sn action and the compositions

◦⋊i : (Op ⋊ S)(n)× (Op ⋊ S)(m) → (Op ⋊ S)(n + m− 1)

((O, s), (O′, s′)) := (O ◦
πi(s)
i O′, s ◦i s′) (4.6)

where πi is the projection to the i-th component.

4.3.2 Proposition Given an action ρ and the multiplications ◦i⋊ defining
the quasi-operad structure of the semi-direct product as above, the semi-direct
product quasi-operad is an operad.

4.3.3 Example The operad of framed little discs is the semi-direct product
of the little discs operad with the operad based on the monoid given by the
circle group S1 [SW].

4.3.4 The action If we are in a category that satisfies the conditions of 4.1,
we can break down the operad structure based on a monoid into two parts. The
first is the structure of operads of spaces and the second is the diagonal action.

More precisely let ∆ : S → S(n) be the diagonal and µ : S × S → S be the
multiplication:

ρ∆ : S × S(n)
∆
→ S(n)× Sn µn

→ S(n)

Here we denote by µn the diagonal multiplication:

µn((s1, . . . , sn), (s′1, . . . , s
′
n)) = (s1s

′
1, . . . , sns′n)

◦i : S(n)× S(m)
(id×πi)(∆)×id
−→ S(n)× S × S(m)

id×ρ∆
−→ S(n)× S(m)

◦̄i→ S(n + m− 1) (4.7)

where ◦̄i is the operation of the operad of spaces and

(id× πi)(∆) : S(n)
∆
→ S(n)× S(n)

id×πi→ S(n)× S.
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5 The relations of the cacti operads

5.1 The relation between normalized (spineless) cacti and
(spineless) cacti

5.1.1 The scaling operad We define the scaling operad R>0 to be given by
the spaces R>0(n) := R

n
>0 with the permutation action by Sn and the following

products

(r1, . . . , rn) ◦i (r′1, . . . , r
′
m) = (r1, . . . ri−1,

ri

R
r′1, . . . ,

ri

R
r′m, ri+1, . . . rn)

where R =
∑m

k=1 r′k . It is straightforward to check that this indeed defines an
operad.

5.2 The perturbed compositions

We define the perturbed compositions

◦R>0

i : Cacti1(n)×R>0(m)× Cacti1(m)→ Cacti1(n + m− 1) (5.1)

via the following procedure: Given (c, ~r′, c′) we first scale c′ according to ~r′ ,
i.e. scale the j -th lobe of c′ by the j -th entry ri of ~r for all lobes. Then we
scale the i-th lobe of the cactus c by R =

∑
j rj and glue in the scaled cactus.

Finally we scale all the lobes of the composed cactus back to one.

We also use the analogous perturbed compositions for Cact1 .

5.2.1 The perturbed multiplications in terms of an action We can
also describe, slightly more technically, the above compositions in the following
form. Fix an element ~r := (r1, . . . , rn) ∈ R

n
>0 and set R =

∑
i ri and a

normalized cactus c with n lobes. Denote by ~r(c) the cactus where each lobe
has been scaled according to ~r , i.e. the j -th lobe by the j -th entry of ~r . Now
consider the chord diagram of the cactus ~r(c). It defines an action on S1 via

ρ : S1 rep1
R−→ S1

R

cont~r(c)
−→ S1

n

repn
1−→ S1 (5.2)

Where cont~r acts on S1
R in the following way. Identify the pointed S1

R with
the pointed outside circle of the chord diagram of ~r(c). Now contract the arcs
belonging to the i-th lobe homogeneously with a scaling factor 1

ri
.
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We think of the i-lobe of a normalized (spineless) cactus as an S1 with base
point given by the local zero together with additional marked points; the addi-
tional marked points are the intersection points. Using the map above on the
i-lobe we thus obtain maps:

ρi : Cact1(n)×R>0(m)× Cact1(m) → Cact1(n)

ρi : Cacti1(n)×R>0(m)× Cacti1(m) → Cacti1(n) (5.3)

What this action effectively does is move the lobes and if applicable the root of
the cactus c which are attached to the i-th lobe according to the cactus ~r(c′)
in a manner that depends continuously on ~r and c′ .

With this action we can write the perturbed multiplication as:

◦R>0

i : Cacti1(n)×R>0(m)× Cacti1(m)

id×id×∆
−→ Cacti1(n)×R>0(m)× Cacti1(m)× Cacti1(m)

ρi×id
−→ Cacti1(n)× Cacti1(m)

◦i−→ Cacti1(n + m− 1) (5.4)

5.2.2 Theorem The operad of spineless cacti is isomorphic to the operad
given by the semi-direct product of their normalized version with the scaling
operad. The latter is homotopy equivalent (through quasi-operads) to the direct
product as a quasi-operad. The direct product is in turn equivalent as a quasi-
operad to Cact1 . The same statements hold true for cacti.

Cact ∼= R>0 ⋉ Cact1 ∼ Cact1 ×R>0 ≃ Cact1

Cacti ∼= R>0 ⋉ Cacti1 ∼ Cacti1 ×R>0 ≃ Cacti1 (5.5)

here the semi-direct product compositions are given by:

(~r, c) ◦i (~r′, c′) = (~r ◦i ~r′, c ◦
~r′

i c′) (5.6)

Proof By definition the space Cact(n) = Cact1(n)×R
n
>0 = Cact1(n)×R>0(n).

To establish that the operad structure of Cact is that of a semi-direct product,
first notice that the behavior of the radii under gluing is given by the scaling
operad. Second we notice that the global incidence conditions, i.e. the positions
of the intersection points on the outer circle, are shifted under the scaling in a
way that is compensated by perturbed multiplication. This means that when
gluing, we do not use the outside circle of the normalized cactus, but the outside
circle of the original cactus which is recovered form the outside circle of the
normalized cactus and the radii by the action of the scaling operad.
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Secondly, the perturbed multiplications are homotopic to the unperturbed mul-
tiplications: a homotopy is for instance given by a the choice of a paths ~rt given
by the line segment from ~r to (1, . . . , 1) and the following homotopy for the
quasi-operadic compositions

(~r, c) ◦i,t (~r′, c′) = (~r ◦i ~r′, c ◦
~r′t
i c′)

and the composition ◦
~r′t
i uses the action chord diagram of ~r′t(C

′), i.e. the cactus
C ′ scaled by ~r′t , for the gluing.

Lastly, the R(n) = R
n
>0 are contractible and the contraction induces an equiv-

alence of quasi-operads.

The analogous arguments hold for Cacti.

5.2.3 Corollary Cacti without spines are homotopy equivalent to normal-
ized cacti without spines as quasi-operads. The quasi-operad of homology nor-
malized spineless cacti is an operad which is isomorphic to the homology of the
spineless cacti operad.

Also, cacti and normalized cacti are homotopy equivalent as quasi-operads and
the homology quasi-operad of normalized cacti is an operad which is isomorphic
to the homology of the cacti operad.

Proof We first remark that there is a homotopy of quasi-operads to the direct
product, then there is a homotopy of quasi-operads from the scaling operad to
the operad of spaces. Finally there is a homotopy between the operad of spaces
built on R>0 and a point in each degree.

From the previous analysis, we obtain:

5.2.4 Corollary The quasi-operads of normalized cacti and normalized
spineless cacti are both homotopy associative.

5.2.5 Remark It is shown in [K1] that the quasi-operad structure induced
on the cellular chains CC∗(Cact1) is actually an operad structure. This can be
seen from the explicit description of the semi-direct product above. It follows
from the Theorem above and Theorem 3.2.1 that CC∗(Cact1) is a cell model
for the little discs operad.

The fact that the cells are indexed by trees then yields a quick proof of Deligne’s
conjecture [K1] which states that the Hochschild cochains of an associative
algebra are an algebra over a cell model operad of the little discs.
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5.3 The relation between spineless cacti and cacti

We would now like to specialize the monoid of section 4 to S = S1 . We already
showed that the normalized and non-normalized versions of the different species
of cacti are homotopic and moreover that they are related by taking the direct
product with the scaling operad. Below we will see that cacti with spines are
a bi-crossed product of the cacti without spines and the operad built on S1 .
Furthermore we show that this bi-crossed product is homotopic to the semi-
direct product. Thus we see that the relation of cacti with and without spines
is analogous to the relation of framed little discs and little discs.

5.3.1 The action of S1 and the twisted gluing There is an action of S1

on Cact(n) given by rotating the base point clockwise around the perimeter.
We denote this action by

ρS1
: S1 × Cact(n)→ Cact(n).

With this action we can define the twisted gluing:

◦S
1

i : Cact(n)× S1(n)× Cact(m) → Cact(n + m− 1)

(C, θ,C ′) 7→ C ◦ ρS1
(θi, C

′) =: C ◦θi

i C ′ (5.7)

5.3.2 The homotopy diagonal defined by a spineless cactus Given a
cactus without spines C ∈ Cact(n) the orientation reversed perimeter (i.e. going
around the outer circle clockwise) gives a map

∆C : S1 → (S1)n. (5.8)

As one goes around the perimeter the map goes around each circle once and
thus the map ∆C is homotopic to the diagonal

∆C(S1) ∼ ∆(S1). (5.9)

A picture of the image of ∆C for a two component cactus is depicted in Figure
9.

5.3.3 The action based on a cactus We can use the map ∆C to give an
action of S1 and (S1)×n .

ρC : S1 × (S1)×n ∆C→ (S1)×n × (S1)×n µn

→ (S1)×n (5.10)

And furthermore using concatenations with projections we can define maps

◦C : (S1)×n × (S1)×m (id×πi)(∆)×id
−→ (S1)×n × S1 × (S1)×m

id×ρC

−→ (S1)×n × (S1)×m ◦̄i−→ (S1)×n+m−1 (5.11)
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Figure 9: The image of ∆C for a two component cactus

5.3.4 Theorem The (quasi-)operad of (normalized) cacti is isomorphic to
the bi-crossed product of the operad of (normalized) spineless cacti with the
operad S1 based on S1 with respect to the compositions of (5.7) and (5.11) and
furthermore this bi-crossed product is homotopy equivalent as a quasi-operad
to the semi-direct product of the operad of cacti without spines with the circle
group S1 considered as a monoid.

Cacti ∼= Cact ⊲⊳ S1 ∼ Cact ⋊ S1 (5.12)

with respect to the operations of (5.7) and (5.11). Similarly

Cacti1 ∼= Cact1 ⊲⊳ S1 ∼ Cact ⋊ S1 (5.13)

Proof As spaces the operad of cacti is the direct product of spineless cacti
and the operad built on the monoid S1

Cacti(n) = Cact(n)× S1(n)

where for the identification we use intersection points and the global zero to
define the parameterizations of the S1s constituting the cactus. Then the local
zeros are specified by their coordinate, i.e. all zeros are fixed by a point on
S1(n).

The product on the cacti operad in this identification is given by

(C, θ) ◦i (C ′, θ′) = (C ◦θi

i C ′, θ ◦C
′

i θ′) (5.14)

where we used the operations of (5.7) and (5.11).

This comes from the observation that gluing the global zero to the local zero
is the same as first using the S1 action that rotates the global zero around the
perimeter in a clockwise fashion by the amount which is given by the coordinate
of the local zero on the cactus to be glued in and then using the standard gluing.
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During the movement of the global zero the coordinates of the local zeros change
according to the map ρC . This proves the first assertion.

Now, in the semi-direct product the multiplication is given by:

(C, θ) ◦i (C ′, θ′) = (C ◦θi

i C ′, θ ◦i θ′) (5.15)

Now by (5.9) and (5.11) ◦Ci ∼ ◦i are homotopic and ◦Ci depends continuously
on C . Choosing the following simultaneous homotopies of the ∆C with ∆, we
obtain a homotopy equivalence of quasi-operads. The homotopy is given by
straightening out ∆C . For ∆C(θ) = (θ1, . . . , θn) notice that θ = 1

n

∑n
i=1 θi ; we

set
ht(θ) = ((1− t)θ1 + tθ, . . . , (1 − t)θn + tθ) t ∈ [0, 1].

This proves the second statement. On the level of homology we therefore obtain
an isomorphism of operads, so that the map of Cacti to the semi-direct product
is a quasi-isomorphism and hence an equivalence. To obtain the version of the
theorem in the normalized situation, we remark that the bi-crossed structure
does not depend on the size of the lobes.

5.3.5 Corollary The operads of cacti and the semi-direct product of spine-
less cacti with the operad S1 are homotopy equivalent as quasi-operads.

To connect these results to the literature, we recall a theorem of Voronov an-
nounced in [V, SV]:

5.3.6 Theorem The cacti operad is equivalent to the framed little discs
operad.

5.3.7 Proposition Theorem 3.2.1 and the Corollary 5.3.5 above in conjunc-
tion with the equivariant recognition principle of [SW] imply Theorem 5.3.6.

Proof For this first remark that by what we have proven above the spaces
Cacti already have the right weak homotopy type, they are K(PRBr, 1). Here
PRBr is the pure ribbon braid group. Next, it is clear from the decomposition
of the spaces Cacti(n) = Cact(n)×(S1)n , the results on the quotient Cact(n)/Sn

and the fact that Sn acts by permutation on the factors S1 that Cacti(n)/Sn

is a K(RBr, 1). Here RBr is the ribbon braid group. The construction of the
ribbon braid operad on the covers is done by using a lifting of the appropriate
paths to define the operad compositions and an action of the pure ribbon braid
group which covers the symmetric group action. Here SCC again act as base-
points. This will endow the universal covers of Cacti with a ribbon braid
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group operad structure. This can be checked directly. It also follows from the
existence of the homotopies to the semi-direct product, since the same holds
true for the semi-direct product of the little discs with S1 and the little discs
are equivalent to Cact. Also, the covers are contractible and the ribbon braid
group action is free so that the covers form an R∞ operad and hence by [SW]
Cacti is weakly homotopy equivalent to the framed little discs. The fact that
Cacti are homotopy equivalent to a CW complex then allows one to upgrade
from the weak equivalence to an honest one.

Vice-versa using the recognition principle of [SW] and starting with character-
ization of Cacti in terms of Cact above:

5.3.8 Proposition The Theorem 5.3.6 together with the Theorem 5.3.4 im-
ply Theorem 3.2.1, namely that the operad of (normalized) cacti without spines
is equivalent to the little discs operad.

Sketch of a proof The main idea is that the operad of little discs is embedded
into the framed little discs by setting the coordinates of the factors S1 equal
to zero in the semi-direct product. The argument is as follows. Following [SW]
one can show that if the universal cover of a semi-direct product fD = D ⋊ S1

is an R∞ operad then the universal cover of the suboperad D(n)× 0n is a B∞

operad. Since by the above theorem Cacti are weakly homotopy equivalent
to the framed little discs and also the semi-direct product of Cact with S1 is
equivalent with Cacti it follows by [SW] that the universal cover of the semi-
direct product is an R∞ operad, and hence the universal cover of the natural
inclusion of Cact into the semi-direct product is a B∞ operad which implies
that Cact is an E2 operad.

5.3.9 Remark It is shown in [K2] that the quasi-operad on the cellular
chains CC∗(Cacti1) is an operad. Due to the above result, this operad agrees
on the homology level with the semi-direct product of Cact with S1 which
in turn agrees with the semi-direct product of the little discs operad with S1 .
Thus on the homology level we obtain an operad isomorphic to the homology of
the framed little discs operad and thus CC∗(Cacti1) gives a chain level operad
model for the framed little discs.

Again, the combinatorial description of the cells allows one to prove a theorem
in the spirit of Deligne’s conjecture. Namely [K2], the Hochschild cochains of
a Frobenius algebra are an algebra over a cell level model of the framed little
discs operad.
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Appendix A: Graphs

In this appendix, we formally introduce the graphs and the operations on graphs used
in our analysis of cacti. This language is useful for describing the Arc operad which
is done in Appendix B. We also give a supplemental result characterizing cacti as a
certain type of ribbon graph. A cactus is a marked treelike ribbon graph with a metric.

A.1 Graphs

A graph Γ is a tuple (VΓ, FΓ, ıΓ : FΓ → FΓ, ∂Γ : FΓ → VΓ) where ıΓ is an involution
i2Γ = id without fixed points. We call VΓ the vertices of Γ and FΓ the flags of Γ. The
edges EΓ of Γ are the orbits of the flags under the involution. A directed edge is an
edge together with an order of the two flags which define it.

In case there is no risk of confusion we will drop the subscripts Γ.

Notice that f 7→ (f, ı(f)) gives a bijection between flags and directed edges.

We also call Fγ(v) := ∂−1(v) ⊂ FΓ the set of flags of the vertex v and call |FΓ(v)| the
valency of v and denote it by |v|.

The geometric realization of a graph is given by considering each flag as a half-edge
and gluing the half-edges together using ı . This yields a one-dimensional CW complex
whose realization we call the realization of the graph.

A.2 Trees

A graph is connected if its realization is. A graph is a tree if it is connected and its
realization is contractible.

A rooted tree is a pair (τ, v0) where τ is a tree and v0 ∈ Vτ is a distinguished vertex.

In a rooted tree there is a natural orientation for edges, in which the edge points
toward the root. That is we say (f, ı(f)) is naturally oriented if ∂(ı(f)) is on the
unique shortest path from ∂(f) to the root.

A bi-colored or black and white tree is a tree τ together with a map cr : V → Z/2Z.
Such a tree is called bipartite if for all f ∈ Fτ : cr(∂(f))+cr(∂(ı(f))) = 1, that is edges
are only between black and white vertices. We call the set Ew := cr−1(1) the white
vertices. If (f, ı(f)) is a naturally oriented edge, we call the edge white if ∂(ı(f)) ∈ Ew .
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A.3 Planar trees and ribbon graphs

A ribbon graph is a connected graph whose vertices are of valency at least two together
with a cyclic order of the set of flags of the vertex v for every vertex v .

A tree with a cyclic order of the flags at each vertex is called planar.

A graph with a cyclic order of the flags at each vertex gives rise to bijections Nv :
Fv → Fv where Nv(f) is the next flag in the cyclic order and since F = ∐Fv to a map
N : F → F .

The orbits of the map N ◦ ı are called the cycles or the boundaries of the graph. These
sets have the induced cyclic order.

Notice that each boundary can be seen as a cyclic sequence of directed edges. The
directions are as follows. Start with any flag f in the orbit. In the geometric realization
go along this half-edge starting from the vertex ∂(f), continue along the second half-
edge ı(f) until you reach the vertex ∂(ı(f)) then continue starting along the flag
N(ı(f)) and repeat.

A planar tree has only one cycle c0 .

A planted planar tree is a rooted planar tree (τ, v0) together with a linear order of the
set of flags at v0 . Such a tree has a linear order of all flags as follows, let f be the
smallest element of ∂−1(v0), then every flag appears in c0 and defining the flag f to
be the smallest gives a linear order on the set of all flags. This linear order induces a
linear order on all oriented edges and on all oriented edges, by restricting to the edges
in the orientation opposite the natural orientation i.e. pointing away from the root.

The genus g(Γ) of a ribbon graph Γ is given by

2g(Γ) + 2 = |VΓ| − |EΓ|+ #cycles

The surface Σ(Γ) of a ribbon graph Γ is the surface obtained from the realization of Γ
by thickening the edges to ribbons. I.e. replace each 0-simplex v by a closed oriented
disc D(v) and each 1-simplex e by e× I oriented in the standard fashion. Now glue
the boundaries of e × [−1, 1] to the appropriate discs in their cyclic order according
to the orientations. Notice that the genus of Σ(Γ) is g(Γ) and that Γ is naturally
embedded as the spine of this surface.

A.4 Treelike and marked ribbon graphs

A ribbon graph together with a distinguished cycle c0 is called treelike if the graph is
of genus 0 such that for all other cycles ci 6= c0 if f ∈ ci then ı(f) ∈ c0 . In other
words each edge is traversed by the cycle c0 . Therefore there is a cyclic order on all
(non-directed) edges, namely the cyclic order of c0 .

A marked ribbon graph is a ribbon graph together with a map mk : {cycles} → FΓ

satisfying the conditions:
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i) For every cycle c the directed edge mk(c) belongs to the cycle.

ii) All vertices of valence two are in the image of mk, that is ∀v, |v| = 2 implies
v ∈ ∂(Im(mk)).

Notice that on a marked treelike ribbon graph there is a linear order on each of the
cycles ci . This order is defined by upgrading the cyclic order to the linear order ≺i in
which mk(ci) is the smallest element.

A marked treelike ribbon graph is called spineless, if:

i) There is at most one vertex of valence 2. If there is such a vertex v0 then
∂(mk(c0)) = v0 .

ii) The induced linear orders on the ci are compatible with that of c0 , i.e. f ≺i f ′

if and only if ı(f ′) ≺0 ı(f).

A metric wΓ for a graph is a map Ev → R>0 .

A.5 Graphs with a metric

A projective metric for a graph is a class of metrics equivalent under re-scaling, i.e.
w ∼ w′ if ∃λ ∈ R>0∀e ∈ E : w(e) = λw′(e).

The length of a cycle is the sum of the length of its edges length(c) =
∑

f∈c w({f, ı(f)}).

A metric for a treelike ribbon graph is called normalized if the length of each non-
distinguished cycle is 1.

A projective metric for a treelike ribbon graph is called normalized if it has a normalized
representative.

A.6 Marked ribbon graphs with metric and maps of circles

For a marked ribbon graph with a metric, let ci be its cycles, let |ci| be their image in
the realization and let ri be the length of ci . Then there are natural maps S1

ri
→ |ci|

which map S1 onto the cycle by starting at the vertex vi := ∂(mk(ci)) and go around
the cycle mapping each point θ ∈ S1 to the point at distance θ

2π
ri from vi along the

cycle ci .

A.7 Contracting edges

The contraction (V̄Γ, F̄Γ, ı̄, ∂̄) of a graph (VΓ, FΓ, ı, ∂) with respect to an edge e =
{f, ı(f)} is defined as follows. Let ∼ be the equivalence relation induced by ∂(f) ∼
∂(ı(f)). Then let V̄Γ := VΓ/ ∼ , F̄Γ = FΓ \ {f, ı(f)} and ı̄ : F̄Γ → F̄Γ, ∂̄ : F̄Γ → V̄Γ be
the induced maps.

For a marked ribbon graph, we define the marking of (V̄Γ, F̄Γ, ı̄, ∂̄) to be mk(c̄) = mk(c)
if mk(c) /∈ {f, ı(f)} and mk(c̄) = N ◦ ı(mk(c)) if mk(c) ∈ {f, ı(f)} , viz. the image of
the next flag in the cycle.
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A.8 Labelling graphs

By a labelling of the edges of a graph Γ by a set S , we simply mean a map EΓ → S .

A labelling of a ribbon graph Γ by a set S is a map {cycles of Γ} → S .

By a labelling of a black and white tree by a set S we mean a map Ew → S .

A.9 Cacti as ribbon graphs

By considering its image a cactus is naturally a marked treelike ribbon graph, with a
metric. Vice-versa, given such a graph, one obtains a cactus.

A.9.1 Proposition A cactus with n lobes is equivalent to an {0, 1, . . . , n} labelled
marked treelike ribbon graph with a metric. I.e. The set Cacti(n) is in bijection with
the respective set of graphs. The conditions of being normalized and/or spineless are
compatible with this bijection.

Proof Given a cactus, its image is a ribbon graph. The vertices are the marked points
and the edges are the arcs. The flags being pairs (v, a) of a marked point v and an arc
a ending at v with the obvious involution and map ∂ . At each vertex there is a cyclic
order induced from the one in the plane. This graph has n + 1 cycles. First each lobe
marked by i yields a cycle ci (going clockwise) and secondly the outside circle (going
counter-clockwise) is a cycle which we will call c0 . Furthermore the outside circle goes
through each edge and hence the ribbon graph is treelike for the distinguished cycle
c0 . The labelling of the cycles is implicit in this description. The marking is given by
marking the unique flag (v, f) on the cycle ci for which v is the local zero, for i > 0
and the unique flag (v, f) on c0 for which v is the global zero. Finally the metric is
given by associating to an edge representing an arc, the length of that arc.

In the reverse direction, given a treelike marked ribbon graph with a metric Γ, consider
the surface Σ(Γ) of Γ. This is a surface of genus 0 with n + 1 boundary components.
We embed this surface into the plane as a disc with holes where the outside circle of
the disc corresponds to the cycle c0 . In this embedding, Γ realized as the spine of
Σ(Γ) is a cactus by considering the maps S1

ri
→ ci for i > 0 as above.

It is clear that these maps induce bijections between the sets Cacti(n) and the respective
set of graphs.

To be normalized means that ri = 1 for i > 0 in both cases. Finally to be spineless in
both cases also means the same. For this notice that condition i) says that there is a
global zero which may or may not be an intersection point and that all local zeros are
at the intersection points or at the global zero. Furthermore the root component of the
cactus is fixed as the unique cycle ci s.t. ı(mk(c0)) ∈ ci . The condition b then insures
that the local zero of the root component is the global zero. The reverse direction is
immediate.
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Appendix B: The arc operad

In this appendix, we would like to briefly recall some facts from [KLP] about the arc
operad. We will make use of some reformulations given in [K3] of the results of [KLP]
which use the language of graphs, since this will simplify the exposition.

B.1 The arc operad

We would like to recall some definitions of [KLP]. For this we will fix an oriented surface
F s

g,r of genus g with s punctures and r boundary components which are labelled from
0 to r − 1, together with marked points on the boundary, one for each boundary
component. We call this data F for short if no confusion can arise.

We recall from [KLP] that the space As
g,n is the CW complex whose cells are indexed

by graphs on the surface F up to the action of the pure mapping class group PMC
which is the group of elements of the mapping class group which fixes the boundaries
pointwise. A quick review in terms of graphs is as follows.

B.1.1 Embedded graphs By an embedding of a graph Γ onto a surface F , we
mean an embedding i : |Γ| → F with the conditions:

i) Γ has at least one edge.

ii) The vertices map bijectively to the marked points on the boundaries.

iii) No images of two edges are homotopic to each other.

iv) No image of an edge is homotopic to a part of the boundary.

Two embeddings are equivalent if there is a homotopy of embeddings of the above
type from one to the other. Note that such a homotopy is necessarily constant on the
vertices.

The images of the edges are called arcs. And the set of connected components of
F \ j(Γ) are called complementary regions.

Changing representatives in a class yields a natural bijection of the sets of arcs and
connected components, we will therefore associate arcs and connected components also
with a class of embeddings.

B.1.2 Definition By a graph on a surface we mean a triple (F, Γ, [i]) where [i] is
an equivalence class of embeddings of Γ.

B.1.3 A linear order on arcs Notice that due to the orientation of the surface the
graph inherits an induced linear order of all the flags at every vertex F (v) from the
embedding. Furthermore there is even a linear order on all flags by enumerating the
flags first according to the boundary components on which their vertex lies and then
according to the linear order at that vertex. This induces a linear order on all edges
by enumerating the edges by the first appearance of a flag of that edge.
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B.1.4 The poset structure The set of such graphs on a fixed surface F is a poset.
The partial order is given by calling (F, Γ′, [i′]) ≺ (F, Γ, [i]) if Γ′ is a subgraph of Γ
with the same vertices and [i′] is the restriction of [i] to Γ′ . In other words, the first
graph is obtained from the second by deleting some arcs.

We associate a simplex ∆(F, Γ, [i]) to each such graph. ∆ is the simplex whose vertices
are given by the set of arcs/edges enumerated in their linear order. The face maps are
then given by deleting the respective arcs. This allows us to construct a CW complex
out of this poset.

B.1.5 Definition Fix F = F s
g,n . The space A′s

g,n is the space obtained by gluing
the simplices ∆(F, Γ′, [i′]) for all graphs on the surface according to the face maps.

The pure mapping class group (PMC ) which is the part of the mapping class group
that preserves the boundary pointwise naturally acts on A′s

g,n . It actually has finite
isotropy [KLP].

B.1.6 Definition The space As
g,r := A′s

g,r/PMC .

B.1.7 Elements of the As
g,r as projectively weighted graphs The space As

g,n

is a CW complex whose cells are indexed by graphs on the surface F up to the action
of the pure mapping class group PMC . Moreover the cell for a given class of graphs is
actually a simplex whose vertices correspond to the arcs in the order discussed above.
The attaching maps are given by deleting edges. Due to the action of PMC some of
the faces also might become identified by the gluing.

Using barycentric coordinates the elements of As
g,n are graphs on the surface F up to

the action of the pure mapping class group PMC together with a map w of the edges
of the graph EΓ to R>0 assigning a weight to each edge s.t. the sum of all weights is
1.

Equivalently we can regard the map w : EΓ → R>0 as an equivalence class under the
equivalence relation of, i.e. w ∼ w′ if ∃λ ∈ R>0∀e ∈ EΓ w(e) = λw′(e). That is w is
a projective metric. We call the w(e) the projective weights of the edge. In the limit,
when the projective weight of an edge goes to zero, the edge/arc is deleted.

B.1.8 Example A0
0,2 = S1 . Up to PMC there is a unique graph with two edges.

This gives a one simplex. The two subgraphs lie in the same orbit of PMC and thus the
0-simplices are identified to yield S1 . The fundamental cycle is given by δ of Figure
11.

B.1.9 Drawing pictures for arcs There are several pictures one can use to view
elements in the arc operad. In order to draw elements of the Arc operad it is useful,
to expand the marked point on the boundary to an interval, and let the arcs end on
this interval according to the linear order. Equivalently, one can mark one point of the
boundary and let the arcs end in their linear order anywhere but on this point.
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B.1.10 Remark There is an operad structure on Arc which is obtained by gluing
the surfaces along the boundaries and splitting the arcs according to their weights. We
refer the reader to [KLP] for the details.

B.1.11 Definition of suboperads and DArc

Let DArcs
g,r := Arcs

g,r × R>0 .

Let Arcs
g(n) ⊂ As

g,n+1 be the subspace of graphs on the surface with the condition
that ∂ : FΓ → VΓ is surjective. This means that each boundary gets hit by an arc.

Let Arcs
#g(n) ⊂ Arcs

g(n) be the subspace of elements whose complementary regions
are polygons or once punctured polygons.

Set Arccp(n) := Arc0
0(n).

Let T reecp(n) ⊂ Arccp(n) be the subspace in which all arcs run from 0 to some
boundary i only.

Finally let LTreecp ⊂ T reecp be the space in which the linear order of the arcs at the
boundary 0 is anti-compatible with the linear order at each boundary, i.e. if ≺i is the
linear order at i then if f ≺i f ′ ı(f ′) ≺0 ı(f).

B.1.12 Remarks

1) The elements of DArc are graphs on surfaces with a metric, i.e. a function
w : EΓ → R>0 . And DArc is an operad equivalent to Arc [KLP].

2) The subspaces above are actually suboperads [KLP].

3) Any suboperad S of the list above defines a suboperad DS := S ×R>0 of DArc
which is equivalent to S .

4) One can also reverse the orientation at zero. This is in line with the usual
cobordism point of view used in [KLP]. In this case the condition for LTree is
the compatibility of the orders.

In [KLP] we defined a map called Loop which is the suitable notion of a dual graph
for a graph on a surface. This map is uses an interpretation of the graph as a partially
measured foliation. If one restricts to the subspace Arc# though, this map has a sim-
pler purely combinatorial description. This description will be enough for our purposes
here, but we would like to emphasize that this description is only valid on the subspace
Arc# and cannot be generalized to the whole of Arc .

B.1.13 The dual graph Informally the dual graph of an element in Arc# is given
as follows. The vertices are the complementary regions. Two vertices are joined by an
edge if the complementary regions border the same arc. Due to the orientation of the
surface this graph is actually a ribbon graph via the induced cyclic order. Moreover
the marked points on the boundary make this graph into a marked ribbon graph. A
more precise formal definition is given in the next few paragraphs.
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B.1.14 Polygons and Arc0
# By definition, in Arc0

# the complementary regions are
actually k -gons. Let Poly(F, Γ, [i]) be the set of these polygons and let Sides(F, Γ, [i])
be the disjoint union of sets of sides of the polygons. We define ∂poly : Sides(F, Γ, [i])→
Poly(F, Γ, [i]) to be the map which associates to a side s of a polygon p the polygon
p . The sides are either given by arcs or the boundaries. We define the map lab :
Sides(F, Γ, [i]) → EΓ

⋃
VΓ that associates the appropriate label. Notice that for e ∈

EΓ; |lab−1(e)| = 2 and for v ∈ VΓ : |lab−1(v)| = 1. Thus there is a fixed point free
involution ıside on the set lab−1(EΓ) of sides of the polygons marked by arcs which
maps one side to the unique second side carrying the same label. This in turn defines an
involution ı of pairs (p, s) of a polygon together with a side in lab−1(EΓ) by mapping
s to ıside(s) and taking the polygon p to the polygon p′ := ∂poly(ı(s)) of which ıside(s)
is a side. Although p and p′ might coincide the sides will differ making the involution
ı fixed point free.

B.1.15 Definition For an element (F, Γ, [i], w) ∈ Arc#g(n) we define the dual graph

to be the marked ribbon graph with a projective metric (Γ̂, ord, ŵ, mk) which is defined
as follows. The vertices of Γ̂ are the complementary regions of the arc graph (i.e. the
polygons) and the flags are the pairs (p, s) of a polygon (vertex) together with a side of
this polygon marked by an arc (s ∈ lab−1(EΓ)). The map ∂ is defined by ∂((p, s)) = p
and the involution ı((p, s)) := (∂poly(ıside(s)), ıside(s)).

Each polygonal complimentary region is oriented by the orientation induced by the
surface, so that the sides of each polygon and thus the flags of Γ̂ at a given vertex p
have a natural induced cyclic order ord making Γ̂ into a ribbon graph.

Notice that there is a one-one correspondence between edges of the dual graph and edges
of Γ. This is given by associating to each edge {(p, s), ı(p, s)} the edge corresponding
to the arc lab(s).

We define a projective metric ŵ on this graph by associating to each edge {(p, s), ı(p, s)}
the weight of the arc labelling the side s where w is the projective metric on the arc
graph ŵ({(p, s), ı(p, s)}) := w(lab(s)).

To define the marking, notice that the cycles of Γ̂ correspond to the boundary com-
ponents of the surface F . Let ck be the cycle of the boundary component labelled
by k . The k -th boundary component lies in a unique polygon p = ∂poly(lab−1(k)).
Let ≺p be the cyclic order on the set of sides of p, ∂−1(p). Let sk be the side corre-
sponding to the boundary and let N(sk) the element following sk in ≺p . We define
mk(ck) := (p, N(sk)).

B.1.16 Remark The above map will suffice for the purposes of this paper. For the
general theory and the reader acquainted with the constructions of [KLP], the following
Proposition will be helpful.

We do not, however, wish to go into technical details here on how a marked weighted
ribbon graph defines a configuration in the sense of [KLP] and refer the reader to [K3]
for details.
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B.1.17 Proposition [K3] For elements in Arc# the dual graph realizes the map
Loop .

B.2 The suboperads of Arc defined by the cacti operads

In this section, we would like to recall that the cacti without spines and cacti can
be embedded into the Arc operad up to an overall scaling factor as defined in [KLP].
Moreover there is an S1 action given by the twist operator δ . For the complete details,
we refer to [KLP].

In one direction the map is given by the dual graph discussed above. In the other
direction, the embedding is basically constructed as follows: start by decomposing the
cactus into the arcs of its perimeter, where the break point of a cactus with spines
are the intersection points, the global zero and the local zeros. Then one runs an arc
from each arc to an outside pointed circle which is to be drawn around the cactus
configuration. The arcs should be embedded starting in a counterclockwise fashion
around the perimeter of the circle. The marked points on the inside circles which are
the lobes of the cactus are the local zeros for the cactus with spines and the global zero
and the first intersection point for a cactus without spines.

An equivalent formal definition in terms of graphs is given below.

For more orientation, we include two figures: the Figure 10 shows the framing i.e.
embedding of two cacti without spines and a cactus with spines into arc; Figure 11
shows the identity in arc and the family of weighted arcs corresponding to the twist
which yields the BV operator. The Figures 2 V and 3 V depict more elaborate examples.

B.2.1 Arcs and cacti The main result of the arc picture is summed up in the
following Theorem.

B.2.2 Theorem There is an map of (spineless) cacti into DArc which maps Cacti
bijectively onto DT reecp and Cact bijectively onto DLTreecp . When restricted to its
image this map is an equivalence of operads.

Furthermore the suboperad in DArc generated by the Fenchel-Nielsen type twist δ
and the image of spineless cacti is equal to the image the cacti operad.

There are operadic maps of the spineless cacti and the cacti operad into Arc which
are equivalences when restricted to their image.

Partial proof We will prove this claim on the level of sets and refer to [KLP] for the
operad structure.

The map in one direction is given by associating the dual graph. For an element in
DT reecp this graph is a marked treelike ribbon graph with a metric, viz. a cactus. If
the linear orders agree, it is spineless.
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Figure 11: The identity and the twist δ yielding the BV operator

For the map in the reverse direction, we realize a cactus c as a marked treelike ribbon
graph with a metric Γ(c). The surface will be Σ(Γ(c)). The boundaries correspond
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to the lobes and the outside circle and are hence labelled from 0 to n . Let m(e) be
the midpoint of the edge e . Then we consider the arcs m(e) × [−1, 1] on Σ. Notice
that these arcs come in a linear order at each boundary component according to their
linear order on the cactus and are labelled by w(e) ∈ R>0 . Finally we mark off an
interval on each boundary such that the arcs on a boundary all end on this interval and
appear in the above linear order on the interval, where the orientation of the interval
is induced by that of the surface. Contracting the interval to a point, we obtain the
desired element in DArc .

The claim about Arc follows immediately from the equivalence of operads DArc →
DArc/R>0 = Arc which contracts the factor R>0 of DArc .

B.2.3 Remark Alternatively, we can mark a point on each boundary such that the
arcs appear in their order on the complement of this point. This alternative corresponds
to the map called framing in [KLP] which we also used in our depictions in this paper.
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