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Feynman categories and representation theory

Ralph M. Kaufmann

Abstract. We give a presentation of Feynman categories from a
representation–theoretical viewpoint.

Feynman categories are a special type of monoidal categories and their
representations are monoidal functors. They can be viewed as a far reach-
ing generalization of groups, algebras and modules. Taking a new algebraic
approach, we provide more examples and more details for several key construc-
tions. This leads to new applications and results.

The text is intended to be a self–contained basis for a crossover of more
elevated constructions and results in the fields of representation theory and
Feynman categories, whose applications so far include number theory, geome-
try, topology and physics.

Contents

Introduction
1. Representations from a categorical viewpoint
2. Feynman categories
3. Constructions and examples
4. Modules and enriched Feynman categories
5. Bar, co–bar, Feynman transforms, & master equations
6. W-construction and cubical structures
7. Outlook
Appendix A. Graph glossary and graphical Feynman categories
Appendix B. Graph description of F+, F+gcp and Fhyp

Appendix C. Double categories, 2–categories and monoidal categories
Appendix D. Model structures
Acknowledgments
References

Introduction

This paper concentrates on the algebraic aspects of Feynman categories. Feyn-
man categories where introduced to have an enveloping theory for several types
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12 R. M. KAUFMANN

of generalizations of algebras [KW17]. Going beyond this and the original in-
tended application [KWZ12] the theory has found applications outside its ini-
tial intention in algebra, category theory, geometry, number theory and physics,
[KL16,BK17,GCKT20a,GCKT20b,War19]. Further applications to repre-
sentation theory are present, but an extension of results and approaches is desirable
and anticipated. The present treatment is designed to aid this development.

Although treated within the general theory, the algebraic aspects have not
been presented in full detail. There are many constructions and results that are
subtle when going beyond set based categories, which is necessary to study algebra
representations, that is modules. The current paper bridges this gap providing an
algebraically motivated, example based introduction to the theory while at the same
time providing new level of detail for these constructions. This clarifies previous
results and constructions, while providing new results and concrete examples along
the way.

The basic idea underlying the formalism of Feynman categories is to separate
objects and their structures. This is in a similar spirit as Galois’ insight to separate
the group from its representations, or, in modern terminology, the category of its
representations. Taking this approach leads to a hierarchy of abstraction, and
allows one to operate on a higher level.

Continuing with the group analogy, many things about groups and their rep-
resentations just follow from the axioms of a group, and are hence true in general
for all groups and their representations —for instance restriction and Frobenius
reciprocity. Other results depend only on the group and hence work in all represen-
tation of that group. Finally there are results about particular representations. In
keeping with this theme, the Feynman categories are the analogues of the groups,
and their representations are given by functors; that is monoidal functors to be
precise.

There is a natural categorical transition from groups to groupoids or quivers,
which is discussed in the first section. In this version, the groups are indeed an ex-
ample of Feynman categories and restriction, induction and Frobenius reciprocity
are generalized to a pair of adjoint functors, see §1 and §2. More generally, Feynman
categories can be understood as having two constituents, a groupoid providing basic
objects and isomorphisms, and a set of morphism encoding operations and their re-
lations. Up to isomorphism the morphisms further decompose into tensor products
of a basic morphisms, those whose target are the basic objects. The morphisms
can be thought of as “proto–operations” on “proto–objects” that get realized to
operations on objects if a representation functor is applied. A presentation of a
Feynman category, will be a set of basic generating morphism and relations among
them.

A good example for the presentation of proto–operations, or morphisms, and
their relations is given by considering commutative algebras. This example also
illustrates the hierarchy of abstraction. An algebra is a linear object A together
with a multiplication μ : A ⊗ A → A which is bi–linear and associative. The
structure so far is an object in a linear category and a 2-variable morphism with
a relation —associativity. There are two ways of writing down the associativity
equation. The first is in terms of elements (ab)c = a(bc). Using just the structure
morphism μ, one can alternatively rewrite the equation as μ◦1μ = μ◦2μ2 considered
as morphisms of three variables obtained by substitution, where ◦i means plug into
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FCS AND REP. THEORY 13

the i–th variable. In this form, one has the following data: (1) an object in a linear
monoidal category, we used the monoidal structure to write down A⊗A and need
A⊗3 for associativity. Moreover, if we are allowed to plug into variables, we will
get n–linear maps that is we will use A⊗n. (2) A morphism μ and its iterates and
the relations among them given by associativity. Moving to having this data as the
value of a functor, the simple data which will be encoded in the Feynman category
whose monoidal functors are commutative algebras. This is simply as follows: one
basic object ∗ and one basic generating morphism π2 : ∗ ⊗ ∗ → ∗, the proto–
multiplication, with the relation of associativity given by a commutative diagram
corresponding to the equation π2 ◦1 π2 = π2 ◦2 π2. Commutativity corresponds
to the fact that π2 ◦ (12) = π2, where (12) is the elementary transposition. The
monoidal part of the Feynman category is the category finite sets with surjections
with disjoint union as monoidal product, see §2.7.2 and Proposition 2.16 for full
details. The morphisms are surjection and the basic morphisms are the surjections
πS : S → {∗} for a chosen atom ∗. The multiplication is the value of the functor
on the surjection π2 : {1, 2} � {1} and the associativity corresponds to the fact
that there is only one surjection {1, 2, 3} � {1}. Note that we now do not have to
specify that the functor takes values in a linear category. In general, a functor out
of the Feynman category into any monoidal target category C is equivalent to the
data of a commutative monoid.

This begs the questions, which we will answer in the text:

(1) What are the natural generalizations of groups, algebras and representa-
tions in terms of Feynman categories?

(2) Are there are similar Feynman categories for modules and their general-
izations?

(3) What type of operations on algebras translate to the Feynman categories?

The answer to (1) is that there are indeed many Feynman categories naturally
generalizing groups and algebras. There are even constructions, like the plus con-
struction, which build more complex Feynman categories from simpler ones. In
particular, there are two constructions, which allow one to give more structure to
the objects and the morphisms. The first is called decoration and the second in-
dexed enrichment. Decorations, which are a form of Grothendieck (op)–fibration,
lead to a factorization system for morphisms in the category of Feynman categories
analogous to Galois covers, see §3.2 and [BK17]. Other constructions allow one
to consider lax–monoidal functors or regular functors instead of strong monoidal
functors as representations.

Indexed enrichments are tied to the so–called plus construction, which gives
rise to several hierarchies. The most basic one starts with the trivial Feynman
category whose representations are objects (§2.7.1). progresses to the category
whose representations are associative algebras and the next step is given by non–
symmetric operads. Beyond that one finds hyper-operads, which are necessary for
the bar and co–bar construction and so on. This may provide a first point of contact
and exhibit the naturalness of the notions. To obtain symmetric versions, one can
use a forgetful functor which induces a cover by a decoration. In this fashion, there
is a boot-strap, which generates a large part of the theory simply from the trivial
Feynman category. Another hierarchy starts with a Feynman category G based on
graphs, see Appendix A. This leads to modular operads, hyper-(modular)-operads,
etc., which are intimately related to moduli spaces of curves, and, among other
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14 R. M. KAUFMANN

things, lead to twisted modular operads see [KW17, 4.1] and [KWZ12,KL16,
BK20a] as well as §7. In general, the plus construction is a formalization of the
fact that the morphisms in a category regarded as having inputs and outputs give
rise to flow charts, see also [KM20]. For the reader not so familiar with these
notions, the self–contained presentation using the approach outlined above gives
to a natural construction which makes their existence transparent. For instance,
operads naturally appear when considering modules over algebras.

The plus construction is also important in comparing Feynman categories to
operadic categories of [BM15], see [BKM]. One application of these categories is to
higher category theory as they produce Batanin’s n–operads [Bat98,Bat17] which
lead to an approach to higher categories. In the context of Feynman categories, the
construction goes back to indexing [KW13] as a codification and generalization the
notion of hyper–operads and twists as introducted in [GK98]. The fact that this
is related to so–called plus constructions, was explained to us by M. Batanin and
C. Berger, which lead to the formulation given in [KW17, §3,§4] that is presented
below. The origin of plus constructions goes back to [BD98], see also [BB17] for
a plus construction for polynomial monads. Iterations of plus constructions can
be found in [BD98], under the name of opetopes, and also in [Bat98,BFSV03,
Lei04].

As to question (2): there are Feynman categories which allow to encode mod-
ules (§3.3). It turns out, that in the analogy with groups, algebras and modules
are formalized by indexed enrichment using the aforementioned plus construction:
the hierarchies are more like ladders on which there are two ways to move: “up”
creating a new Feynman category and “down” using the upper rung to define an
indexed enrichment. The representations of these indexed enriched versions are
then the sought after modules. For representations and modules it is important
that these categories can be enriched. Enrichment several different flavors, namely,
combinatorial, topological and algebraic. The native constructions are combinato-
rial in nature as categories are based on sets. The other two are more complicated
and are enriched, either in a Cartesian category, which behave very much like Set ,
or in non–Cartesian category, e.g. a linear ones, such as Vectk . These are of basic
interest in representation theory. In the analogy with groups enrichment over Vectk
is the transition from group representations to k[G] algebras. We give the details
in §4 stressing the intricacies that are presented in the non–Cartesian/linear case.

As far as question (3) is concerned, there are analogues of the bar and cobar
constructions (§5), as well as of a dual transform, aka. Feynman transform, which is
the cobar on the dual of A. This yields a generalization of Maurer–Cartan equations
in the form of Master Equations (§5.3), which are important in deformation theory.
There is a topological version of this, the so–called W–construction given in §6.
The construction has a cubical nature and the cubical setting gives a natural wall
structure. We give the construction for monoids and show that as expected one
obtains the cubical decomposition of associahedra which also appear in the stability
conditions for An type algebras [KKGJ15].

Organization of the text. The text is designed to be as self-contained as
possible and is aimed at a diverse audience.

We start in §1 with collecting classic results for groups and quiver represen-
tations, but reformulated in categorical language. This presentation might be of
independent interest as a primer.
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The next paragraph, §2, contains the definition of Feynman category introduced
as a special type of monoidal category. The representations are then given by strong
monoidal functors. The development is parallel to that of §1. The presentation of
indexed Feynman categories is new. The section ends with examples which are
based on finite sets. Here we provide new details. The representations of these
are various kinds of algebras. The group(oid) representations are also included as
a basic example. Further examples are provided by graphical Feynman categories.
The theory of graphs we use is detailed in Appendix A.

We then turn to various constructions for Feynman categories in §3. These
yield Feynman categories whose representations are lax-monoidal or simply func-
tors. At this level the finite set based Feynman categories have FI–modules and
(co)–(semi)–simplicial objects as objects. The next operation is that of decoration.
It yields the graphical Feynman categories that encode operad–like types, see Table
7. The next construction is the plus construction. Here we give a detailed expo-
sition of the condensed presentation in [KW17, §3.6], providing several explicit
calculations. The new precision yields gcp–version of the plus–construction, which
is a generalization of hyper version contained in [KW17, §3.7]. The relationship
to indexing is also made more explicit here then previously. A detailed graphical
based analysis is given in Appendix B, where we also give a careful discussion of
levels.

In §4 we tackle the enriched version. This is technically the most demanding
and contains many new details. The bar/co-bar transformation and a dual trans-
formation, aka. Feynman transform along with the master equations are discussed
in §5. Traditionally the bar/co-bar adjunction can be used to define resolutions.
For this one needs a model structure in general. The relevant details are reviewed
in Appendix D. The W–construction is reviewed in §6. Here we also reconstruct
the associahedra in their cubical decompositions.

We end the paper with an outlook, §7 that contains further applications as
well as speculations about cluster transformations, relations to moduli spaces and
2–Segal objects.

Appendix A also has several details not present in other discussions, such as
more details about the composition, the composition of ghost graphs, and grafting
into vertices. The presentation of the category of graphs following [BM08] is of
independent interest as it captures just the correct amount of combinatorics for
subtle considerations.

There is an additional Appendix C, which gives the definition of 2–categories
double categories and their relationship to Feynman categories and indexing. These
can provide a rather technical, but natural, background.

New results. For the reader already familiar with (some of) the notions, there
are several new results. The connection to Frobenius reciprocity is new. Algebras
receive a full treatment at all levels and the relation to classical results are pointed
out along the way. For instance, the examples of §2.7 are partially new and partially
given in fuller detail. The treatment of noncommutative sets is entirely novel and
provides a new avenue of construction. Tables 1 and 2 are the most exhaustive and
detailed up to date.

The role of monoidal units is treated more carefully. First, for the free and nc
construction in §3.1 which leads to more precise theorems. Again a more careful
treatment of units has lead to the definition and construction of F+gcp in §4. The
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16 R. M. KAUFMANN

graphical description of F+,F+gcp and Fhyp in Appendix B is new in its level of
detail and clarifies the short description in [KW17]. This is a key result in the
current paper. Key results and definitions in this direction are Proposition 4.11,
Definition 4.12, Theorems 4.15 and B.1. The explicit computations of F+,F+gcp

and Fhyp are new, cf. Propositions 3.34 and 3.36.
The classification of FI enrichments in §4.4.2 is new and shows how the perspec-

tive of Feynman category leads to a natural classification and extension of previous
results.

Throughout the paper, The role of indexing is paid more attention to. Espe-
cially in the section §2.6.1,§3.3 and Appendix C. The latter appendix also has a full
development of the details of the constructions only briefly introduced in [KW17]
in terms of double categories and 2–categories. The incorporation of holonomy and
connections is new. In similar vein, in the section on decoration and covers §3.2,
the criterion for being a cover is now given in Proposition 3.7.

Conventions. For a complex C•, we define the shift by (ΣC)n = (C[1])n =
Cn+1. The effect is that the complex shifts down and suspension s := Σ−1 shifts
the complex up. If f : C → D[k] them we set |f | = k. This means that f is given
by a collection of maps fn : Cn → Dn+k and |f(c)| = |f ||c|.

1. Representations from a categorical viewpoint

1.1. Representations. A k-representation of a group G is a pair (V, ρ) of a
vector space V over k and a morphism of groups ρ : G → Aut(V ), where Aut(V )
is the group of k-linear automorphisms of V . This data is neatly organized and
generalized as follows.

Definition 1.1. A groupoid is a category whose morphisms are all invertible.

Example 1.2. Let G be the category with one object ∗ and morphisms
HomG(∗, ∗) = G where the composition map is given by group multiplication:
f ◦ g = fg. The unit id∗ is the unit e ∈ G, the inverses of the morphisms are the
inverse group elements g−1, hence this is indeed a groupoid.

Definition 1.3. A representation of a groupoid G is a functor F : G → C.
Example 1.4. Let k-Vect be the category of k vector spaces. A functor F :

G → k-Vect is exactly a k representation of G. Since G only has one object ∗, on
the object level the functor is completely fixed by V := F (∗). For the morphisms,
we have an additional morphism ρ := F : Aut(∗) → Aut(V ). Thus the functor is
determines and is uniquely determined by the pair (V, ρ).

As the example illustrates, one can quickly get generalizations. Groupoid rep-
resentations are given by collections of objects, automorphisms of them and iso-
morphisms between them. Another generalization is given by changing the target
category C from Vectk to some other category to obtain groupoid representations
in different categories.

Example 1.5. For any category C, we let Iso(C) be the wide sub–category
with Obj (Iso(C)) = Obj (C) and Mor(Iso(C))) = Iso(C) ⊂ Mor(C) the subset of
isomorphisms. This is a groupoid sometimes called the underlying groupoid.

In the example above the functor ρ : G → C actually factors through Iso(C) and
more generally so does any functor whose source is a groupoid. Note, a category V
is a groupoid if and only if Iso(V) = V .
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Example 1.6. Another typical groupoid is a action groupoid. Let X be a set
and G be a group action ρ on X. Let Mor = G ×X and Obj = X. Furthermore
set s = π2 : Mor → Obj : s(g, x) = x, define t : Mor → Obj : t(g, x) = ρ(g)(x) and
id : Obj → Mor : id(x) = (e, x) where e ∈ G is the unit. Lastly, define composition
◦ : Mors ×t Mor → Obj given by (g, ρ(h)(x)) ◦ (h, x) = (gh, x). Then this data
forms a category and moreover a groupoid.

Remark 1.7. If one wants to add more geometry or more conditions to a
groupoid, one can consider a groupoid internal to a category C. Like a category
internal to C this is a pair of objects Mor and Obj of C which form the morphisms
and objects of a category together with morphisms in C s, t : Mor → Obj, id :
Obj → Mor and ◦ : Mors×tMor → Obj satisfying all the conditions of a category.

1.1.1. Intertwiners as natural transformations. Morphisms between represen-
tations (V, ρV ), (W,ρW ) aka. intertwiners are morphisms N : V → W such that

(1.1) N ◦ ρV = ρW ◦N
This equation is also the equation for natural transformations. Recall that

functors from C to D form a category Fun(C,D) whose morphisms are natural
transformations. Where Nat(F, F ′) are the natural transformations from F to F ′

and a natural transformation N is given by a collection of morphisms NX : F (X) →
F ′(X) indexed by the objects of C that satisfy

(1.2) ∀φ ∈ HomC(X,Y ) : NX ◦ F ′(φ) = NY ◦ F (φ)

Example 1.8. In the example where C = G, there is only one object ∗ and
hence only one morphism N∗ = N , and the equation becomes (1.1).

1.2. Graphs and quivers. A groupoid gives rise to a graph and vice–versa
any graph gives rise to a (free) groupoid, as we will review, see also e.g. [KKW15].

We will use the Borisov–Manin definition of graphs and morphisms, [BM08,
KW17]. Full details are in Appendix A. In this formalism, a graph Γ is a collection
(V, F, ∂, ı), where V is a set of vertices, F is a set of flags aka. half edges, ∂ : F → V
assigns a base vertex to each flag and ı : F → F is an involution ı2 = id. Edges
are orbits of order two of ı, that is an edge e = {f, ı(f)} comprises two half edges
and the orbits of order one, are “unpaired” half edges aka. tails. The set of edges
will be denoted by T and that of tails by T . A directed edge �e is a pair (f, ı(f)).
Each edge gives rise to two directed edges and by picking the first flag the set of
directed edges is in bijection with the flags, that are not tails. A path is a sequence
of directed edges �ei = (fi, ı(fi)), such that ∂(ı(fi)) = ∂(fi+1). The set of all paths
on Γ is denoted by P(Γ). A directed graph, aka. quiver, is a graph, with a choice
of direction for all of its edges.

1.3. Graphs and groupoids. Given a groupoid G the corresponding graph
has V = Obj (G) and flags F = Mor(G), ∂(φ) = s(φ) and ı(φ) = φ−1. This graph
has no tails, and hence the directed edges are in bijections with the flags. Notice
that (i) each object has an identity map, thus there is at least one loop at each
vertex, (ii) the graph structure does not encode the composition. We do however
have a morphisms P(Γ) = Mor(G), by sending the sequence �ei, i = 1, . . . , n to
fn ◦ · · · ◦ f1.

Vice–versa, given a graph Γ without tails, setting Obj (G) = V and F as the
set of directed edges as the basic morphisms, where the source and target maps
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18 R. M. KAUFMANN

are given by ∂. One cannot read off relations, but one can simply regard the free
category on a given graph Γ to be the category generated by the flags of Γ, that is
morphisms Mor(G) = P(Γ ) together with the identity morphisms of all the objects
and concatenation being composition of composable paths.

Remark 1.9. One can use functorial language to say that there is a forgetful
functor Γ : Catsm → Graphsnt from the category of small category to that of graphs
without tails and that this functor has a left adjoint free functor F , F 	 G, see
§1.5.1 below.

1.4. Monoids and quiver representations. On can relax the invertibility
and see that using the construction of Example 1.2 actually any unital monoid A
gives rise to a category A.

Similarly, relaxing the invertibility, but adding a direction for each edge, a
directed graph, gives rise to a category, where the generating morphisms are exactly
the directed edges. This is usually known as a quiver.

1.5. Restriction, induction and Kan extensions. Given a morphism of
groups f : H → G, in particular a subgroup H ⊂ G, there are two canonical
operations for representations. Restriction resGH : Rep(G) → Rep(H) and induction
indGH : Rep(H) → Rep(G).

In the categorical formulation this amounts to the following triangles.

(1.3) H
f ��

F◦f=f∗F ���
��

��
��

G

F����
��
��
�

C

H

F ���
��

��
��

f �� G

LanfF=f!F����
��
��
�

C
Here pull–back f∗ is simply restriction. Induction is more complicated and is given
by the so–called left Kan extension.

In general, the situation is that one has a functor f : D → E this gives rise to a
morphism in the category of functors and natural transformations f∗ : Fun[E , C] →
Fun[E , C] by sending F ∈ Fun[E , C] to f∗F = F ◦ f . A left adjoint functor f!,
f! 	 f∗, if it exists if it exists gives a functor in the other direction

(1.4) f! : Fun[E , C] � Fun[E , C] : f∗

The left Kan extension, if it exists provides such a left adjoint: Lanf = f!.
1.5.1. Adjoint functors. A functor F ∈ Fun(C,D) is called the left adjoint to a

functor G ∈ Fun(D, C) if there are natural bijections

(1.5) HomC(X,GY ) ↔ HomD(FX, Y )

Typical pairs are G = forget and F = free. E.g. if C = Set and D = Group. In
the case at hand, the functors are F = f∗ and f! which run between the categories
indicated in (1.4).

1.5.2. Left Kan extension. The Kan extension, gives a left adjoint functor, the
putative formula for the point-wise Kan left extension is

(1.6) LanfF (Y ) = colim(f↓Y ) F ◦ s
if the colimit exists. We will now discuss how to calculate such a beast in the
situation above.

First, (f ↓ Y ) is a so–called comma or relative slice category which has as
objects pairs (X,φ : f(X) → Y ) where X ∈ D and φ ∈ HomE(f(X), Y ). The
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morphisms from (X,φ : f(X) → Y ) to (X ′, φ′ : f(X ′) → Y ) are morphisms ψ :
X → X ′ such that φ = φ′ ◦ f(ψ)

(1.7) X

ψ

��

f(X)
φ ��

f(ψ)

��

Y

X ′ F (X ′)

φ′
�����������

Second, the source map s sends (X,φ) �→ X and hence the evaluation at the object
(X,φ) is F ◦ s(X,φ) = F (X).

Finally in a category C with direct sums
⊕

or more generally co–products
∐
,

we can compute small co–limits as follows. Given an index category I and a functor
F : I → C, the co-limit is:

(1.8) colimI F =
⊕

X∈Obj (I)
F (X)/ ∼

where ∼ is the equivalence relation induced by F (X) � y ∼ F (φ)(y) ∈ F (X ′),
where φ ∈ HomI(X,X ′).

Example 1.10. Consider a set X with a group action ρ : G × X → X. Set
I = G and consider C = Set . A functor F : I → Set then given by X = F (∗) and
a morphism F : G → Aut(X ) which is equivalent to the action ρ : G × X → X.
The colimit colimI F = XG is given by the co–invariants of X, that is X/ ∼ where
x ∼ x′ if there is a g ∈ G such that g(x) = x′. These is exactly F (∗)/ ∼ above.
Note that there is a natural map quotient X → XG

The co-limit is actually more that an object, but it is an object together with
morphisms and as such is defined by its universal property. The co-limit colimI F is
a coherent collection (aka. co-cone) (C, (πX : F (X) → C)X∈Obj (I)) where coherent
means that for all φ : X → X ′ : πX′ ◦ F (φ) = πX . The universal property is that
if (C ′, π′

X) is any other co–cone, there is a map ψ : C → C ′ which commutes with
all the data.

In computing co-limits the following slogan is useful:

A co–limit of a given functor can be computed by using an equiv-
alent indexing category.

Hence one can compute a co–limit using a skeleton, that is an equivalent category
that only has one object in each isomorphism class. For a category F , we will
denote its skeleton by sk(F).

Example 1.11. Taking the Kan extension as an example, we see that there
is a component for each object (X,φ) and the equivalence relation is given by the
morphisms ψ as in (1.7), that is

(1.9) LanfF (Y ) =
⊕

(X,φ:f(X)→Y )

F (X)/ ∼

where F (x) � x ∼ F (ψ)(x) ∈ F (X ′). Note that this allows one to omit components
(X,φ) whenever there is a morphisms ψ with this as a source. This means that
only co–final objects, namely those which are not the source of a non–automorphism
play a role when computing the limit.
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20 R. M. KAUFMANN

Finally notice that the Kan extension yields a functor. It also has values on
morphisms LanfF (ψ : Y → Y ′) : LanfF (Y ) → LanfF (Y ′). This is obtained by
mapping the component (X,φ) to (X,ψ ◦ φ) using F (ψ).

1.6. Restriction, induction and Frobenius reciprocity. With this setup,
we can retrieve classical results. Consider an inclusion of groups H ↪→ G. This
gives rise to the functor f : H → G. Given a representation ρ ∈ Fun(G,Vectk ), we
have resGH(ρ) = ρ ◦ f . Furthermore for ρ ∈ Fun(H, C)

(1.10) indGHρ(∗) = Lanfρ(g) =
⊕

(∗,g):g∈G

V/ ∼ = G×H V

where V = ρ(∗), g ∈ HomG(∗, ∗) = G, H acts on the right by multiplication on
G and on the left via ρ on V . In terms of the colimit, g ∼ g′ if there is an h such
that g = g′h and the functorial action of h, is given by sending the component of g
to that of g′ = gh−1 using ρ(h) as the morphism on V , which is exactly what the
relative product encodes.

The using the equivalence Fun[G,Vectk ] = k [G]-mod , the adjointness of indGH =
f! 	 f∗ = resGH , yields one version of Frobenius reciprocity.

(1.11) Homk[G](ind
G
Hρ, λ) ↔ Homk[H](ρ, res

G
Hλ)

1.7. Algebra and dual co–algebra structure. Concatenation operation
for morphisms gives a partial composition for morphisms of a category C. Let
C = k[Mor(C)] then C is an associative algebra with the multiplication

(1.12) φ · ψ =

{
φ ◦ ψ If they are composable

0 else

there is an approximate unit for the multiplication which is
∑

X idX . This is a unit,
if there are only finitely many objects. C is called of decomposition finite if for each
φ there are only finitely many pairs (φ0, φ1) such that φ = φ0 ◦ φ1. In this case

(1.13) Δ(φ) =
∑

(φ0,φ1):φ0◦φ1=φ

φ0 ⊗ φ1

is a co–associative multiplication, see e.g. [JR79,GCKT20a,GCKT20b] and has
a co–unit

(1.14) ε(φ) =

{
1 if φ = idX for some X

0 else

This is one of the instances, where cutting is simpler than gluing, in the sense that
in order to glue, one usually has conditions and hence only partial structures, while
when cutting, the cut pieces have no conditions as they could be re–glued.

Example 1.12.

(1) For a groupoid G, C is the group algebra k[G] and the co-multiplication is
the dual Δ(g) =

∑
(g1,g2):g1g2=g g1⊗g2. This is the usual co–multiplication

one gets for the functions on the group.

(2) For a quiver this is the quiver algebra k�Γ or the path algebra. The algebra
is free and hence decomposition finite and thus has a dual co–algebra. The
co–product is de–concatenation of paths.

Licensed to Max-Planck Institut fur Mathematik.  Prepared on Mon Jul 18 04:37:40 EDT 2022for download from IP 192.68.254.4.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms



FCS AND REP. THEORY 21

(3) For a groupoid, C is the groupoid algebra and the co–product is the de–
composition co–product. If the groupoid is given by a graph Γ there are
no relations. The path–algebra is a groupoid algebra and represents the
fundamental groupoid. The groupoid may or may not be of finite type.
Characteristics which keep it from being of finite type are isomorphisms
of infinite order, i.e. loops, infinitely many paths connecting two vertices,
or an infinite path connecting two vertices.

2. Feynman categories

Feynman categories are a special type of monoidal category which generalize
the groupoids in two ways.

2.1. Monoidal categories. A monoidal category C is a category with a func-
tor ⊗ : C × C → C. This means the for any two objects X,Y there is an object
X ⊗ Y and for any two morphisms φ ∈ HomC(X,Y ), φ′ ∈ HomC(X

′, Y ′) a mor-
phism φ⊗ φ′ ∈ HomC(X ⊗X ′, Y ⊗ Y ′), such that

(2.1) (φ⊗ φ′) ◦ (ψ ⊗ ψ′) = (φ ◦ ψ)⊗ (φ′ ◦ ψ′)

There are several other structures needed for a monoidal category

(1) A unit object 1 together with isomorphisms aka. unit constraints X⊗1
λ→

X
ρ← 1 ⊗X.

(2) Associativity isomorphisms AXY Z : (X ⊗ Y )⊗ Z
∼→ X ⊗ (Y ⊗ Z)

(3) In the case of a symmetric monoidal category isomorphisms, aka. commu-

tativity constraints CXY : X ⊗ Y
∼→ Y ⊗X with CY X ◦ CXY = id

that satisfy various compatibility conditions, such as the pentagon axiom, see
e.g. [Kas95]. A monoidal category is called strict if λ, ρ and A are identities.
MacLane’s coherence axiom states, that every monoidal category is equivalent (even
monoidally) to a strict one [ML98].

Example 2.1. The most well–known example is (Vectk ,⊗k ), here 1 = k. For Z
graded k vector spaces VectZk the usual Koszul sign conventions are commutativity

constraints given by CVW (v⊗w) = (−1)|v||w|w⊗ v, where |v| is the Z degree. This
formula also is used in the Z/2Z case. The unit is k in degree 0.

Another important example is (Set ,�) where � is disjoint union. One can also
consider (Top,×).

A strong monoidal functor between two monoidal categories (C,⊗C) → (D,⊗D)

is a functor F : C → D and natural isomorphisms ΦXY : F (X) ⊗C F (Y )
∼→

F (X)⊗D F (Y ), F (1C) = 1D and F (λC) = λD as well as for ρ and all is compatible
with the other constraints.

If the ΦXY are identities the functor is called strict monoidal. If they are just
natural morphisms, the functor is called lax monoidal. A co–lax or op–lax monoidal
functor has morphisms Φ̂ : F (X)⊗D F (Y ) → F (X)⊗C F (Y )

Strong monoidal functors form a category Fun⊗(C,D), the same is the case for
the other versions. The natural transformation have to respect the other structure
maps.
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22 R. M. KAUFMANN

2.1.1. Free monoidal categories. The strict free monoidal category on a cate-
gory C is given by objects that are words in objects of C and morphisms induced by
morphisms in C. For the non–strict case, the free monoidal category are bracketed
words with associativity morphisms between them and the symmetric version adds
commutation isomorphisms. The free monoidal category in both the symmetric
and non–symmetric case will be denoted by V⊗. The strict and non–strict versions
are equivalent as (symmetric) monoidal categories, see e.g. [Kau17, §2.4] for fur-
ther discussion. For the examples, we mostly use the strict version, as it has less
objects. The non–strict version is more natural when one is dealing with functors
into non–strict monoidal categories, see below.

Example 2.2. If V = 1 then the strict symmetric version is: V⊗ � S; viz.
the category whose objects are natural numbers N0 corresponding to the powers
n = ∗⊗n and HomV⊗(n, n) = Sn the symmetric group, with all other Hom–sets
being empty. Here 1 = 0 = ∗⊗0, that is the empty word. For the strict non–
symmetric version: V⊗ = N0, that is the discrete category of natural numbers.1

The free monoidal category has a universal property. For this notice that there
is an inclusion j : C → C⊗ by one letter words. The property can now be phrased
as follows, every functor f : C → D into a monoidal category (D,⊗) has a lift
f⊗ : C⊗ → D as a monoidal functor such that f = f⊗ ◦ j. This association is
functorial and

(2.2) Fun(C,D) � Fun⊗(C⊗,D)

Example 2.3. For instance, we have the k[G]-mod = Fun(G,Vectk ) =

Fun⊗(G
⊗,Vectk ). Similarly for k�Γ.

2.2. Algebra structure for strict monoidal categories. If (C,⊗) is a
strict monoidal category there is a unital algebra structure on C = Mor(C) given
by ⊗. The unit is id1.

Remark 2.4. Thus on a monoidal category, C has two algebra structures,
which are compatible by the intertwining relation (2.1), or if it is decomposition
finite. (1) a unital algebra structure given by μ = ⊗ with unit id1 and (2) a
co–unital co–algebra structure (Δ, ε) given by deconcatenation, see §1.7.

It is not true in general that these structure from a bi–algebra. This is the
case for non–symmetric Feynman categories, and for the induced structures on
isomorphism classes for Feynman categories [GCKT20b].

2.3. Feynman categories. Consider a triple F = (V ,F , ı) of a groupoid V
a (symmetric) monoidal category F and a functor ı : V → F . By universality of
the free (symmetric) monoidal category, there is a functor ı⊗ : V⊗ → F which
factors through Iso(F) since V⊗ is again a groupoid — words in isomorphisms are
isomorphisms. Among the morphisms in F there are basic morphisms X → ı(∗)
which are the objects of the comma category (F ↓ V) the morphisms in this category

1A category is discrete if the only morphisms being are identity morphisms idX . This defines
a way to identify sets with small discrete categories.

Licensed to Max-Planck Institut fur Mathematik.  Prepared on Mon Jul 18 04:37:40 EDT 2022for download from IP 192.68.254.4.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms



FCS AND REP. THEORY 23

are commutative squares

(2.3) X
φ ��

ψ

��

ı(∗)

σ

��
X ′ φ′

�� ı(∗′)

where σ is (necessarily) an isomorphism.
The tensor product induces a morphism (F ↓ V)⊗ to the category of arrows

(F ↓ F). It sends a word in φi : Xi → ı(∗i) : φ1 · · ·φn �→ φ1 ⊗ · · · ⊗ φn :
X1 ⊗ · · · ⊗Xn → ı(∗1)⊗ · · · ⊗ ı(∗n) = ı⊗(∗1 · · · ∗n). The isomorphisms in (F ↓ F),
are commutative diagrams

(2.4) X
φ ��

σ 

��

Y

σ′

��

X ′ φ′
�� Y ′

denoted by (σ ⇓ σ′)(φ) : φ → φ′

We will abbreviate to (σ ⇓ σ′), if the source is clear. Alternatively (σ ⇓ σ′)
can be interpreted be a map Hom(s(σ), s(σ′) → Hom(t(σ), t(σ′). These morphisms
can also be considered as 2–morphisms in a double category, see Example §C.6 in
Appendix C.

Definition 2.5. [KW17] A triple F as above is a Feynman category if

(i) ı⊗ : V⊗ → Iso(F) yields an equivalence of categories.
(ii) The monoidal product yields an equivalence (Iso(F ↓ V))⊗ � Iso(F ↓ F).
(iii) Every slice category (F ↓ ı(∗)) is essentially small.

A Feynman category is called strict if the equivalences are identities. Using
MacLane’s coherence, one can show that every Feynman category is equivalent to
a strict one. We call a Feynman category strictly strict, if the equivalences become
identities when using the strict free monoidal structures. F is skeletal if F is.

The first condition says that each object Y decomposes up to isomorphism
into a word in V : Y �

⊕
v∈V ı(∗v), such a decomposition is unique up to unique

isomorphism and all isomorphisms of F are induced from the (iso)morphisms in V
acting on the letters of the word. This means that each object has a well defined
length |X| given by the length of an isomorphic word. The second condition means
that every morphisms φ : X → Y in F decomposes isomorphically into a tensor
product of basic morphisms according to a decomposition of Y �

⊕
v∈V ı(∗v). This

decomposition is unique up to unique isomorphism.

(2.5) X
φ ��


σ̂

��

Y


 σ

��⊗
v∈V Xv

⊗
v∈V φv�� ⊗

v∈V ı(∗v)

with φv : Xv → ı(∗v).
2.3.1. Native length and element–type morphisms. Notice by condition (i) the

length of an object |X| = tensor length is well defined. If X �
⊗

v∈V ∗v then
|X| = |V |. This defines the length of a morphism φ : X → Y by |φ| = |X| − |Y |.
Isomorphisms necessarily have length 0. There are morphisms of negative length.
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24 R. M. KAUFMANN

These come from the fact that morphisms 1 → ∗v are allowed, by the axioms. We
will call these morphisms of element–type or simply elements. It follows from the
axioms that any morphisms factors as a tensor product into morphisms of positive
length and element–type morphisms.

2.3.2. Non-Sigma version. Leaving out the “symmetric” in the monoidal cat-
egories, one arrives at the notion of a non–Sigma Feynman category. Let V be a
groupoid, F be a monoidal category, i : V → F< a functor, V⊗ the free monoidal
category and ı⊗ : V⊗ → F< be the induced functor.2

Definition 2.6. [KW17] A triple F< = (V ,F<, ı) as above is a non–Sigma
Feynman category if

(i) ı⊗ : V⊗ → Iso(F) yields an equivalence of categories.
(ii) The monoidal product yields an equivalence (Iso(F ↓ V))⊗ � Iso(F ↓ F).
(iii) Every slice category (F ↓ ı(∗)) is essentially small.

Note that now the decompositions (2.5) are unique up to isomorphisms in the
letters —permutations are not possible anymore.

2.4. A bi-algebra and Hopf algebras structures for Feynman cate-
gories. The following result from [GCKT20b] is a surprising feature of Feynman
categories.

Theorem 2.7 ([GCKT20b]). The algebra structure of §2.2 and the co–algebra
structure of §1.7 for a decomposition finite monoidal category F

(a) satisfy the bi-algebra equation if F = F< belongs to a non–Sigma Feynman
category F<.

(b) induce a bi-algebra structure on the co-invariants B of C taken with respect
to isomorphisms if F is part of a Feynman category F.

In the symmetric case let C be the ideal spanned by [idX ]− [id1] in the bialgebra B
then

(c) C is a co-ideal.
(d) If F satisfies additional natural conditions listed in [GCKT20b, §1.6] then

H = B/C is a Hopf algebra.

For a non–Sigma skeletal strictly strict F< the corresponding ideal is given by the
relations 1

|Aut(X )| idX−id1. With a modified co–unit, the quotient B/C yields a Hopf

algebra.

Examples are the various Hopf algebras of Connes and Kreimer for trees and
graphs [CK00,CK01], the Hopf algebra of Baues for double loop spaces [Bau98]
and the Hopf algebra of Goncharov for multiple zeta values.

Remark 2.8. Note if F is a Feynman category with co-algebra C, then Fop will
have the co-algebra structure Cop. Thus Fop although not a Feynman category will
also yield a bi-algebra. One can speculate that up to taking the opposite category,
the bi-algebra structure is a defining feature.

2We will use the notation F<,F< to indicate that these are non–symmetric, aka. ordered,
versions.
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2.5. Representations of Feynman categories, aka. Ops. Fix a (symmet-
ric) monoidal target category (C,⊗). We define:

(2.6) F-OpsC := Fun⊗(F , C) and V-ModsC := Fun(V , C)

where Fun⊗ means strong monoidal functors. We will denote such functors by O
and suppress C when it is fixed. The functors F-Ops are “representations”. They
are usually operators or operations, which is why we call them Ops . One such
functor gives an F-operation, that is an F-op or an op for short.

2.5.1. Intertwiners and monoidal category structure. Using natural transfor-
mations as morphisms both F-Ops and V-Mods are categories. These natural
transformations correspond to intertwiners. This yields the natural definition of
equivalence of Ops and Mods as isomorphic objects in these categories.

Ops and Mods are symmetric monoidal categories for the level–wise tensor
product. That is for O,P ∈ F-Ops or Mods

(2.7) (O ⊗ P)(X) := O(X)⊗ P(X)

The monoidal unit is given by the trivial functor T , which is defined by T (X) = 1C
and T (φ) = id1C . The unit, associativity and commutativity constraints are those
induced from C.

2.5.2. A second monoidal structure. Due to the fact that in the setting of The-
orem 2.7, B is a bi–algebra there is an additional monoidal structure on the co–
completion of Ops , which has as of yet not been explored. For the co-completion
and universal operations see [KW17, §6].

2.5.3. Free Ops and monadicity. There is a forgetful functor G : F-OpsC →
V-ModsC were G(O) = ı∗O = O ◦ ı. This functor is strong symmetric monoidal
functor.

Theorem 2.9 ([KW17, Theorem 1.5.3.]). The functor G has a left adjoint
(free) functor F 	 G, which is lax symmetric monoidal.

There is another way to understand the operations as an algebra over a triple or
a monad. Given a pair of adjoint functors F : C � D : G, there is the endofunctor
T = G ◦ F ∈ Fun(D,D), which is a unital monoid as follows:

(1) There is a natural transformation μ : T ◦ T → T given by the structure
morphism of adjoint functors ε : F ◦ G → idD (here idD is the identity

functor): T ◦ T = (G ◦ F ) ◦ (G ◦ F ) = G ◦ (F ◦G) ◦ F ε→ G ◦ idC ◦ F = T .
(2) The other structure map of the adjunction η : idD → F ◦ G = T yields

a unit for T : T = T ◦ idD ε→ T ◦ T μ→ T is the identity transformation.
Likewise for the left unit equation.

An algebra over a triple (T, μ, ε) is an object M in D together with a transformation
ρ : TM → M that is associative μ ◦ ρ = ρ ◦ ρ : T 2M → M. The T–algebras in D
form a category denoted by DT . In the case at hand, M ∈ V-Mods is a V module
and ρ gives the operation of T on M.

Theorem 2.10 ([KW17, Corollary 1.5.5]). The adjunction F 	 G is monadic,
that is (V-Mods)T = F-Ops.

The image of F in F-Ops are the free F-Ops and these are equivalent to the
so–called Kleisly category (V-Mods)T .
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26 R. M. KAUFMANN

2.6. The category of Feynman categories. Feynman categories again form
a category. A morphism of Feynman categories F = (V ,F , ı) to F′ = (V ′,F ′, ı′) is
a pair f = (v, f), v ∈ Fun(V ,V ′), f ∈ Fun⊗(F ,F ′) such that f ◦ ı = ı′ ◦ v. Theorem
3.10 give an important structural theorem by establishing a factorization system.

2.6.1. Indexed Feynman categories.

Definition 2.11. A Feynman category F = (V ,F , ı) indexed over a Feynman
category B = (VB,B, ıB) is a morphism of Feynman categories b = (vb, fb) : F → B

whose underlying functor fb : F → B is surjective on objects.
An indexing is called strong, if it is bijective on objects and surjective on

morphisms. A strong indexing is strict, if induces an equivalence of V � VB.
3

Remark 2.12. Let b = (vb, fb) : F = (V ,F , ı) → B = (VB,B, ıB) be an
indexing, then

(i) Morphisms decompose fiberwise:

(2.8) HomF (X,Y ) = �φ∈HomB(fb(X),fb(Y ))f
−1
b (φ)

(ii) Composition and the monoidal product are partially defined fiberwise

(2.9)
f−1
b (φ)× f−1

b (ψ)
◦ �� f−1

b (φ ◦ ψ)

f−1
b (φ)× f−1

b (ψ)
⊗ �� f−1

b (φ⊗ ψ)

These two partial products are associative, satisfy the interchange relation
(2.1) and are compatible with the groupoid action of Iso((B ↓ B) lifted to
Iso(F ↓ F).

If the indexing is strong, then these products are fully defined.
(iii) Any invertible σ̂ ∈ Mor(V) has fb(σ̂) ∈ Mor(VB). And for σ ∈ Mor(V):

f−1
b (σ) = f−1

b (σ)× � fb
−1

(σ), where the first set is made up of all the
invertible elements in the fiber. If the indexing is strong, then the fiber
has exactly one element: f−1

b (σ) = σ.
(iv) There are unit elements

(2.10) idX ∈ f−1
b (idfb(X))

(v) The monoidal unit, since native length is preserved and a monoidal unit
is unique up to isomorphism, 1F ∈ f−1

b (1B) = G , where G is a discrete

groupoid. If the indexing is strong then f−1
b (1B) = 1F .

Examples of indexing are given by decoration, see §3.2 and enrichment see §3.3.

Remark 2.13. Using the fact that a monoidal category is a two–category with
one object, see Appendix C, one can rephrase Remark 2.12 as saying that for a
strong indexing f−1

b is a lax monoidal lax 2–functor to Set . This relationship is the
basis of indexed enrichment, see §4, where Set is allowed to be replaced by some
other symmetric monoidal category.

3Similar conditions are necessary to obtain morphisms of the associative Hopf algebras
[GCKT20b, §1.7].
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2.6.2. Pull–back/push–forward adjunction (restriction, induction and Frobenius
reciprocity). There is a natural pull–back or restriction for Ops : f∗ : F ′-OpsC →
F-OpsC given by f∗O = O◦f , which is again a strong symmetric monoidal functor.

Theorem 2.14 ([KW17, Theorem 1.6.2]). The functor f∗ has a left adjoint
f! 	 f∗ which is symmetric monoidal.

The formula is again given by a left Kan extension. f∗O = LanfO. What is
not obvious and is proven in loc. cit. is that this Kan extension yields a monoidal
functor.

2.7. Examples. We will go through several examples. These examples are
part of the fundamental ladder mentioned in the introduction whose base is the
trivial Feynman category. The next level is given by finite sets and their variations.
The different Feynman categories we discuss are collected in Table 1, their non–
Sigma analogues are in Table2. The corresponding Ops are collected in Table 3.

2.7.1. Trivial Feynman category. More generally, the trivial Feynman category
on a groupoid V is V = (V ,V⊗, j). It has the following properties:

(1) V⊗-OpsC � V-ModsC , by the universal property of the free monoidal cat-
egory.

(2) For V = 1, we will denote V by Ftriv . We have V⊗-OpsC � V-ModsC =
Obj (C). This is the trivial Feynman category.

(3) If V = G and C is k–linear then V⊗-OpsC � V-ModsC = k [G]−mods in C.
(4) If we consider the inclusion ı : H → G. Then i∗ = resGH and i! = indGH .

The adjointness of the functors is Frobenius reciprocity in the form (1.11).
(5) More generally, given any Feynman category F = (V ,F , ı) we can consider

V and the morphism given by i = (id, ı⊗). The using the isomorphism

j∗ : V⊗-OpsC ∼→ V-ModsC , i! ◦ (j∗)−1 = F and j∗ ◦ i∗ = G are the adjoint
pair of the free and forgetful functor in Theorem 2.9. Thus showing that
this is a special case of Theorem 2.14.

In general there may be more basic morphisms apart from those coming from V .
In particular there may be basic morphisms 1 → ı(∗) and X → ı(∗)

2.7.2. Finite Sets. Consider the symmetric monoidal category (FinSet , �)
whose unit is 1 = ∅, consider the inclusion functor ı : 1 → FinSet that sends ∗
to the atom {∗}. Then FinSet = (1 ,FinSet , ı) is a Feynman category. The axioms
are satisfied:

(i) 1⊗ � S = Iso(sk(FinSet)) � Iso(FinSet)) where sk(FinSet) is the skele-
ton of FinSet whose objects are the sets n = {1, . . . , n}, n ∈ N0 with
0 = ∅.

(ii) Given any morphisms S → T between finite sets, we can decompose it
using fibers as.

(2.11) S
f ��

=

��

T

=

��
�t∈T f

−1(t)
�ft �� �t∈T {∗}

where ft is the unique map f−1(t) → {∗}. Note that this map exists even
if f−1(t) = ∅. This shows the condition (ii), since any isomorphisms of
this decomposition must preserve the fibers.
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28 R. M. KAUFMANN

(iii) The slice category (FinSet ↓ ∗) is equivalent to its skeleton S.

Remark 2.15. We can also regard a skeletal version of FinSet , this category
has as objects the sets n = {1, . . . , n} with all morphisms between them. The
disjoint union is n � m = n+m with the unit 0 = ∅. The isomorphisms are Sn

for n, that is Iso(sk(FinSet)) = S. This yields the strictly strict skeletal Feynman
category (1, sk(FinSet), ı).

FinSet has the Feynman subcategories FS = (1, FS, ı) and FI = (1, F I, ı),
where the maps are restricted to be surjections resp. injections; see Table 1. This
means that none of the fibers are empty in the surjective case and or all of the
fibers are empty or singletons in the injective case.

Proposition 2.16. The following Feynman categories have V-ModsC = Obj (C)
and the following Ops:

(1) FS: FS-OpsC is equivalent to the category of non–unital commutative
monoids in C.

(2) FI: FI-OpsC are equivalent to pointed objects in C.
(3) FinSet: FinSet-Ops are unital commutative monoids.

Proof. The statement about V-Mods is clear, as Fun(T , C) = Obj (C). For
the first statement, let O ∈ FS-OpsC and set C := O(ı(∗)). By compatibility
with the tensor product, up to equivalence, we may assume that O is strict and
replace FS, FI or FinSet with its skeleton. In all cases, the objects are the sets
n = {1, . . . , n} with 0 = ∅ = 1. Thus up to equivalence, O is fixed on objects
as O(n) = C⊗n with the symmetric group acting by permuting the tensor factors
using the commutativity constraints in C.

The basic maps in FS are the unique surjections πn : n � 1. Set μ = O(π2) :
C⊗2 → C. Then (C, μ) is a commutative non–unital monoid in C. The multiplication
μ is associative as π2 ◦ (π2� id) = π3 = π2 ◦ (id�π2) and hence O(π2 ◦ (π2� id)) =
μ ◦ (μ ⊗ id) = μ ◦ (id ⊗ μ) = O(π2 ◦ (id � π2)). For the commutativity let τ12 be
the transposition that interchanges 1 and 2, then π2 = π2 ◦ τ12 and hence μ2 =
O(π2) = O(π2 ◦ τ12) = O(π2) ◦O(τ12) = μ2 ◦CCC where CCC is the commutativity
constraint.

The basic morphisms for FI are i : ∅ = 1 → 1 and id1 : 1 → 1. Any injection
can be written as a tensor product of these two maps. The map η := O(i) : O(1) =
1C → O(1) = C makes C into a pointed object. The values of 1 and i determines
the functor O uniquely up to isomorphism.

Finally, the morphisms in FinSet are generated by id1, π2 and i using both the
monoidal structure and concatenation. There is one more relation, that is π2◦(id1�
i) = id1, where we have tacitly used a strict unit constraint 1 = 1 � ∅. Applying
O, we see that O(π2 ◦ (id1� i)) = μ ◦ (id⊗ η) = id = O(id1) again suppressing unit
constraints. The fact that η is a left identity follows from commutativity. �

Remark 2.17. Judging by the name we chose for these categories, one could
expect that to see find FS and FI algebras and indeed Fun(FI, C) are FI–algebras
and Fun(FS, C) are FS algebras. By definition, however, Ops aremonoidal functors
and not ordinary functors. But, there is a free monoidal construction, see §3.1
which to every Feynman category F associated a Feynman category F� with F�-
OpsC = Fun⊗(F⊗) = Fun(F , C), and this way, we obtain FI–algebras as Ops .
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FC: underlying F definition
FinSet FinSet Finite sets and set maps
FS FS Finite sets and surjections
FI Inj Finite sets and injections
NCSet NCSet Finite sets and set map with orders on the fibers

aka. noncommutative sets
Δ+S Δ+S Augmented crossed simplicial group
FS

< FS< Finite sets and surjections with orders on the fibers
Table 1. Set based Feynman categories Feynman categories.
V = 1 is trivial.

non-Σ FC underlying F definition
F<S FinSet< Ordered finite sets and order preserving maps.
F<S, OS Ordered finite sets and order preserving surjections
F<I OI Ordered finite sets and order preserving injections
Δ+ Δ+ Augmented Simplicial category, Skeleton of FinSet<
FI

op
∗,∗ OIop∗,∗ Subcategory of Δop

+ of double base–point
preserving injections

Table 2. Set based non-Σ Feynman categories. V = 1 is trivial.

2.7.3. Ordered finite sets. In the non–Σ case, a basic example is FinSet< =
(1,FinSet<, ı), where FinSet< is the category of ordered finite sets with order
preserving maps with � as monoidal structure; the order of S � T is lexicographic,
S before T . The functor ı is given by sending ∗ to the atom {∗}. Viewing an order
on S as a bijection to {1, . . . , |S|}, we see that N0 is the skeleton of Iso(FinSet<).
The diagram (2.11) translates to this situation, and we obtain a non–Σ Feynman
category. The skeleton of this Feynman category is the strictly strict Feynman
category (1,Δ+, ı), where Δ+ is the augmented simplicial category and ı(∗) = [0]).
Restricting to order preserving surjections and injections, we obtain the Feynman
subcategories FS< = (1, OS, ı) and FI< = (1, OI, ı). We can also restrict the
skeleton of FinSet< given by Δ+ and the subcategory of order preserving surjections
and injections. See Tables 2. In Δ+ the image of ∗⊗n under ı⊗ will be the set n
with its natural order.

NB: to make contact with the standard notation of n–simplices, [n] = n+ 1, so
that [0] = 1 and [−1] = 0 = ∅ with the monoidal structure [n] � [m] = [n] ∗ [m] =
[n+m+ 1], where ∗ is the join operation.

Proposition 2.18. The following Feynman categories have V-ModsC = Obj (C)
and he following Ops:

(1) For F<S: the OS-OpsC is equivalent to the category of non–unital asso-
ciative monoids in C.

(2) For F<I: the OI-OpsC are equivalent to pointed objects in C.
(3) For FinSet<: the FinSet<-Ops are pointed unital associative monoids.

Proof. The proof is as above, save the action of the symmetric groups, which
is not present. Hence there is no commutativity condition. For the unit, since
there is no commutativity, we have two relations between π2 and i : π2 ◦ (id1� i) =
π2 ◦ (i� id1) = id1 giving the left and right unit equations. �
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30 R. M. KAUFMANN

Remark 2.19. Again, at this point the F-Ops are monoidal functors not simply
functors, but see §3.1 below.

2.7.4. Hybrids. To obtain the symmetric Feynman category whose Ops are as-
sociative algebras or unital associative algebras one has to consider ordered sets
with set maps and orders on the fibers. Aut(n) acts trivially on the morphism πn,
which was the reason for the commutativity. To remedy the situation, we notice
that on an ordered (S,<), Aut(S ) acts transitively on the orders of S. Thus adding
an order to the fibers of πn, the different orders will prevent from obtaining the
same map by pre–composing with elements of Aut(S ).

Let NCSet (noncommutative sets), cf. [Lod98,PR02,So03] be the category
whose objects are finite sets. And whose morphisms from S to T are pairs (f,<f )
where f : S → T and <f is a collection of orders <f−1(t), t ∈ T on the fibers

f−1(t) of f . Composition is given by lexicographic composition of orders. For

S
g→ T → f→ U , (f ◦ g)−1(u) = f−1(g−1(u)) = �s∈g−1(u)f

−1(s) so that every and

the order is given by t′ <f◦g t if t and t′ are in the same fiber f−1(s) and t′ <f t,
or if t′ is in the fiber of s′ and t is in the fiber of s and s′ <g s. Since isomorphisms
in FinSet have one element fibers, they remain isomorphisms in NCSet .

The skeleton of this category is known by the name of augmented crossed
simplicial group defined by the symmetric groups Δ+S (aka. ΔΣ)+), [FL91]. In
the simplicial notation Aut([n]) = Sn+1 .

We let NCSet be the Feynman category (1,NCSet , ı) and FS< the Feynman
subcategory whose morphisms have underlying maps that are surjections.

It is easy to check that these are Feynman categories. They are also examples
of enriched Feynman categories as discussed in §4. It is also obtained from a plus
construction.

Proposition 2.20. The category NCSet-OpsC and respectively FS<-OpsC are
equivalent to unital associative monoids (aka. algebras) in C and to the category of
possibly non–unital associative monoids (aka. algebras) in C respectively.

There is an embedding i : FS< → NCSet, i∗ forgets the unit and i! is the free
adjunction of a unit to an algebra.

Proof. As above, on objects, the monoidal functors O are fixed by the value
O(1) =: A up to equivalence, since then up to equivalence O(S) = A⊗S. Starting
with surjections, we see that these are generated up to isomorphism by the πn :
n � 1 and a choice of order on the fiber, that is a choice of order on n. Let
μ := O(μ2, 1 < 2) then μ : A ⊗ A → A yields the multiplication. Associativity
follows directly. If we are in FinSet<, then we add the inclusion i : ∅ → 1 as a
generating morphism. The unique fiber is empty and has the empty order. As
before η := O(i) : 1C → A provides the unit. This yields the functor from Ops to
algebras exhibiting the equivalence.

For the other direction, notice that if τ1,2 : 2 → 2 exchanges 1 and 2 (π2, 2 <
1) = (π2, 1 < 2) ◦ τ1,2). More generally transpositions generate Sn, which acts
transitively on the orders of the fiber of πn. Hence, the identity map id1, (π2, 1 < 2)
generate all surjections up to isomorphism, which are permutations of the orders of
the fibers. The latter are generated by transpositions. These maps together with i
generate all maps, thus fixing their values yields a functor in the reverse direction.
Here one uses, that transpositions are mapped to commutativity constraints; hence
e.g. O(π2, 2 < 1) = O((π2, 1 < 2) ◦ τ1,2) = μ ◦ CA,A = μop.
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F F-Ops equivalent to
FinSet unital commutative monoids/algebras
FS commutative monoids/algebras
NCSet unital associative monoids/algebras
FS< associative monoids/algebras
FI pointed objects.

Table 3. Feynman categories based on finite sets and their Ops

Figure 1. A morphism f from 8 = {1, . . . , , 8} to 5 = {1, . . . , 5}
with the orders and fibers: 2 < 1 < 5 on f−1(1), ∅ on f−1(2),
3 < 6 on f−1(3), 8 on f−1(4), and 7 < 4 on f−1(3).

The last statement is straightforward. �

The following is straightforward:

Proposition 2.21. b(vb, fb) : NCSet → FinSet with fb : NCSet → FinSet
given by the identity on objects and defined on morphisms as the forgetful functor
fb : (f,<f ) = f is a strong cover, but not strict.

The pull–back f∗
b is the inclusion of unital commutative algebras into unital

algebras. The push–forward is the Abelianization.
For the non–unital versions mutatis mutandis the same results hold for the

restriction of b : FS< → FS. �

We show in Lemma 4.17 that this is an indexed enrichment. Going one level
higher, the enrichment is by the associative operad, which can be obtained via a
push–forward along a forgetful map from a plus construction, see Lemma 3.37. The
relation between the two is in Remark 4.18.

2.7.5. Graphical interpretation. A convenient graphical notation to write down
a map with ordered fibers is given by planar planted corollas.

First, the fibers of a morphism f : S → {t} give a planted corolla ∗S�{t},t, that
is a corolla with flags S � {t} and root t. Vice–versa, any morphism S � T can
then be encoded by a forest of planted corollas �t∈T ∗f−1(t)�{t},t. Note that empty
fibers correspond to 0-ary corollas. The map is a surjection, if there are no zero-ary
corollas, and an injection, if all the corollas are either 1-ary or 0-ary.

An order on the fibers <f extends to an order < on f−1(t)�{t}, by considering
t to be the first element. That is the fibers can be viewed as planar planted corollas
∗S�{t},t,<. And, any morphism in FinSet< can be written as an forest of planar
planted corollas indexed by t ∈ T . An example is given in Figure 1.

2.7.6. Graphical Feynman categories. There is a Feynman category G =
(Crl ,Agg , ı) whose technical definition with all details is in Appendix A.2. It uses
the technical framework of [BM08,KW17] which is also given in Appendix A to
be self–contained.
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32 R. M. KAUFMANN

F F�-OpsC F�-OpsCop

Δ+ augmented co–simplicial objects augmented simplicial objects
F<I co–semi–simple objects semi–simple objects
FI FI–algebras FI-co-algebras
FS FS–algebras FS–co–algebras

Table 4. Examples of F� whose Ops in C and Cop are familiar notions

To give the basic structure without all the details, we note that Crl is equivalent
to a the category Iso(FinSet) of finite sets and isomorphisms. If S is a finite set,
then it determines an object ∗S of Crl which is a corolla with S with external
flags and any bijection S ↔ S′ yields an isomorphism ∗S ↔ ∗S′ . Consequently
Iso(Agg) � Iso(FinSet)⊗. Its elements are collections or aggregates of corollas.
The morphisms between aggregates are rather complicated. They are morphisms
of the aggregates thought of as graphs without edges as defined in [BM08,KW17].
Given a morphism between aggregates, φ, there is an underlying graph, the ghost
graph of φ, which is denoted by Γ(φ). The ghost graph does not fix the morphism
uniquely. It does fix the isomorphism class of a basic morphism —that is morphism
whose target is a single corolla. The extra data of for a basic morphism is given by
an identification of the tails of the ghost graph with the tails of the target corolla.

A graphical Feynman category is a Feynman category indexed over G.
TheOps for graphical Feynman categories include all the known operad types as

well as rather new ones, see Table 7 in Appendix A.5. Moreover all these examples
can be obtained via the operations below, especially decoration, and taking sub–
Feynman categories, aka. restriction.

3. Constructions and examples

3.1. Functors and lax monoidal functors as Ops. By definition F-OpsC
are strong monoidal functors Fun(F , C). This begs the question if there are con-
structions of Feynman categories to obtain lax monoidal functors Fun lax⊗(F , C) or
simply functors Fun(F , C) as Ops , which is indeed the case:

Theorem 3.1 ([KW17, §3]). Given a Feynman category F, there are Feynman
categories F� = (V�,F�, ı�) and Fnc = (Vnc,Fnc, ınc)4 such that

F�-Ops = Fun(F , C)(3.1)

Fnc-Ops = Fun lax⊗(F , C)(3.2)

The original statements are in [KW17, §3]. We give the constructions below,
filing in some details concerning units.

Example 3.2. As announced, Δ�
+-Ops are augmented simplicial objects,

FI�-Ops are FI-modules etc., see Table 3.2.

3.1.1. Free construction F�. For this F� is the free (symmetric) category on
F . We use � for the new free monoidal structure, which we also call outer. V� =
V⊗ � F . The basic morphisms “are” the morphisms of F : (F� ↓ V�) � (F� ↓
F) = (F ↓ F) under the equivalence ı⊗ : V⊗ → F and by the definition of the free
(symmetric) monoidal category.

4nc stands for non–connected
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In the free monoidal category F� there is a free unit 1� which can be different
from 1⊗, thus for Ô ∈ F�-OpsC , we have that Ô(1�) � 1C , but no condition on
1⊗.

Example 3.3. Examples are given by the Feynman category indexed over finite
sets.

3.1.2. NC-construction. Here again Vnc = V⊗ and Obj (Fnc) = Obj (F�), but
the basic morphisms (Fnc ↓ V) are defined as HomFnc(�iXi, Y ) =
HomF (

⊗
i Xi, Y ). This effectively adds the data of functor μ : F � F → F ,

that is a natural family of morphisms μX,Y : (X � Y ) = X ⊗ Y , and a morphisms

ε : 1� → 1⊗, compatible with the unit constraints, to the morphisms of F�. The
data of ε was not addressed separately in [KW17, §3.1].

The construction of Ops is as follows: If Ô ∈ Fnc-OpsC , one defines O ∈
Fun lax⊗(F C) as O(X) := Ô(X) and the same on morphisms Ô(φ) = O(φ) for
φ : X → Y .

The two structural morphisms are defined as follows:

(3.3) O(X)⊗O(Y ) = Ô(X)⊗Ô(Y ) � Ô(X �Y )
Ô(μX,Y )→ Ô(X ⊗Y ) = O(X⊗Y )

and

(3.4) Ô(1�) � 1C
Ô(ε)→ Ô(1⊗)

yields the structural unit morphism for the underlying lax-monoidal functor.
Vice–versa, using the structure for the free monoidal category, we can extend a

O ∈ Fnc-Ops functor to all the morphisms of F� by using the functor underlying
O and then extending it to the free (symmetric) monoidal category by the universal
property as O�. Then one only needs to define Onc, we only need the values on
μX,Y and ε, which are fixed by the equations (3.3) and (3.4).

Remark 3.4.

(1) It is most natural to take ε to be an isomorphism and moreover to identify
1� and 1⊗. An example is taking the empty forest to be given by an empty
tree, or more generally, the empty sentence (the empty collection of words)
is identified with the empty word.

(2) The nc–construction plays a crucial role in the connection to Hopf algebras
[GCKT20a,GCKT20b].

(3) An example of nc–construction first appeared in [KWZ12].

3.2. Decorations, covers and factorizations of morphisms in the cat-
egory of Feynman categories. Given an O ∈ F-OpsSet there is a new Feyn-
man category Fdec O defined in [KL16]. This decoration is a variation of the
Grothendieck (op)–fibration construction. It also establishes a theory of covers
that is compatible with Galois covers in the sense of Grothendieck [BK17, §3].

The objects of FdecO are pairs (X, ax) with X ∈ Obj (F) and ax ∈ O(X) and
morphisms are given by

HomFdecO ((X, ax), (Y, ay)) = {φ ∈ HomF (X,Y )|O(φ)ax = ay}
Likewise, the objects of VdecO are pairs (∗, a∗) with ∗ ∈ Obj (V) and a∗ ∈ O(ı(∗))
with the morphisms analogous to the ones above. The inclusion ıdecO is given by
(∗, a∗) �→ (ı(∗), a∗).
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34 R. M. KAUFMANN

Remark 3.5. If O ∈ F-OpsCop the condition reads O(φ)(ay) = ax.

Theorem 3.6 ([KL16, Theorem 4.1]). Given a functor O ∈ F-OpsSet then
FdecO = (VdecO,FdecO, ıdecO) as above is a Feynman category and there is a mor-
phism of Feynman categories pO = (pV , p) : FdecO → F, which forgets the decora-
tion, i.e. p((X, ax)) = X and pV is its restriction to V.

This construction is functorial in O and with respect to morphisms of Feynman
categories;,i.e. the following diagrams commute. For a morphism (natural trans-
formation) η : O → P in F-Ops there is a commutative diagram

(3.5) FdecO ��

pO
���

��
��

��
��

FdecP

pP
����
��
��
��
�

F

where the upper arrow is given by (X, aX) → (X, ηX(aX)), where ηX : O(X) →
P(X) is the natural transformation.

Given a morphism of Feynman categories f = (v, f) : F → F′, there is a
commutative diagram

(3.6) FdecO
fO ��

pO

��

F′
dec f!(O)

pf!(O)

��
F

f �� F′

The maps p in the theorem above called covers, viz. f : G → F is a cover if
G = FdecO for some O ∈ F-Ops and f = p : FdecO → F.

Proposition 3.7. A morphism f = (v, f) of Feynman categories is a cover if

(1) Any morphism whose source is in the image of v respectively f , has a lift.
(2) Any lift of a morphism in the image of v respectively f is uniquely deter-

mined by its source.

Proof. Given f : Fdec O → F, we verify the two conditions. The objects in
the image of f are the X ∈ Obj (F) with O(X) �= ∅. If X is in the image of f , i.e.
O(X) is not empty then given any φ : X → Y , O(Y ) ⊃ O(φ)(X) �= ∅, so that Y is
in the image of f as well. Moreover, for any ax ∈ O(X) fix ay := O(φ)(ax) ∈ O(Y )
then φ : (X, ax) → (Y, ay) is a lift of φ and any lift of φ is uniquely fixed by the
choice of by ax.

Vice–versa, given any morphism f : F′ → F satisfying (1) and (2), gives rise
to a functor O ∈ F-Ops , such that Fdec O = F ′. On objects O(X) = f−1(X),
that is the set of fibers, aka. elements. This will be ∅ if X is not in the image.
Given a morphism φ ∈ HomF (X,Y ) in the image fix a X̂ ∈ O(X) using (1)

and (2) there is a unique lift φ̂(X̂) ∈ HomF ′(X̂, Ŷ ) with Ŷ = t(φ̂(X̂)). Define

O(φ) : O(X) → O(Y ) by O|X̂ := φ̂(X̂). If φ ∈ HomF (X,Y ) and X not in
the image of f , that is O(X) = ∅, then O(φ) is the unique map with source
∅ : O(X) = ∅ → O(Y ). Finally, we check that the functor is (symmetric) monoidal.
We have that O(X ⊗ Y ) = f−1(X ⊗ Y ) = {Z|f(Z) = X ⊗ Y } using that f is a
morphism of Feynman categories,we can decompose Z and we have f−1(X ⊗ Y ) =
{(Z ′, Z ′′)|f(Z ′) = X,F (Z ′′) = Y } = O(X)×O(Y )}.
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Decorating with this functor, we get FdecO with objects (X, X̂) and morphism

φ̂ : (X, X̂) → (Y, Ŷ ) lifting φ. The isomorphism is given by sending (X, X̂) to X̂,

the inverse is fixed by X = f(X̂).
The determination of the groupoid part is analogous and the inclusion is then

clearly the restriction. �

Example 3.8. Table 8 contains shows examples decorations for graphical Feyn-
man categories G.

There is a second type of standard morphism, which is called connected.

Definition 3.9. A morphism of Feynman categories f : F′ → F is connected if
f!(TF ′) = TF where TF ′ : F ′ → Set and TF → Set are the trivial Ops to Set with
the Cartesian monoidal product ×.

The two sets of morphisms form an orthogonal factorization system in the sense
of [BK17], where these types of morphisms are linked to comprehension schemes
[Law70] and a general theory of Galois type covers. The following theorem follows
from [BK17, Proposition 2.3]:

Theorem 3.10. Any morphism of Feynman categories f : G → F has a unique
factorization as f = p ◦ i where i is connected and p is a cover.

Remark 3.11.

(1) A cover p = (v, p) : F′ → F is isomorphic to the decoration by p!(TF ′) ∈
F-Ops , [KL16].

(2) The decoration construction is also intimately tied to cyclic operads, mod-
ular operads and moduli spaces; see [BK17,BK20a] and §7.1 and Ap-
pendix A.5.2 below.

(3) The existence of a factorization follows already from [KL16], the unique-
ness requires a finer analysis.

3.2.1. Covers, connected morphisms and indexing.

Lemma 3.12.

(1) The forgetful functor p : FdecO → F is an indexing if O(X) �= ∅ for all X.
Thus restricting to the full image of p, we obtain a indexing, which is not
strong in general.

(2) A strong indexing is a cover, if and only if it is the an isomorphism and
hence strict.

Proof. The image of a cover are precisely those X for which O(X) �= ∅. If a
cover is a strong indexing, then there is only one object in the inverse image and
thus every morphism has a unique left. Hence, the cover is an isomorphism. �

Remark 3.13.

(1) Any indexing factors as a connected morphism and a cover.
(2) By the above, we see that a strong indexing is connected.
(3) Strong and strict indexings give rise to enrichments discussed below, ¶4.

There are interesting connected morphisms which are not strong. These typ-
ically arise from inclusions given by restrictions, see §A.5 in the Appendix for
examples.

Licensed to Max-Planck Institut fur Mathematik.  Prepared on Mon Jul 18 04:37:40 EDT 2022for download from IP 192.68.254.4.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms



36 R. M. KAUFMANN

3.2.2. FdecO-Ops. In [BK17], we showed

Proposition 3.14. The FdecO-Ops are F-Ops over O, that is P ∈ F-Ops with
a natural transformation P → O. �

3.3. Modules and plus construction. Remarkably, Feynman categories of-
ten can be used to encode modules as well as algebras. As constructed above Feyn-
man categories can be used to “encode” algebras, see Table 3. One can ask the
question if there is a way to encode modules over a given algebra or more generally
modules over F-Ops . We will give the answer in two parts. Here we fist consider
the case of Feynman categories over Set , in §4 we will then deal with more general
types of modules. In particular, one would like to consider modules in linear cat-
egories. This is possible along the same lines presented here, but technically more
involved. This is why we postpone it to the next section. In this section, we will fix
the target category C to be (Set ,×). The arguments generalize in a straightforward
fashion to a Cartesian target category C.

Example 3.15 (Paradigmatic example). Consider an associative monoid A,
then there is an A ∈ FS<-OpsSet such that A = A(∗). The set–modules, aka. set–
algebras, over the associative monoid A are setsM with structure maps ρ : A×M →
A, (a,m) �→ am that satisfy a1(a2m) = (a1a2)m. The morphisms of modules are
intertwiners. If A is unital, with unit 1 ∈ A then there is another condition for
modules: 1m = m. In this case A is actually the value of A ∈ NCSet-OpsSet and

Assuming that A is unital, we can consider A cf. §1.4. The category of
A–modules in Set is Fun(A,Set) � Fun⊗(A

⊗,Set) and intertwiners are natural
transformations. To separate out the isomorphisms, splits as a disjoint union
A = A× � Ared where A× = G(A) are the invertible elements, then VA = A×

and F = A⊗ together with the natural inclusion form a Feynman category Ftriv
A =

(A×, A⊗, ı).
Let VA be the trivial Feynman category on VA. There is a natural functor

Ftriv
A → VA which is a strong indexing. It is identity on A× and sends Ared to id∗.

The indexing is strict, if A is reduced that is A× = 1.

The basic results in the theory, see [KW17, §§3.6,3.7] are that there is a plus
construction F+ for a given Feynman category and that there is a quotient of it
Fhyp which is called the hyper construction. The latter is important for twisting
as in [GK98], see §3.3.3, §3.3.4 and is needed in §5.. Being more careful with the
units, we give a new construction F+gcp which allows one to define modules via
indexed enrichments, see [KW17, §4.1] and §4, especially §4.4.1 below.

In the example above (Ftriv )+ = FS
<, (Ftriv )+gcp = NCSet , (Ftriv )hyp = Ftriv

and A ∈ NCSet-OpsSet gives rise to Ftriv
A indexed over VA. If A is reduced, then

VA = Ftriv .
We now describe these construction adding more details to the condensed pre-

sentation in [KW17, §3]. A graphical version of these constructions is given in
Appendix B. This graphical treatment provides a solid combinatorial language to
write out the proofs in detail, improving the level of precision over that of [KW17].
These, however, use the full strength of graph formalism of [BM08,KW17], which
is reviewed in Appendix A. With this in mind, we relegated the more detailed
proofs to the appendix to not hinder the flow.

3.3.1. A look ahead. For clarity, we will deal first with the case of C = Set
and relay the subtleties of enrichment to §4. In full generality, for any split O ∈
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F+gcp-OpsE there is an indexed enriched Feynman category FO enriched over E
whose VO is a freely enriched groupoid. With this construction, we can defined the
sought after Feynman category for modules.

Definition 3.16. An algebra over O ∈ F+gcp -Ops , aka. O–module, is an
element of FO-Ops .

Thus we can define modules over an O ∈ F-OpsC if F = F̃+, for some F̃ and O
lifts to F+gcp-OpsC .

3.3.2. Plus construction. Fix a Feynman category F = (V ,F , ı) and define a
new Feynman category as follows. Set V+ = Iso(F ↓ V), that is basic morphisms
and their isomorphisms. The objects of F+ are the morphisms of F : Obj (F+) =
Mor(F) and Iso(F+) = Iso(F ↓ F). The isomorphism are the (σ ⇓ σ′) : φ → φ′ =
σ′ ◦ φ ◦ σ−1 of (2.4). There is a natural inclusion of ı+ : Iso(F ↓ V) → Iso(F ↓ F).

The other morphisms obtained by decomposing the source morphism into basic
morphisms and then composing these basic morphisms using concatenation and
tensor products to obtain the target morphism. More precisely, consider φ :=
φ0 ⊗ φ1 ⊗ · · · ⊗ φn such that ψ = φ0 ◦ (φ1 ⊗ · · · ⊗ φn) ∈ (F ↓ V) is well defined.
There will be one basic generating morphism φ → ψ for such a pair denoted by
γ(φ0;φ1, . . . , φn).

A general morphism in F+ is a concatenation of tensor products, generating
morphisms and isomorphisms modulo the relations of a monoidal category, that is
associativity, units, interchange and equivariance under the action of isomorphisms
given above.

Proposition 3.17. F+ = (V+,F+, ı+) is a Feynman category.

Proof. Condition (i) for F+ is the condition (ii) for F. For condition (ii) fix
any morphism Φ : φ → ψ. We first show the existence of the decomposition (2.5).
By condition (ii) for F, there exist isomorphisms (σ ⇓ σ′) : φ → φ′ =

⊗
v∈V φv

and (τ ⇓ τ ′) : ψ � ψ′ =
⊗

w∈W ψw. Thus we can assume that both φ and ψ are
decomposable. The statement then follows from the Theorem B.1 in Appendix B.
A short version is that any iteration of morphisms is given by a flow chart with input
the source of ψ and the output, the target of ψ. The tensor product acts as disjoint
union on the flow charts. Decomposing the target decomposes the flow charts by
following the sources upwards. Such a chart is connected since otherwise the target
would not lie in V and thus the decomposition is into connected components, with
the compositions along these connected components yielding the ψv. The last axiom
holds due to the axiom (iii) for F. �

Lemma 3.18. Strictifying F , we have V+ is equivalent to Iso(ı⊗ ↓ ı), Iso(F+)
is equivalent to Iso(ı⊗ ↓ ı⊗) � Mor(V)⊗. Assuming strict associativity constraints,
this is generated by commutativity constraints and morphisms of V. Mor(F+) is
generated by these isomorphisms and the morphisms φ = φ0 ⊗ · · · ⊗ φn → ψ =
φ0 ◦ (φ1 ⊗ · · · ⊗ φn) ∈ (ı⊗ ↓ ı).

Proof. Note that by axiom (ii) Iso(F ↓ F) is equivalent to (Iso(F ↓ V))⊗,
and by the definition above F+ can be made strict by considering only objects in
(F ↓ V)⊗ � (ı⊗ ↓ ı)⊗ together with their isomorphism, which are fixed by axiom
(ii), and the generating morphisms γ(φ0;φ1, . . . , φn) : φ = φ0 ⊗ · · · ⊗ φn �→ ψ =
φ0 ◦ (φ1 ⊗ · · · ⊗ φn) ∈ (ı⊗ ↓ ı). �
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38 R. M. KAUFMANN

The notation γ was chosen to be reminiscent of operadic compositions. Note
that in the general case, there is a condition of composability.

Corollary 3.19. F+-OpsC is equivalent to the category of strict monoidal
functors D on the strictification, which are uniquely determined by the data:

(1) (Groupoid rep) A functor D from V+ = Iso(V⊗ ↓ V) to C which is given
by:
(a) (Object data): D : Obj (V⊗ ↓ V) → Obj (C). That is an object D(φ)

of C for each basic morphism φ.
(b) (Iso data): Actions of the isomorphisms (σ ⇓ σ′). That is a left

action of isomorphisms of Mor(V)⊗ and a right action of
Mor(V) on the D(φ).

(2) (Composition data) Morphisms D(γ) : D(φ0)⊗
⊗n

i=1 D(φi) → D(ψ) where
ψ = φ0 ◦ (φ1 ⊗ · · · ⊗ φn) ∈ (F ↓ V).

Note that the groupoid data states that if φ′ � φ via (σ ⇓ σ′) in (F ↓ F),

then D((σ ⇓ σ′)) : D(φ)
∼→ D(φ′). In particular, if σ, σ′ ∈ Mor(V) are in same

isomorphism class, that is are maps between elements of V which are in the same
connected component of V , then D(σ) � D(σ′).

The corollary allows us to compute the first examples, which are the start of a
ladder of complexity.

Proposition 3.20.

(1) For Ftriv , the Ops are equivalent to associative monoids, aka. algebras.
(2) For FinSet+ the Ops are equivalent to operads and for FS

+ to operads
without constants.

(3) For FinSet+< the Ops are equivalent to non–symmetric operads and for
FS

+
< non–symmetric to operads without constants.

For the reader unfamiliar with operads the latter two statements can serve as
a definition, see (3.7) below.

Proof. To calculate the groupoid data: V = 1, V+ = Iso(V⊗ ↓ V) =
Mor(V) = id∗. So the groupoid part of D is fixed by an object A := D(id∗).
The composition data is morphism μ : D(γ(id∗; id∗) : D(id∗ � id∗) = A ⊗ A →
D(id∗ ◦ id∗) = D(id∗) = A. The associativity of μ follows from the associativity
(id∗ ◦ id∗) ◦ id∗ = id∗ ◦ (id∗ ◦ id∗).

For FinSet+, V = 1,V⊗ = S and V+ = Iso(S ↓ {∗}) has as objects the maps
n → {∗} where n may be zero, where 0 = ∅. Since {∗} is a one-element set,
there is a unique map πn : n → {∗} and hence the objects of V+ are given by
N0. As the action of isomorphisms on the target n is trivial, the isomorphisms are
exactly the isomorphism of the source n and hence Aut(πn) = Sn and there are
no isomorphisms between πn and πm for n �= m. Thus V+ � S, and the groupoid
data is a functor O : S → C that is an S–module which is a collection of objects
O(n) = O(πn) together with an action of Sn on O(n), were we reverted from the
notation D to the generic O for elements of Ops , which also conforms with the
usual operad notation. The composition data is given by the maps, which define
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an operad. Denoting O(γ(πm;πn1
, . . . , πnm

)) = γm;n1,...,nm

(3.7) O(m)⊗O(n1)⊗ · · · ⊗ O(nm)
γm;n1,...,nm )

�� O(n)

O(πm � πn1
� · · · � πnm

) O(πn)

where n =
∑

ni. The associativity gives a condition on γ as does the Sn ac-
tions. These are spelled out in any text on operads, see e.g. [MSS02,Kau04] or
[GCKT20a, §2.2.5] for a formula using indexing.

If we only have surjections, the map π0 is missing and hence there is no O(0),
in other words, there are no constant terms.

If we have an order on the fibers of the maps, then the objects of V+ are (πn, <n)
with isomorphisms acting transitively on the orders, that is we have as a groupoid
the objects {Sn}, n ∈ N0 with Sn acting on Sn as automorphisms via the regular
representation. Its skeleton is simply N0 as a discrete category. A representative for
each isomorphism class is given by (πn, <) where < is the standard order on n. Thus
the groupoid part is simply given by a sequence of objects O(n). Composition is as
above where γ is fixed above and it has to satisfy the condition of associativity. �

Remark 3.21. One can ask about the pseudo–operad structure. Using the
subset with φi = πn, and all other φj = π1 we obtain maps
(3.8)
γn;1,...,,1,m,,...,1 : O(n)⊗O(1)⊗· · ·⊗O(1)⊗O(m)⊗O(1)⊗· · ·⊗O(1) → O(n+m−1)

To obtain the usual pseudo–operad maps ◦i, we at this time lack an operadic unit.
If we have a unit u : 1 → O(1) which is a unit for the operation γ:

γ1;n ◦ (u⊗ idO(n)) = idO(n)(3.9)

γm;1,...,1 ◦ (idO(m) ⊗ u⊗m) = idO(m)(3.10)

where we tacitly used the unit constraints. Thus if there is a unit and then we can
define

(3.11) ◦i : O(n)⊗O(m) � O(n)⊗ 1 ⊗ · · · ⊗ 1 ⊗O(m)⊗ 1 ⊗ · · · ⊗ 1

idO(n)⊗u⊗···⊗u⊗idO(m)u⊗···⊗u
−→ O(n)⊗O(1)⊗ · · · ⊗O(1)⊗O(m)⊗O(1)⊗ · · · ⊗O(1)

γn;1,...,1,m,1,...,1−→ O(n+m− 1)

and using (3.9) and (3.10), we can recover γ from (3.11) by using iterated ◦i oper-
ations and associativity.

However, if O is reduced, which means that O(1) = 1 the composition data
factors trough unit constraints then O is automatically unital. In the general case,
this is formalized by the definition below.

Definition 3.22. A groupoid compatible pointing for a functor D ∈ F+-Ops
is a collection of elements uσ : 1C → D(σ), σ ∈ Mor(V), which satisfy D(σ) ◦ uσ′ =
uσ◦σ′ and are compatible with groupoid action and the composition data D(γ). I.e.
the following diagrams commute:
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40 R. M. KAUFMANN

(3.12) D(φ0)⊗D(σ1)⊗ · · · ⊗ D(σn)
D(γ) �� D(φ0 ◦ (σ1 ⊗ · · · ⊗ σn))

D(φ0)⊗ 1 ⊗ · · · ⊗ 1

id⊗uσ1
⊗···⊗uσn

		

D(φ0)
unit constraints







D((σ−1
1 ⊗···⊗σ−1

n ⇓id))


		

where the right morphisms is given by the groupoid data and

(3.13) D(σ0)⊗D(φ1)
D(γ) �� D(σ0 ◦ φ1)

1 ⊗D(φ1)

uσ0⊗id

		

D(φ1)
unit constraint







D((id⇓σ0))


		

A functor D is called reduced if D(σ) � 1 for all σ ∈ Mor(V).
A functor D and a choice of groupoid compatible pointing, is called groupoid

compatibly pointed (gcp) functor.
A functor D ∈ F+-Ops is a hyper–functor if it is reduced and gcp using the

identification D(σ) � 1.

Remark 3.23.

(1) Due to the groupoid data, to check that D is reduced it suffices to check
D(id∗) � 1 for a set of representatives ∗ for the isomorphism classes of V .

(2) Due to the compatibility with the action of the groupoid, the uσ are also
already fixed by a choice of the uid∗ where ∗ runs through representative
of the isomorphism classes of objects of V . Concretely, if σ : ∗ → ∗′ an
isomorphism, then D((id ⇓ σ)) ◦ uid∗ = uσ.

(3) From (3.13) and (3.12) it follows that D(γ(σ;σ′)) ◦ (uσ ⊗ uσ′) = uσ◦σ.

Example 3.24. For Ftriv , we retrieve the motivating Example 3.15. The
(Ftriv )+ = Ops are associative monoids in C. There is again only one isomor-
phism in the skeleton of V namely id∗. Gcp means that the monoids are unital and
reduced means that M � 1. Thus a hyper–functor is trivial.

For FinSet , we retrieve Remark 3.21. The FinSet+-Ops are operads, the gcp
respectively reduced FinSet+-Ops are unital operads, respectively the reduced op-
erads. The hyper functors are unital reduced operads.

Remark 3.25. For a gcp functor D, we can define the analogue of the ◦i of
(3.11).

Definition 3.26. For a gcp functor D, let φ : ∗1 ⊗ · · · ⊗ ∗n → Y and ψ :
∗′1 ⊗ · · · ⊗ ∗′n → ∗i, then define:

(3.14) ◦i : D(φ)⊗D(ψ) � D(φ)⊗ 1 ⊗ · · · ⊗ 1 ⊗D(ψ)⊗ 1 ⊗ · · · ⊗ 1

idD(φ)⊗uid∗1
⊗···⊗u∗i−1

⊗idD(ψ)u∗i+1
⊗···⊗u∗n−→ D(φ)⊗D(id∗1

)⊗ · · · ⊗ D(id∗i−1
)⊗D(ψ)

⊗D(id∗i+1
)⊗ · · · ⊗ D(id∗n

)
γ→ D(φ ◦ id∗1

⊗ · · · ⊗ id∗i−1
⊗ φ)
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Remark 3.27. The difference between this and the equation (3.7) is that there
are possibly many objects in F and hence more identities. Using the general com-
patibility conditions (3.19) and (3.20), we can recover the γ from the ◦i. Thus the
◦i give another generating set which is “local” in the sense that it involves only two
morphisms and equivalently only one edge in the graphic description of Appendix
B.

3.3.3. Signs as hyper–functors. For a finite-dimensional k vector space V of
dimension n, let det(V ) be the graded vector space det(V ) = Σ−nΛnV ; this is
the one-dimensional top exterior power of V , concentrated in degree −n. If S is
a finite set, let det(S) = det(kS). There is a natural action of Aut(S ) on det(S).
Choosing an order on S, thereby identifying the set Aut(S ) with Sn as an Sn-module
Σ−|S|sign(S|S|), where sign is the sign representation.

Example 3.28 (Signs: K). For G (see Appendix A, especially §A.2), we define
K ∈ Agg+-Ops as follows.

(3.15) K(φ) = det(Eghost(φ))

The composition is given by K(φ0) ⊗ K(φ1) ⊗ · · · ⊗ K(φn) = det(Eghost(φ)) ⊗
det(Eghost(φ1))⊗· · ·⊗det(Eghost(φn)) → det(Eghost(φ0)�Eghost(φ1)�· · ·�Eghost(φn))
= det(Eghost(φ0◦(φ1⊗· · ·⊗φn)) with the identification according to (A.1), see also
Lemma A.7. Since an isomorphism σ does not have any edges, K(σ) = 1 = k and
the composition is simply given by the unit constraints. Hence K is a hyper–functor.
This generalizes [GK98].

As the twist is a hyper–functor, for the compositions data it is enough to give
the data of the ◦i which are simply K(φ) ◦i K(ψ) = det(Eghost(φ)�Eghost(ψ)) and
check that these are appropriately associative, which is straightforward.

The fact that this gives a hyper-functor basically boils down to the fact that
the ghost graph uniquely determines the isomorphism class of a basic morphism in
Agg .

Example 3.29 (Homology twist). We similarly define Det via Det(φ) =
det(H1(Γ(φ))).

3.3.4. V–twists and suspension. There are special types of hyper–functors called
V–twists, see [KW17, §4.2.1] generalizing cobordism twist of [GK98]. Consider
Pic(C), that is the full subcategory of tensor invertible elements in C and an
L ∈ V-OpsPic(C).

Given a hyper–functor D one defines the L twist as

(3.16) DL(φ) = L(tφ)−1 ⊗D(φ)⊗ L(s(φ))

where again s, t are the source and target maps and the composition uses the
morphism L(X)−1 ⊗ L(X) � 1.

Example 3.30 (Suspensions). One of the most important twists is given by
using suspension. These are defined for graph based Feynman categories. In par-
ticular for the operadic and modular operad categories.

There are two interesting versions. The first is the naive suspension, Σ which
takes values Σ(∗S) = Σ1.

The second, in the genus marked case, is s given by s(∗S,g) = Σ−2(g−1)−|S|signS|S|.

Without the genus marking g = 0.
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There is a fundamental relation

(3.17) K � DetsΣ

This states that if Γ(φ) is contractible, the K is simply the suspension sΣ. This
is precisely the odd structure for the bar complex, see §5.1. But, if the underlying
graph has topology, the mere suspensions do not suffice.

This is one of the basic mantras explained in detail in [KWZ12].
3.3.5. Gcp version and hyper version of F+. For the different types of functors

in Definition 3.22 there are Feynman categories through which these functors factor.
For this one adjoins morphisms and mods out by relations. The paradigmatic

example is FinSet which is generated by FS and the morphism i : ∅ → {∗}, which
satisfies the relation πS+

◦ (idS � i) = πS , where πS : S → {∗} is the unique
surjection, S+ = S � {∗} and idS � i : S = S � ∅ → S.

Definition 3.31. We define F+gcp = (V+gcp ,F+gcp , ı+gcp) as follows: V+gcp =
V+, Iso(F+gcp) = Iso(F+) and ı+gcp = ı+. But for F+gcp , we first freely adjoin a
morphism iσ : 1F+ = id1F → σ for all σ ∈ V+, and then mod out by the relations

(3.18) (σ ⇓ σ′)(iτ ) = iσ′◦τ◦σ

implementing the compatibility with the groupoid structure of V+. The compat-
ibility with the generating morphisms is forced by modding out by the relations
postulating that the following diagrams commute

(3.19) φ0 ⊗ σ1 ⊗ · · · ⊗ σn
γ �� φ0 ◦ (σ1 ⊗ · · · ⊗ σn)

φ0 ⊗ 1F+ ⊗ · · · ⊗ 1F+

id⊗iσ1
⊗···⊗iσn

		

unit constraints


 �� φ0

(σ−1
1 ⊗···⊗σ−1

n ,id)


		

where the right morphisms is given by the groupoid data and

(3.20) σ0 ⊗ φ1
γ �� σ0 ◦ φ1

1F+ ⊗ φ1

iσ0
⊗id

		

φ1
unit constraint







(id⇓σ0)


		

Fhyp = (Vhyp ,Fhyp , ıhyp) is defined as follows: Fhyp is the quotient of F+gcp

by the relation that iσ is invertible. Vhyp is the full sub–groupoid of V+ whose
objects are non–isomorphisms and ıhyp is the restriction of i+.

Proposition 3.32. Both F+gcp and Fhyp are Feynman categories. Moreover
any gcp functor factors through F+gcp and any hyper–functor factors through Fhyp.

Proof. The last statement is straightforward. The first statement for for
F+gcp this is again straightforward, as we are only adding element–type morphisms
and the relations preserve decomposability. For Fhyp this follows from a two–
step argument: First, inverting the iσ, we see that in Fhyp the full subcategory
spanned by the elements σ ∈ Mor(V) and 1 is equivalent to a discrete category.
There is a unique morphism between any two objects which is an isomorphism:
HomFhyp (σ, σ′) = {iσ′ ◦iσ}, Hom(1, σ) = {iσ}, Hom(σ, 1) = {i−1

σ } and Hom(1, 1) =
id1. Contracting this isomorphism class to 1, we obtain an equivalent category that
is clearly a Feynman category with vertices Vhyp . �
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Remark 3.33. From (3.20) and (3.19) it follows that γ(iσ ⊗ iσ′) = iσ◦σ′ . Also,
the analog of Remark 3.23 applies using iσ in lieu of the uσ.

3.4. Computations for the plus construction: Realizing the first lad-
der. In this section, we will apply the explicit graphical presentation for the plus
construction of Appendix B and starting from Ftriv construct the categories cor-
responding to various types of algebras in a first step and in a second step the
Feynman categories for various forms of operads.

3.4.1. From objects to monoids, via the plus construction. Using Theorem B.1,
we can compute (Ftriv )+ and (Ftriv )+gcp to obtain the first rung of the fundamental
ladder.

In Crl(Ftriv )+ , see §B.1.2, the vertex color is necessarily id∗ as it is the only pos-
sible morphism and all the flag colors are ∗. The decorations (σ, ı) for morphisms
are necessarily given by identities. There is only one objects in Crl(Ftriv )+ whose

isomorphism group is trivial. Hence the objects of (Crl(Ftriv )+)
⊗ are the ∗idn

, with

idn =: id∗⊗n = (id∗)
⊗n whose automorphisms are Sn,. Identifying n with id⊗n

∗
automorphisms Iso(Agg(Ftriv )+) � (Crl(Ftriv )+)

⊗ = S

A general morphism in Agg(Ftriv )+ , see §B.1.3, is given by decorated forests
whose trees are linear, i.e. they all have bi–valent vertices, since id∗ is the only
possible decoration. The map gV is a surjection n � m. Let |g−1

V (i)| = ni. Writing
a 2–regular, aka. linear, tree with n vertices as •| n, we see that the morphisms in
Agg(Ftriv )+ have underlying trees •| n1 · · · •| nm. The vertices in each •| ni are ordered

from the root to the top, thus giving an order on the fibers g−1
V (i), as each vertex

has a unique outgoing flag. The extra data identifies the root, that is the only
outgoing flag, of •| ni with the target •| corresponding to i in m.

A basic morphism, is thus given by one linear tree with an ordering of its
vertices (•| n,<). Here < can alternatively be thought of as an identification of the
vertices of the tree with the factors of id in (id∗)

⊗n, that is a bijection n ↔ n aka.
an order on n. The isomorphisms are given by permuting the (source) vertices.
By pre–composing, they act as permutations on the vertices of the linear tree and
hence transitively on the linear orders on the fibers.

Considering (Ftriv )+gcp , there is one added morphism iid∗ : ∅ → •| . It is
convenient to introduce the notation •| u the ghost-graph of the morphism iid∗ .
There are the relations (π2, 1 < 2)◦(id, 1)� i = (π2, 1 < 2)◦ i�(id, 1) = (π2, 1 < 2).
Note that (π2, 2 < 1) = (π2, 1 < 2) ◦ τ12 and thus we also have the unit equation
regardless of the position and order of the unit insertion.

An example is given in Figure 2.

Proposition 3.34. As Feynman categories (Ftriv )+ � FS
> and (Ftriv )+gcp �

NCSet.

Proof. The morphism f of Feynman categories consists of the functor v given
by •| = •| id∗ → 1 and the functor f given by •| ⊗n → n and on basic morphisms
f(•| n,<) = (πn, <), n ≥ 1 where the order of •| n is given by the height of the vertex
i and the order on n is the order induced by this. In the case of (Ftriv )+gcp we also
have f(•| 0 = iid∗) = i : ∅ → 1, as a generator with the appropriate relations. �

Remark 3.35. This gives another natural interpretation of NCSet and ΔS
complementary to [Lod98,FL91,PR02,So03].
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44 R. M. KAUFMANN

Figure 2. A morphism given by a marked linear forest. This
yields the same morphism in (Ftriv )+gcp = NCSet given in Figure
1. The underlying forest is •| 3 •| 0 •| 2 •| 1 •| 2, which fixes the
surjection 8 � 5.

3.4.2. Operads and non–Sigma operads via the plus construction: The second
rung. One can now apply the plus construction again that is compute ((Ftriv )+)+ =
FS

+
> � O¬Σ. We can also obtain operads through the plus construction. Let O be

the Feynman category for operads, O¬Σ that for non–Sigma, operads and letOunital

and O¬Σ
unital the ones for unital operads and non–Sigma operads. The unital operads

are sometimes called May operads and the corresponding Feynman category was
called FMay in [KW17]. The latter have an adjoined unit morphism u :→ O(1)
which satisfies the unit equations, see [KW17, §2.2], see also Table 7. We will also
consider O0 and O¬Σ

0 whose Ops whose O(1) � 1.

Proposition 3.36. We have the following identifications:
FinSet+ � O FinSet+gcp � Ounital FinSethyp = O0

NCSet+ � O¬Σ NCSet+gcp � O¬Σ
unital NCSethyp = O

¬−Σ
0

Restricting to surjections, one obtains the Feynman categories for the same
representations, but without constants, i.e. O(0). In particular, FShyp = Ored that
is the Feynman category whose Ops are reduced operads, no O(0) and O(1) � 1.

Proof. Consider FinSet+. There is only one flag color 1. Up to isomorphism,
the basic morphisms are given by πn : n → 1, where π0 = i : ∅ → 1. These give a
smaller, but equivalent subcategory, known as the biased version. These give rise
to the corollas ∗πn

, which are the isomorphism classes of objects in CrlFinSet+ . The
automorphisms in CrlFinSet+ of ∗πn

are Sn as πn ◦ σ = πn and σ acts trivially on
the flag labeling up to equivalence, since (B.1) holds for any permutation. Thus,
replacing CrlFinSet+ by a skeleton, we have Crl+

FinSet � S.
The objects in AggFinSet+ are then forests of ∗πn

or more generally ∗πS
, where

πS : S � 1. The only color isomorphism is id1, thus the data (σ, ı) is trivial.
Thus, up to isomorphism, the basic morphisms in AggFinSet are exactly the graph
morphisms φ : ∗n1

� · · · � ∗nm
→ ∗n whose underlying ghost graph is a tree. This

implies that n =
∑

i ni The arity of vertex decorated by πn is n and hence knowing
the arity fixes this decoration. The flag colors, the edge and tail decorations are all
redundant as well. This means that we have obtained the skeletal version of O.

More generally allowing for the morphisms πS : S � {r}, the vertices ∗πS
will

be or arity |S| and have incoming flag set in bijection with S and an outgoing flag
corresponds to {r}. Hence we have ∗πS

is completely determined by the rooted
corolla ∗S�{r},t. And we obtain FinSet+ = O.
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In FinSet+gcp there is an extra morphism u := iid1
: ∅ → id1 which provides

a unit-element morphism, [KW17, 2.2]. It is straightforward to check that for
O ∈ FinSet+gcp -Ops , O(u) is a unit.

In the case of NCSet , consider the objects of CrlNCSet+ . In the biased version,
that is using only the sets n, the objects are ∗πn,<n

, where <n is an order on n.
The permutations act transitively on the orders of the decorated corollas: (p ⇓
id)(∗πn,<n

) = ∗πn,p(◦<n), were p(◦ <n) is the permutation of §B.1.2. Thus there
are no automorphisms and a skeletal version of CrlNCSet+ is the discrete category N0

whose objects are the natural numbers with only identity morphisms. This means
that up to isomorphism, there is a unique ordered vertex of arity n for each n which
can be represented by the planar, planed corolla ∗n�{r},r. Proceeding to AggNCSet+ ,
we see that the planar, planted forest underlying the morphism uniquely determines
the morphism up to isomorphism. Thus, we have objects given by planar, planted
corollas and basic morphisms given by graph morphisms whose ghost graph is a
tree. This tree becomes planar if one pulls back the orders from the orders on the
source using the identification of the vertices of the graph and the source. Finally,
compatibility states that the order of the leaves of the target corolla is that of the
leaves of the tree. This is the description of O¬Σ = Odec Assoc , see [KL16] and
Appendix A.5.2 below. �

Lemma 3.37. Forgetting the order yield a forgetful functor p : O¬Σ → O. This
morphism is a cover with decoration p!(T ) = Assoc.

Furthermore Assoc((∗S�{r}, r)) = {all orders <S on S}, with the usual compo-
sition: γ((∗S�{r0}.,r0,<S

; (∗T1�{r1}, rn, <n), . . . , (∗T1�{r1}, r1, <1)) = ∗T�{r0},r0,<T

where T = T1 � · · · � Tn with the order <T=<1 � · · ·� <n.
This cover restricts to the non–unital and reduced O(1) and reduced cases.

Proof. This is contained in [KL16]. The key steps are: to define p = (pV , p),
functor pV is given simply by (∗S�{r}, r, <S) �→ (∗S�{r}, r) on objects. On mor-

phisms of O¬Σ, p is given by forgetting the planar structure on the forests. This
is a cover, as it is surjective on objects and morphisms and every morphism has a
unique lift once the target is fixed. This latter is the case as the planar structure
on the forest is completely fixed by the planar structure of the source corollas. On
objects computing p!(∗S�{r}, r) yields the fiber that is the set {(∗S�{r}, r, <S)} or
simply the set of orders on S. Composition of the linear orders is that according
to the forests. I.e. lifting the planar structure of the source corollas yields a planar
structure on each tree underlying a morphism and this in turn yields the given
order of the leaves, which are the set T . �

4. Modules and enriched Feynman categories

4.1. Enriched categories. To consider modules of algebras, or more gener-
ally if O ∈ F-OpsC their modules will need Feynman categories enriched in C. The
general reference is [Kel82], to which we refer for full details. We will give the
salient features here.

Recall that a category enriched F in a symmetric monoidal category (E ,⊗) has
a class of objects Obj (F) and morphisms Hom(X,Y ) ∈ Obj (E) together with a
associative unital composition maps which are morphisms in E : ◦ : Hom(Y, Z)⊗E
Hom(X,Y ) → Hom(X,Z) and units idX : 1E → Hom(X,X). Likewise for a
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monoidal structure, all structure morphisms are morphisms and objects E , in par-
ticular:

(4.1) ⊗ : Hom(X,Y )⊗E Hom(Z,W ) → Hom(X ⊗ Z, Y ⊗W )

is a morphism in E .

Example 4.1. Consider the category Gk enriched over Vectk which has one
object ∗ and morphism set k[G] with composition on basis elements given by
◦(g, h) = g ◦ h.

Example 4.2 (Internal Hom). A monoidal category can be enriched over itself.
The standard example is Vectk , since Hom(V,W ) again has the structure of a vector
space. More generally, E can be enriched over itself if it is closed. This means that
it an internal hom, Hom(X,Y ) ∈ E, and Hom(X ⊗ Y, Z) � Hom(X,Hom(Y, Z))
functorially, see [Kel82, §1.6] for details.

One can then consider functors between two categories C and D enriched
over the same E in straightforward formalism. In particular, HomC(X,Y ) →
HomD(O(X),O(Y )) : φ �→ O(φ) is a morphism in E .

Example 4.3. Functors O from Gk to Vectk thought of as enriched over Vectk
are k[G]-modules. Let M = O(∗) the fact that the map Hom(∗, ∗) = k[G] →
Hom(M,M) is a morphism in Vectk means that the action is k-linear, i.e. the
action is given by μ : k[G]⊗k M → M .

4.1.1. Freely enriched categories. Given an enriched category one can define
an underlying category by defining the underlying morphism via HomSet (X,Y ) :=
HomE(1E ,Hom(X,Y )). This is actually a 2–functor, see [Kel82], which has an
adjoint, called free enrichment. We will use the notation FE for the free enriched
version of E . E.g. if E = Vectk then HomFE (X,Y ) is the free vector space on
HomF (X,Y ). If E = Top the HomFE (X,Y ) is HomF (X,Y ) with the discrete
topology.

4.1.2. Cartesian vs. linear enriched. There are basically two types, Cartesian
enriched and linearly enriched. Cartesian enriched means that⊗E is also a Cartesian
product like in Top5. Linear means that one is at lead Ab enriched, and ⊗E is “bi–
linear”. Typical examples for E are Vectk , dg-Vectk , etc..

There are basically no big modifications to Feynman categories in the Cartesian
enriched case. In the linear case, there are necessary modifications as the notion of
a groupoid becomes unavailable. Note that GL(V ) ⊂ End(V ) is a subspace, but
not a linear subspace.

4.2. Modifications in case of enrichment. In this sub-paragraph, we will
collect the modifications that are necessitated in the enriched case, especially in
that of linear enrichment.

4.2.1. Cartesian enriched Feynman categories. Generally in the enriched case
axiom (ii) is be replaced by the rather technical axiom (ii’).

(ii’) The pull-back of preserves ı⊗∧ : [Fop, Set] → [V⊗op, Set] restricted to rep-
resentable pre–sheaves is monoidal.

5Fixing a convenient topological category.
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The monoidal structure on pre–sheaves is given by Day convolution �, thus (ii’)
means that

(4.2) ı⊗∧HomF ( · , X ⊗ Y ) = HomF (ı
⊗ · , X ⊗ Y ) =

ı⊗∧HomF ( · , X)� ı⊗∧HomF ( · , Y )

Using the definition of the Day convolution the right hand side of (4.2) becomes
the co–end condition:

(4.3) ı⊗∧HomF ( · , X)� ı⊗∧HomF ( · , Y ) = HomF (ı
⊗ · , X)�HomF (ı

⊗ · , Y )

=

∫ Z,Z′

HomF (ı
⊗Z,X)×HomF (ı

⊗Z ′, Y )×HomV⊗( · , Z ⊗ Z ′)

The co–end formula expresses the “bi–linearity” of composition [Aus74,
ML98].

Just like condition (ii), the smallness condition (iii) should be modified in the
enriched case as (co)limits become so–called indexed (co)–limits, see [Kel82].

(iii’) For all ∗ ∈ V , the indexing functors ı̃⊗(∗) := HomF (ı
⊗∗,−) are essentially

small.

The indexing functor takes care of the “linearity” of morphisms.

Definition 4.4. A Feynman category F enriched over a Cartesian E is a triple
(V ,F , ı) of a category F enriched over E and an enriched category V which satisfy
the enriched version of the axioms of Definition 2.5. That is (i), (ii’) and (iii’) as
given above

4.2.2. Linear enrichment/weak Feynman categories/index enriched Feynman
categories. As there is no good notion of groupoid, in the linear case, the axiom (i)
has to be modified to (i’).

Definition 4.5. A weak Feynman category is a triple (W ,F , ı), where both
W and F are categories enriched over E , ı : W → F is a functor enriched over E , F
is symmetric monoidal enriched over E , and W symmetric monoidal tensored over
E satisfying: (i’) ı⊗ is essentially surjective, and (ii’) and (iii’) as above.

This notion is closely related to Getzler’s patterns, see [Get09, KW17,
BKW18].

Definition 4.6. An indexed enriched Feynman category is a weak Feynman
category F = (V ,F , ı) indexed over a Set Feynman category B = (VB,B, ıB), such
that V = (VB)E .

Assumption 4.7. From now an, we assume that C = E is enriched over itself
and has a co–product. For representations, one is interested in Abelian categories
C, which is why we denote the co–product by ⊕.

4.3. Enrichment functors. Enrichment functors are the generalization of
Remark 2.13. We refer to Appendix C for the two–categorical notions.

Definition 4.8. A weak enrichment functor for a Feynman category F is a
lax 2–functor F → E with is strictly monoidal, see Remark 2.13. An enrichment
functor is a weak enrichment functor that also satisfies D(σ) = 1.
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4.3.1. Indexed enriched Feynman categories over F and Fhyp . The following is
proved in [KW17, Proposition 4.1.2, Theorem 1.4.1] connecting the plus construc-
tion and enrichment.

Theorem 4.9.

(1) There is a 1–1 correspondence between indexed enriched Feynman cate-
gories over F and enrichment functors.

(2) There is a 1–1 correspondence between enrichment functors and
Fhyp-OpsE .

Denote the indexed enriched Feynman category of F corresponding to D ∈ F+-OpsE
by FD, then monadicity holds for the weak Feynman category FD.

The correspondence is represented by the formula (4.4) which is a generalization
of (2.8).

(4.4) HomFD (X,Y ) =
⊕

φ∈HomF (X,Y )

D(φ)

with composition

(4.5) D(φ)⊗D(ψ) → D(φ ◦ ψ)
Remark 4.10. The first two parts the statement for E = Set is contained in

Remarks 2.12 and 2.13. The general proof of these statements is similar. also
follows from the definitions, in particular Definition C.12 and Corollary 3.19. Note
that the condition that composition with isomorphism is strict, i.e. it is given by
unit constraints from [KW17] follows from Definition C.12 condition (3) together
with the groupoid action via Remark 3.33. This is why we could remove this extra
condition in the definition of an enrichment functor.

4.3.2. Generalizing to F+gcp . The results and constructions are analogous to
Example 3.15.

Relaxing the condition of an enrichment functor to a weak enrichment functor,
we obtain the generalization of Theorem 4.9 (1).

Proposition 4.11. Weak enrichment functors are in 1–1 correspondence with
F+gcp-OpsE .

Proof. This is straightforward as in Remark 4.10 using Definitions 3.22, C.12
and Proposition C.15. �

There is a generalization of the results of Theorem 4.9 (2) to F+gcp -Ops . In the
enriched case, we have to be careful about splitting.

Definition 4.12. We call D ∈ F+-OpsC split, if each for all σ ∈ Mor(V).
(1) D(σ) = D(σ)× ⊕Dred (σ).
(2) Any invertible φ ∈ D(σ) with φ−1 ∈ D(σ−1) is in D(σ)×.
(3)

⊕
σ∈Mor(V) D(σ) = G (D)E that is the free enrichment of a set–groupoid

G (D).

A D ∈ Fgcp+-OpsC is called split if it satisfies the conditions above and furthermore
The morphism D(iσ) : 1 → D(σ) is split. I.e. D(σ)× = 1 ⊕D(σ)×, where the first
summand is im(D(iσ)).

A weak enrichment functor is split, if the corresponding functor D ∈ F+gcp-Ops
is split.
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Remark 4.13.

(i) Condition (3) means that Obj (G (D)) = Obj (V), but Mor(G (D)) =
�σ∈Mor(V) �σi∈Iσ σi and D(σ)× =

⊕
σi∈Iσ

1 and there is are composi-

tion morphisms Iσ × Iσ′ → Iσσ′ for composable σ, σ′, such that fixing an
element in Iσ or an element in Iσ′ the composition morphism is a bijection.

(ii) In the +gcp case, all the D(σ)× = 1 ⊕ D̄(σ)× split with the first compo-
nent being D(iσ). In the language above Iσ is a pointed set (Iσ, 0) and
there is an inclusion V → G (D), with the image of σ being 0 ∈ Iσ. In
particular, there is an involution,¯: Iσ → Iσ−1 for which for σ : X → Y
the composition 1σ−1

i
⊗ 1σi

→ 1idX
where idX is the base point of IidX

.

(iii) Any D ∈ Fhyp-OpsC is split.

Assumption 4.14. From now on, we will assume that all functors from F+

and F+gcp are split.

In the case E = Set the splitting is simply given by D(σ) = D(σ)× �D(σ)red

Given a split D ∈ F+gcp , set VB := G (D) and let FB be the trivially extended
monoidal category along the projection j : VB → V given by Iσ �→ σ. This means
the Obj (FB) = Obj (F). To give the morphisms, note that Mor(F) is a V⊗-V⊗

bi–module with the action (σ ⇓ σ′). This action is extended to bi–module action
of VB by (σi ⇓ σ′

j)(φ) = (σ ⇓ σ′)(φ).
There is the natural inclusion iB : VB → FB. Set B(D) = (VB,FB, ıB).

Theorem 4.15. For a split weak enrichment functor D : F+ there is weak
Feynman category FD indexed over the Feynman category B(D).

Proof. The fact that FD is indexed over FD is clear. The fact that B is a
Feynman category follows in a straightforward fashion similar to [KW17, Theorem
4.1.4]. �

Corollary 4.16. A split weak enrichment functor D for F lifts to an enrich-
ment functor D̃ over B(D).

The values of D̃ on morphisms are D̃(σi, φ) = 1σi
⊗D(φ) � D(φ) where σi is the

isomorphism corresponding to i ∈ Iσ, 1σi
is the corresponding component of G (D)

and the morphism is given by pre–composing the morphism D(σ)⊗D(φ) → D(φ)
with the inclusion of 1σi

→ D(σ).
4.3.3. NCSet as an indexed enriched Feynman category over FinSet. We know

that FinSet+gcp = O, so enrichment functors will be operads. Let Assoc ∈
O-OpsSet be the associative operad as in Lemma 3.37, then Assoc ∈ Ohyp , since
Assoc(∗{s,t},t ) has only one element. The following is now straightforward.

Lemma 4.17. NCSet = FinSetAssoc is indexed enriched over FinSet. �

Remark 4.18. We now have two description of O¬Σ. Using the Lemma 4.17
above, Proposition 3.36 and Lemma 3.37

(4.6) (FinSetAssoc)
+gcp = (FinSet+gcp)dec Assoc

This is part of a general statement, see §4.5.1 and [KM20].
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4.3.4. Enriching quivers. Quivers give a generalization of Example 4.3. As an
example consider of a simple quiver Q : •1 → •2. That is the category has two
isomorphisms id•1

and id•2
together with a morphism φ : •1 → •2. This give rise

to a Feynman category FQ, where V is the discrete category with objects •1, •2 and
F = Q⊗.

Proposition 4.19. The weak enrichments of FQ are in 1–1 correspondence
with (A,B,AMB) of two unital split, in the sense of split enrichment functors,
algebras and a bi–module.

Proof. We can define a class of enrichment functors by giving two groups
and a bi–module over them D will have values D(id•1

) = A, D(id•2
) = B and

D(φ) = AMB. The algebra structure comes from the compositions id•i
◦ id•i

= id•i

The bi–module structure comes from the compositions φ ◦ id•1
= id•2

◦ φ = φ. �

If the functors are weak or not depends on the algebras A and B.

Example 4.20. A particular example over Set is the choice A = GL(V ), B =
GL(W ), Hom(V,W ), where V,W ∈ Vectk . Notice that this is not enriched over k as
discussed above. It is also a weak indexing. With the base category B having two
objects with automorphisms GL(V ) and GL(W ) respectively and one morphism
between the two objects, i.e. the trivial A-B module.

Remark 4.21. Going over to finite graphs, this type of example is tied to
the quantum graph symmetries [KKW15,KKWK16], where the enrichment now
takes values in C∗ algebras and has applications to material science, [KWK18].

4.3.5. Twists. One reason one uses the categories FD is to obtain the necessary
sign twist for the bar and co–bar constructions. In particular, the twists of §§3.3.3
and 3.3.4 are important for the transforms in §5.

There is also a nice interpretation of twisting the triples for indexed Feynman
categories, which we will not describe in detail here, but refer to [KW17, Proposi-
tion 4.1.7]. We wish to note, that the V–twists modify the triples in an isomorphic
way, hence one obtains isomorphisms between FD-Ops and FDL

-Ops , which is what
one is used to in the algebra case, see §5.1 and in general [KWZ12] for relevant
examples.

4.4. Modules. With this preparation, we can finally define modules for
F+gcp-Ops . This generalizes the definition of [KW17], where the modules were
only defined for Fhyp-Ops .

Definition 4.22. Given a D ∈ F+gcp -OpsE , D-modules in a monoidal category
C enriched over D are FD-OpsC .

4.4.1. Modules over an associative algebra. We can now do the construction of
Remark 3.15 full justice, that is we can consider modules over an algebra and not
just a monoid. The example also exhibits all the features above.

Let A be an associative algebra over k, that is the value of A ∈ FS
>-OpsVectk =

(Ftriv )+. We consider the category FA whose objects are the natural numbers and
whose morphisms are given by HomFA(n, n) = A⊗n and HomFA(n,m) = 0 for

n �= m with permutation action and unit 1 = k = A⊗0. This is the free symmetric
category on the category enriched over k, VA, which has one object ∗ and morphisms
HomVA = A. Thus Fun⊗(FA, E) = Fun(VA, E) = A-modE that is the category of
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A–modules in E . Here we assume that E is also enriched over Vectk and the monoidal
functors are over Vectk .

Now, if A is split as a functor in (Ftriv )+-Ops , then A = A× ⊕ A and any
invertible element lies in A× = Gk = k[G] for some group G.

If A is unital that is A ∈ NCS-OpsVectk = (Ftriv )+gcp , being pointed by the
unit and A× = 1⊕ Ā×, which is the inclusion of e ∈ k[G]. In this case, BA = VA.
Again, hyper–means that A is reduces, that is (̄A)× = 0 and A× = 1. In this case
indeed B = Ftriv and FA is indexed enriched over Ftriv .

Remark 4.23. This suggests the study of group like elements of a Hopf algebra
as a replacement for the condition of having an underlying set–groupoid. This will
be explored in the future.

4.4.2. Enrichments of FI, FIG and FId. Consider a functorD ∈ FI+gcp-OpsE .
There are two generating morphisms in FI: id∗ and i : ∅ → 1. Let D(id∗) = A =
A× ⊕ Ā and D(i) = M . The morphism iid∗ provides 1 → A×.

Proposition 4.24. The weak indexed enrichments of FI are in 1–1 corre-
spondence with pairs (A,M) where A is a unital algebra (monoids) and M is an
A–module.

Proof. The composition id∗ ◦ id∗ = id∗ provides the multiplication map μ :
D(id∗)⊗D(id∗) = A⊗ A → A = D(id∗), the unit is provided by 1 → D(id∗) = A
from the +gcp data, while the composition id∗ ◦ i = i provides the module map
ρ : D(id∗)⊗D(i) = A⊗M → M = D(i). �

Remark 4.25.

(1) As FI ⊂ FinSet we have that FI+gcp ⊂ FinSet+gcp = Ounital and hence
FI+gcp-Ops are unital operads with only O(1) and O(0). It is well known
that this pair is a pair of a unital algebra and a module over it.

(2) Considering FI+-Ops , one arrives at a non–unital algebra and a module
over it.

Two special cases over Set have been considered in [SS19, SS17]. Here we
generalize these in two ways. There is a general solution yielding the two construc-
tion as special cases and this can be performed in any enriched setting, that is also
k–linearly.

Let us briefly review the two constructions. For the first the category G–maps
is studied. Objects are finite sets with a morphism between R and S given by a
pair of maps: and injection f : R → S and a map ρ : R → G. Composition is given
by (g, σ) ◦ (f, ρ) = (g ◦ f, τ ) with τ (x) = σ(f(x))ρ(x).

The category FId is given as follows: again the objects are finite sets and
morphisms given by pair (f,m), where f : R → S is an injection, but now m : S \
f(R) → {1, . . . , d}. For the composition (f,m)◦(g, n) = (f ◦g, p) with R

g→ S
f→ T ,

where p is defined on T \ f ◦ g(R) = f(T \ g(R))� T \ g(S) as m ◦ f−1 � n.
The extra data is compatible with orders and defines the categories OIG and

OId.

Proposition 4.26. Restricting A to be group G and M to be trivial, we recover
the category FIG . Restricting A to be trivial and M = {1, . . . , d} then we recover
the category FId.

Similar results hold in the ordered cases OIG and OId.
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Proof. In general, decomposing S as �s∈S∗, according to the decomposition
(2.5) a morphism inHomFID (R,S) is given by a tensor product of pairs (id∗, g), a ∈
A) and (i,m ∈ M), with a factor of id∗ for each element in the image of R and a
factor of i for each element not in the image. If A is G and M is trivial, then an
injection R → S is given by a tensor product of pairs (id∗, g), g ∈ G) and (i, 1). The
data of the (id∗, g) is equivalent to the data of a map R → g which assigns g to the
factor of id∗ corresponding to r. Composition gives (id∗, g) ◦ (id∗, h) = (id∗, gh),
where (id < h) is the factor that corresponds to f(x) if (id∗, x) corresponds to x.
and (id∗, g) ◦ (i, 1) = (i, 1), since the action is trivial ρ(g)1 = 1. Thus the two
categories coincide.

If A is trivial and M = {1, . . . , d} then a morphism R → S is given by tensor
factors of (id∗, 1) and (i, j) with j ∈ {1, . . . , d}. This data is encoded in the injection
f : R → S and a morphism on S \ f(R). Composition now reads (id∗, 1) ◦ (i, j) =
(i, j) which is the first part of the formula for p. The second part is simply the
insertion of factors of i for the elements missed by g.

The proofs for the ordered cases is analogous. �

Note that the case of A = G is one in which Ared = ∅. An in this case the
indexing, A× = G is not reduced. The (weak) Feynman category is actually indexed
over itself.

4.5. Decoration. In the case of decoration in the linear case, we need the
modification that is spelled out in [KL16, §2.2].

Definition 4.27. For a fixed choice of j : Iso(F) → V⊗ realizing the equiva-
lence of condition (i):

The objects of FdecO are tuples (X, av1 , . . . , av|X|), where for j(X) =
⊗

v∈I ∗v =

∗v1 ⊗ · · · ⊗ ∗v|X| , avi ∈ O(∗vi).
The morphism of FdecO are given by the subset

HomFdecO ((X, aw1
, . . . , aw|X|), (Y, bv1 , . . . , bv|Y |)) ⊂ HomF (X,Y )

of those morphisms φ : X → Y , such that if
⊗

v φv is the decomposition of
φ according to the diagram (2.5), with φv : Xv =

⊗
w∈Iv

ı(∗w) → ı(∗v), then
O(φv)(

⊗
w∈Iv

(aw)) = bv.
The monoidal structure is given by

(X, aw1
, . . . , aw|X|)⊗ (Y, bv1 , . . . , bv|Y |)) = (X ⊗ Y, aw1

, . . . , aw|X| , bv1 , . . . , bv|Y |)

and the commutativity constraints are given by those of F on the first component
and the respective permutations on the others.

The result can also be made into enriched category, if F is tensored over E .

Definition 4.28. Assuming the conditions above, the category FdecO as an
enriched category over E has objects X ⊗O(X) and formally the same set of mor-
phisms F–HomFdecO (X ⊗O(X), Y ⊗O(Y )) = HomF (X,Y ). A morphisms φ via
tensoring becomes the morphism φ⊗O(φ) in C. Its symmetric monoidal structure is
given by (X⊗O(X))⊗FdecO (Y ⊗O(Y )) = (X⊗F Y )⊗O(X⊗Y ), with composition
of morphisms and symmetries given by the isomorphism (X ⊗ Y ) ⊗ O(X ⊗ Y ) �
(X ⊗O(X))⊗ (Y ⊗O(Y )) in C provided by the strong symmetric monoidal struc-
ture of O. VdecO is likewise defined by objects (V ⊗O(ı(V ))) with V ∈ V and the
morphisms of V . The inclusion is given by ı(V ⊗O(ı(V ))) = (ı(V )⊗O(ı(V ))).
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Similar modification allow for the decoration of enriched Feynman categories
with functors to C which is also enriched over E .

4.5.1. The relation between decoration and plus construction. With the notion
of enrichment for decoration, we can state a Proposition generalizing Remark 4.18
that will be proven in [KM20]

Proposition 4.29. In general (F+gcp)dec O = (FO)
+gcp .

5. Bar, co–bar, Feynman transforms, & master equations

In analogy with (co)–algebras, there are three transforms we will consider for
F-Ops : the bar–, the cobar transform and the Feynman transform aka. dual trans-
form. The bar–cobar transforms yield a pair of adjoint functors. These transforms
serve a dual purpose. One is to give resolutions, the other is to give deformations
through master–equations, which generalize the Maurer–Cartan equation.

5.1. Motivating example: Algebras.
5.1.1. Bar transform. If (A, ε, dA, | · |) is an augmented associative algebra dg,

then the bar transform is the dg–co–algebra given by the free co–algebra BA =
TΣ−1Ā, where Ā = ker(ε) together with differential from algebra structure. The
usual notation for an element in BA is a0|a1| . . . |an it will have degree

∑n
i=0(|ai|+

1) =
∑

i |ai|+ n+ 1. In this notation the co–product is

Δ(a0| . . . |an) = 1⊗ a0| . . . |an + a0| . . . |an ⊗ 1 + Δ̄(a0| . . . |an)

Δ̄(a0| . . . |an) =

n∑
i=1

a0| . . . |ai−1 ⊗ ai| . . . |an(5.1)

Using the differentials

∂i(a0|a1| . . . |an) = a0| . . . |ai−1ai| . . . |an

∂B(a0|a1| . . . |an) =
n∑

i=1

(−1)
∑i−1

j=1(|aj |+1)∂i(a0|a1| . . . |an)(5.2)

The total differential on BA is dB + dA.
5.1.2. Odd version. Notice that looking at ΣBA, the degree of an element

a0| . . . |an is n which is the number of bars. As a mnemonic one can put deg(|) = 1.
In the shifted version the co–product reduced co–product Δ̄ has degree −1 as
there is one bar less. This type of odd structure lies at the heart of the story for
deformations. It actually gives the right degree to the Hochschild complex, see
[KWZ12] for a detailed exposition.

5.1.3. Cobar and bar/cobar. Likewise let (C, η, | · |) be an associative
co–augmented connected dg–co–algebra, C̄ = coker(η). The co–bar transform
is the dg–algebra ΩC := Freealg(Σ

−1C̄) together with a differential coming from
co–algebra structure dual to the structures above. The bar–cobar transform ΩBA
is a resolution of A.

5.1.4. Dual and Feynman transforms. For the dual or Feynman transform con-
sider a finite–dimensional algebra A or a graded algebra with finite dimensional
pieces and let Ǎ be its (graded) dual co–algebra. Then the dual or Feynman trans-
form of A is FA := ΩǍ together with a differential from multiplication. Now, the
double Feynman transform FFA a resolution.

There is particular interest in the differential for deformations. In particular
one considers Maurer-Cartan elements which satisfy the equation dm+ 1

2 [m,m] = 0.
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Figure 3. The sign mnemonics for the bar construction, tradi-
tional version with the symbols | of degree 1, the equivalent linear
tree with edges of degree 1, and a more general graph with edges
of degree 1. Notice that in the linear rooted case there is a natural
order of edges, this ceases to be the case for more general graphs

5.2. Transforms for Feynman categories. As before ,one can ask the ques-
tion of how much of the structure of these transforms can be pulled back to the
Feynman category side. The answer is: “Pretty much all of it”. We shall not
discuss all the details which can be found in [KW17], but will give an overview
following[Kau17].

We start with a general overview and a discussion of the necessary structures.
The result of the transforms BA or FA is actually an odd version of a (co)–free
co–algebra or an odd algebra with a (co)differential.

Algebras are a general case of elements of F-Ops and hence the transforms
will be defined for inputs O ∈ F-OpsC . The co–algebra output means that one
is going to the opposite category Cop for the target category in the output of the
transforms. The construction will be free constructions, which, however, also have
the extra structure of an additional (co)differential. The “oddness” is necessary for
the signs that are needed in order for the differentials to square to zero. In general,
this means that one needs an odd version Fodd of the Feynman category F. In order
to define this odd version, one needs to make assumptions on the Feynman category
and fix a presentation. The transform will transform an op into a new op for the
odd version of the Feynman category Fodd either in Cop or C. In the graphical case,
this is achieved by the twist by K, see Example 3.28. The equation (3.16) then
neatly explains the relation between odd version and the shifts. The twist by K

means that each edge gets degree 1, which is exactly the convention that deg(|) = 1
in the bar construction; see Figure 3.

Thus the resulting Feynman category is actually a category of chain complexes
in a category enriched over Ab. Furthermore, for the (co)-differential to work, we
have to have signs. These are exactly what is provided by the odd versions. In
order to be able to define the transforms, one has to fix an odd version Fodd of F,
see [KW17, §5.2.3,§5.2.6] for full details. This is analogous to the suspension in the
usual bar transforms. In fact, the following is more natural, see [KW17,KWZ12].
The degree is 1 for each bar and in the graph case the edges get degree 1. The
basic example are graphical Feynman categories, for which the odd version is given
by the twist with K. In general, one needs an ordered presentation.

The transforms are of interest in themselves, but one common application is
that the bar-cobar transform as well as the double Feynman transform give a “free”
resolution. In general, of course, “free” means co-fibrant. For this kind of statement
one needs a Quillen model structure, which is provided in §D.
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The Feynman transform is quasi–free, that is for O ∈ F-OpsC , FO = ıodd! (ı∗O)
∈ Fodd-Ops is free, if one ignores the differential. The dg structure is compatible
with FO precisely if it satisfies a Master Equation, which is fixed by the choice of
Fodd.

5.2.1. Presentations. As mentioned, in order to define the transforms, we have
to give what is called an ordered presentation [KW17]. Rather then giving the
technical conditions, we will consider the graph case and show these structures in
this case.

5.2.2. Basic example G. In G the presentation comes from the following set of
morphisms Φ

(1) There are 4 types of basic morphisms: Isomorphisms, simple edge con-
tractions, simple loop contractions and mergers. Call this set Φ.

(2) These morphisms generate all one–comma generators upon iteration. Fur-
thermore, isomorphisms act transitively on the other classes. The relations
on the generators are given by commutative diagrams.

(3) The relations are quadratic for edge contractions as are the relations in-
volving isomorphisms. Finally there is a non–homogenous relation coming
from a simple merger and a loop contraction being equal to an edge con-
traction.

(4) We can therefore assign degrees as 0 for isomorphisms and mergers, 1 for
edge or loop contractions and split Φ as Φ0 � Φ1. This gives a degree to
any morphism.

Up to isomorphism any morphism of degree n can be written in n! ways up
to morphisms of degree 0. These are the enumerations of the edges of the ghost
graph.

There is also a standard order in which isomorphisms come before mergers
which come before edge contractions, cf. [BM08,KW17]. This gives an ordered
presentation.

In general, an ordered presentation is a set of generators Φ and extra data such
as the subsets Φ0 and Φ1; we refer to [KW17] for details.

5.2.3. Differential. Given a dΦ1 =
∑

[φ1]∈Φ1/∼ φ1◦ defines an endomorphism

on the Abelian group generated by the isomorphism classes morphisms. The non–
defined terms are set to zero. Φ1 is called resolving if this is a differential.

In the graph case, this amounts to the fact that for any composition of edge
contractions φe ◦ φe′ , there is precisely another pair of edge contractions φe′′ ◦ φe′′′

which contracts the edges in the opposite order.
This differential will induce differentials for the transforms, which we call by

the same name. We again refer to [KW17] for details.
5.2.4. Setup. F be a Feynman category enriched over Ab and with an ordered

presentation and let Fodd be its corresponding odd version. Furthermore let Φ1 be
a resolving subset of one-comma generators and let C be an additive category, i.e.
satisfying the analogous conditions above. In order to give the definition, we need
a bit of preparation. Since V is a groupoid, we have that V � Vop. Thus, given
a functor Φ : V → C, using the equivalence we get a functor from Vop to C which
we denote by Φop. Since the bar/cobar/Feynman transform adds a differential, the
natural target category from F-Ops is not C, but complexes in C, which we denote
by Kom(C). Thus any O may have an internal differential dO.
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5.2.5. The bar construction. This is the functor

B : F-OpsKom(C) → Fodd -OpsKom(Cop)

B(O) := ıFodd ∗(ı
∗
F(O))op

together with the differential dOop + dΦ1 .
5.2.6. The cobar construction. This is the functor

Ω: Fodd-OpsKom(Cop) → F-OpsKom(C)

Ω(O) := ıF ∗(ı
∗
Fodd(O))op

together with the co-differential dOop + dΦ1 .
5.2.7. Feynman transform. Assume there is a duality equivalence ∨ : C → Cop.

The Feynman transform is a pair of functors, both denoted FT,

FT : F-OpsKom(C) � Fodd -OpsKom(C) : FT

defined by

FT(O) :=

{
∨ ◦ B(O) if O ∈ F-OpsKom(C)

∨ ◦ Ω(O) if O ∈ Fodd-OpsKom(C)

Proposition 5.1 ([KW17, Lemma 7.4.2]). The bar and cobar construction
form an adjunction.

Ω: Fodd-OpsKom(Cop) � F-OpsKom(C) :B

The quadratic relations in the graph examples are a feature that can be gener-
alized to the notion of cubical Feynman categories. The name reflects the fact that
in the graph example the n! ways to decompose a morphism whose ghost graph is
connected and has n edges into simple edge contractions correspond to the edge
paths of In going from (0, . . . , 0) to (1, . . . , 1). Each edge flip in the path represent
one of the quadratic relations and furthermore the Sn action on the coordinates is
transitive on the paths, with transposition acting as edge flips. We will not give the
full detailed definition, but note that G is cubical and refer to [KW17, Definition
7.2.1] for the technical details.

This is a convenient generality in which to proceed.

Theorem 5.2 ([KW17, Theorem 7.4.3]). Let F be a cubical Feynman category
and O ∈ F-OpsKom(C). Then the co–unit ΩB(O) → O of the above adjunction is a
levelwise quasi-isomorphism.

Remark 5.3. In the case of C = dgV ect, the Feynman transform can be inter-
twined with the aforementioned push-forward and pull-back operations to produce
new operations on the categories F − OpsC. A lifting (up to homotopy) of these
new operations to C = V ect is given in [War16]. In particular this result shows
how the Feynman transform of a push-forward (resp. pull-back) may be calculated
as the push-forward (resp. pull-back) of a Feynman Transform. One could thus
assert that the study of the Feynman transform belongs to the realm of Feynman
categories as a whole and not just to the representations of a particular Feynman
category.

Licensed to Max-Planck Institut fur Mathematik.  Prepared on Mon Jul 18 04:37:40 EDT 2022for download from IP 192.68.254.4.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms



FCS AND REP. THEORY 57

5.3. Master equations. In [KWZ12], we identified the common background
of master equations that had appeared throughout the literature for operad–like
objects and extended them to all graphs examples. An even more extensive theorem
for Feynman categories can also be given.

The Feynman transform is quasi–free. An algebra over FO is dg–if and only if
it satisfies the relevant Master Equation. First, we have the tabular theorem from
[KWZ12] for the usual suspects.

Theorem 5.4. ([Bar07],[MV09],[MMS09],[KWZ12]) Let O ∈ F-OpsC and
P ∈ Fodd-OpsC for an F represented in Table 5. Then there is a bijective corre-
spondence:

Hom(FT(P),O) ∼= ME(lim
V
(P ⊗O))

Here ME is the set of solutions of the appropriate master equation set up in
each instance.

Name of F-OpsC Algebraic Structure of FO Master Equation (ME)

operad,[GJ94] odd pre-Lie d(−) +− ◦ − = 0
cyclic operad
[GK95]

odd Lie d(−) + 1
2 [−,−] = 0

modular operad
[GK98]

odd Lie + Δ d(−) + 1
2 [−,−] + Δ(−) = 0

properad
[Val07]

odd pre-Lie d(−) +− ◦ − = 0

wheeled prop-
erad [MMS09]

odd pre-Lie + Δ d(−) +− ◦ −+Δ(−) = 0

wheeled prop
[KWZ12]

dgBV d(−) + 1
2 [−,−] + Δ(−) = 0

Table 5. Collection of Master Equations for operad–type examples

With Feynman categories this tabular theorem can be compactly written and
generalized. The first step is the realization that the differential specifies a natural
operation, in the above sense, for each arity n. Furthermore, in the Master Equation
there is one term form each generator of Φ1 up to isomorphism.

The natural operation which lives on a space associated to an Q ∈ F-Ops is
denoted ΨQ,n and is formally defined as follows:

Definition 5.5. [KW17, §7.5] For a Feynman category F admitting the Feyn-
man transform and for Q ∈ F-OpsC we define the formal master equation of F with
respect to Q to be the completed co–chain ΨQ :=

∏
ΨQ,n. If there is an N such

that ΨQ,n = 0 for n > N , then we define the master equation of F with respect to
Q to be the finite sum:

dQ +
∑
n

ΨQ,n = 0

We say α ∈ limV(Q) is a solution to the master equation if dQ(α)+
∑

n ΨQ,n(α
⊗n) =

0, and we denote the set of such solutions as ME(limV(Q)).

Here the first term is the internal differential and the term for n = 1 is the
differential corresponding to dΦ1 , where Φ1 is the subset of odd generators.
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Theorem 5.6 ([KW17, Theorem 5.7.3]). Let O ∈ F-OpsC and P ∈ Fodd-OpsC
for an F admitting a Feynman transform and master equation. Then there is a
bijective correspondence:

Hom(FT(P),O) ∼= ME(lim
V
(P ⊗O))

6. W-construction and cubical structures

6.1. Setup. In this section we start with a cubical Feynman category F.
6.1.1. The category w(F, Y ), for Y ∈ F . Objects: The objects are the set∐

n Cn(X,Y )× [0, 1]n, where Cn(X,Y ) are chains of morphisms from X to Y with
n degree ≥ 1 maps modulo contraction of isomorphisms.

An object in w(F, Y ) will be represented (uniquely up to contraction of isomor-
phisms) by a diagram

X
t1−→
f1

X1
t2−→
f2

X2 → · · · → Xn−1
tn−→
fn

Y

where each morphism is of positive degree and where t1, . . . , tn represents a point
in [0, 1]n. These numbers will be called weights. Note that in this labeling scheme
isomorphisms are always unweighted.

Morphisms:

(1) Levelwise commuting isomorphisms which fix Y , i.e.:

X ��

∼=
��

X1

∼=
��

�� X2

∼=
��

�� . . . �� Xn

∼=
��

�� Y

X ′ �� X ′
1

�� X ′
2

�� . . . �� X ′
n

����������

(2) Simultaneous Sn action.

(3) Truncation of 0 weights: morphisms of the form (X1
0→ X2 → · · · →

Y ) �→ (X2 → · · · → Y ).

(4) Decomposition of identical weights: morphisms of the form (· · · → Xi
t→

Xi+2 → . . . ) �→ (· · · → Xi
t→ Xi+1

t→ Xi+2 → . . . ) for each (compo-
sition preserving) decomposition of a morphism of degree ≥ 2 into two
morphisms each of degree ≥ 1.

Definition 6.1. Let P ∈ F-OpsTop . For Y ∈ ob(F) we define

W (P)(Y ) := colimw(F,Y ) P ◦ s(−)

Theorem 6.2 ([KW17, Theorem 8.6.9]). Let F be a simple Feynman category
and let P ∈ F-OpsTop be ρ-co–fibrant. Then W (P) is a co–fibrant replacement for
P with respect to the above model structure on F-OpsTop.

Here “simple” is a technical condition satisfied by all graph examples.

6.2. W-construction yields Associahedra. To see that this indeed yields
the usual W-construction, we turn to the well known case of associahedra and its
cubical decomposition, see [BV73,MSS02]. The relevant Feynman category is the
Feynman sub–category of O were the vertices are restricted to be at most trivalent
rooted planar corollas. This is a sub-Feynman category of Opl = Odec Ass

Let ∗n+
be the corolla whose flags are {0, . . . , n} where 0 is the root with the

natural linear order on the set of flags as an object of Opl.
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Proposition 6.3. Let T be the trivial operad to Set. WT (∗n+
) = Kn

Proof. A basic morphism is given by an edge contraction. Any morphism can
be decomposed into edge contractions φ = φe1 ◦ · · · ◦ φen which up to isomorphism
can be taken to be pure. That means that we get a cube of dimension n for each
class of morphism of degree n. Such a class is uniquely determined by its ghost
tree Γ(φ), which is a planted planar tree. The maximal degree of a morphisms
with the given target ∗n+

has a source given by n− 1 trivalent corollas. Any other
morphism is obtained by shortening a maximal chain, which correspond to the
boundaries wt(e) → 0 by definition.

The compositions two or more morphisms of degree 1 which are identified in
the relations of w with diagonals, not noted In the pictures. �

Remark 6.4. The first two cases are given by Figure 4, which is taken from
[KS10]. Note that the outer boundary are the pieces, where wt(e) → 1 and the
inner boundaries are the ones where wt(e) → 0, which results in the shortening of
the chain of morphisms and hence the contraction of the edge whose weight goes
to 0.

v

v v
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1

1

v v

1

v

1
v

v
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1
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Figure 4. The cubical decomposition for K3 and K4, v indicated
a variable height.

The Ops structure is the usual operad structure found by Stasheff [Sta63].
Namely, if 0◦i : ∗n+ �∗m+

→ ∗(m+n−1)+ then WT (φei) glues the two flags 0 and i
of any two points in WT (∗n+

) and WT (∗m+
) and marks the new edge by 1, that

is we obtain the face of Kn+m which is Kn ◦i Km = Kn ×Km

Remark 6.5. It is intriguing that this cubical decomposition also turns up in
the stability conditions for An quivers, which was pointed out to us by K. Igusa.
It is furthermore worth pointing out that the central charge function results in
particular in an embedding of K4 into C. Such embeddings were sought after since
[Sta63], cf. e.g. [MSS02] for various truncations and constructions.

7. Outlook

7.1. W-construction and moduli spaces. Using the language set up in Ap-
pendix A.5.2, especially (A.4), in collaboration with C. Berger we prove [BK20a]:
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Theorem 7.1 ([BK20a]). (1) The derived push–forward
k′!WT (∗g,s,S1,...,Sb

) is homotopy equivalent to Mg,s,S1,...Sb
.

(2) The derived push–forward k!WOcA(∗g,S) = �b,s,S=S1�···�Sb
is homotopy

equivalent to Mg,s,S1,...Sb
.

(3) The derived push–forward j!WT is the cubical complex appearing in the
Cutkosky rules in [BK15,Kre16] and Outer Space in [BSV18].

This generalizes and puts the results of Igusa [CV86, Igu02] into this simple
Feynman context. It also makes some of the constructions of Costello [Cos07a,
Cos07b] more transparent and rigorous. The last statement is actually brand new
and gives a framework for the cubical categories that have appeared in physics and
topology.

Theorem 7.2 ([BK20a]). W (T )(∗g,s,S1,...,Sb
) is the cone over the combinato-

rial aka. Penner–Kontsevich compactification M
KP

g,s,S1,...,Sb
.

7.2. Further connections to representation theory. Generalizations of
some of the work presented here is already in the works. The plus construction shall
be generalized for arbitrary monoidal categories in [KM20]. The new Feynman
category FinSet< can be generalized to fibers with cyclic orders. This should be
related via the plus construction yield the Feynman category for cyclic operads. It
is conceivable that if one bases everything on categories with a duality there is a
plus construction which yields graphs.

A further point of study will be the connections to cluster algebras. Here
there are already several strands especially in the form [KKGJ15]. The first is
the appearance of the cubical decomposition of the Associahedra introduced above.
Here the cubical cells are related to wall crossings. We expect a similar story for
other polytopes. Especially for cyclohedra, which appear in the context of the
little discs operad in the form of the cactus operad and Deligne’s conjecture for
A∞ algebras. These polytopes are at the vertices of the diagrams of [KKGJ15,
Example 4.0.2] and the cyclic versions in the Feynman theory are possibly related
to [IT15, IT19], the appearance of cacti being a common theme.

Cluster transformations and cluster varieties yield a method to glue these local
complexes together to global data. This is parallel to the results for moduli spaces
or Cutkosky rules where the cubical complexes have face transitions according to
shrinking edges of different graphs. The prerogative is to weave these strands
together. In this realm, we also expect to encounter 2–Segal spaces of [DK15,
DK18] which basically categorify the pentagon relation, which also appears in
mathematical physics and number theory as the identity for quantum di–logarithms.

The enrichment of quivers §4.3.4 via [KKW15] provides a new link to muta-
tions and is possibly related to [HS18].

Another intriguing aspect is given by moduli spaces and arcs, which also nat-
urally appear in Feynman categories [KW17,BK20b] , operadic theory [KLP03]
as well as in the theory of cluster algebras, see [GS19,HKK17].

Appendix A. Graph glossary and graphical Feynman categories

A.1. The category of graphs. Interesting examples of Feynman categories
used in operad–like theories are indexed over a Feynman category built from graphs.
It is important to note that although we will first introduce a category of graphs
Graphs , the relevant Feynman category is given by a full subcategory Agg whose
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objects are disjoint unions or aggregates of corollas. The corollas themselves play
the role of V .

Before giving more examples in terms of graphs it will be useful to recall some
terminology. A very useful presentation is given in [BM08] which we follow here.

A.1.1. Abstract graphs. An abstract graph Γ is a quadruple (VΓ, FΓ, iΓ, ∂Γ) of
a finite set of vertices VΓ, a finite set of half edges or flags FΓ, an involution on flags
iΓ : FΓ → FΓ; i

2
Γ = id and a map ∂Γ : FΓ → VΓ. We will omit the subscript Γ if no

confusion arises.
Since the map i is an involution, it has orbits of order one or two. We will call

the flags in an orbit of order one tails and denote the set of tails by TΓ. The flags in
an orbit of order two will be called internal flags and this set of tails will be denoted
by F int

Γ . Thus FΓ = Tg �F int
Γ We will call an orbit of order two an edge and denote

the set of edges by EΓ. The flags of an edge are its elements. The function ∂ gives
the vertex a flag is incident to. It is clear that the set of vertices and edges form
a 1-dimensional CW complex. The realization of a graph is the realization of this
CW complex.

A graph is (simply) connected if and only if its realization is. Notice that the
graphs do not need to be connected. Lone vertices, that is, vertices with no incident
flags, are also possible.

We also allow the empty graph 1∅, that is, the unique graph with V = ∅. It
will serve as the monoidal unit.

Example A.1. A graph with one vertex and no edges is called a corolla. Such
a graph only has tails. For any set S the corolla ∗p,S is the unique graph with
V = {p} a singleton and F = S.

We fix the short hand notation ∗S for the corolla with V = {∗} and F = S.

Given a vertex v of a graph, we set Fv = ∂−1(v) and call it the flags incident
to v. This set naturally gives rise to a corolla. The tails at v is the subset of tails
of Fv.

As remarked above, Fv defines a corolla ∗v = ∗{v},Fv
.

Remark A.2. The way things are set up, we are talking about (finite) sets, so
changing the sets even by bijection changes the graphs.

Remark A.3. As the graphs do not need to be connected, given two graphs Γ
and Γ′ we can form their disjoint union:

Γ � Γ′ = (FΓ � FΓ′ , VΓ � VΓ′ , iΓ � iΓ′ , ∂Γ � ∂Γ′)

One actually needs to be a bit careful about how disjoint unions are defined. Al-
though one tends to think that the disjoint union X � Y is strictly symmetric, this
is not the case. This becomes apparent if X ∩Y �= ∅. Of course there is a bijection

X �Y
1−1←→ Y �X. Thus the categories here are symmetric monoidal, but not strict

symmetric monoidal. This is important, since we consider functors into other not
necessarily strict monoidal categories.

Using MacLane’s theorem it is however possible to make a technical construc-
tion that makes the monoidal structure (on both sides) into a strict symmetric
monoidal structure

Example A.4. An aggregate of corollas or aggregate for short is a finite disjoint
union of corollas, that is, a graph with no edges.
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Notice that if one looks at X =
⊔

v∈I ∗Sv
for some finite index set I and some

finite sets of flags Sv, then the set of flags is automatically the disjoint union of the
sets Sv. We will just say just say s ∈ FX if s is in some Sv.

A.1.2. Grafting of graphs into vertices. Fix a graph Γ = (V, F, ∂, i), a collection
of graphs Γv = (F (v), V (v), ∂(v), i(v)) indexed by v ∈ V and a set of bijections
βv : Fv → TΓv

that is a bijection of the flags at v with the tails of Γv. Set
β = �v∈V βv.

We define the graph �v∈V Γv ◦β Γ to be the graph obtained from grafting Γv

into the vertex v. As a graph the vertices, flags and boundary are those of �v∈V Γv,
that is �v∈V V (v) the flags are �v∈V F (v) with the boundary map �v∈V ∂(v). But,
the involution given by �v∈V i(v) on the internal edges of �vΓv is continued to the
tails �v∈V TΓv

by β ◦ i ◦ β−1. This equivalent to the statement that the edges of
the graph �v∈V Γv ◦β Γ are the set �v∈V EΓv

� β(EΓ).
A.1.3. Category structure: Morphisms of graphs.

Definition A.5. [BM08,KW17] Given two graphs Γ and Γ′, consider a triple
(φF , φV , iφ) where

(i) φF : FΓ′ ↪→ FΓ is an injection,
(ii) φV : VΓ � VΓ′ and iφ is a surjection and
(iii) iφ is a fixed point free involution on the tails of Γ not in the image of φF .

One calls the edges and flags that are not in the image of φ the contracted
edges and flags. The orbits of iφ are called ghost edges and denoted by Eghost(φ).
The ghost edges are uniquely determined by and uniquely determine iφ.

Such a triple is a morphism of graphs φ : Γ → Γ′ if

(1) The involutions are compatible:
(a) An edge of Γ is either a subset of the image of φF or not contained

in it.
(b) If an edge is in the image of φF then its pre–image is also an edge.

(2) φF and φV are compatible with the maps ∂:
(a) Compatibility with ∂ on the image of φF :

If f = φF (f ′) then φV (∂f) = ∂f ′

(b) Compatibility with ∂ on the complement of the image of φF :
The two vertices of a ghost edge in Γ map to the same vertex in Γ′

under φV .

If the image of an edge under φF is not an edge, we say that φ grafts the two
flags.

The composition φ′ ◦ φ : Γ → Γ′′ of two morphisms φ : Γ → Γ′ and φ′ : Γ′ → Γ′′

is defined to be (φF ◦ φ′F , φ′
V ◦ φV , iφ′◦φ) where iφ′◦φ is defined by its orbits viz.

the ghost edges. This means that Eghost(φ ◦ φ′) = Eghost(φ)� φF (Eghost)(φ
′).

More explicitly, let Fφ = F ′ \φF (F ′), F ′
φ′ = F ′ \φ′F (F ′′) and Fφ′◦φ = F \φF ◦

φ′F (F ′′), then Fφ′◦φ = Fφ � φF (F ′
φ′) and

(A.1) iφ′◦φ = iφ � φF ◦ iφ′ ◦ φF−1 : Fφ′◦φ → Fφ′◦φ

The following definition from [KW17] is essential.

Definition A.6. The underlying ghost graph of a morphism of graphs φ : Γ →
Γ′ is the graph Γ(φ) = (VΓ, FΓ, ı̂φ) where ı̂φ is iφ on the complement of φF (Γ′) and
identity on the image of flags of Γ′ under φF . Or, alternatively, the edges of Γ(φ)
are the ghost edges of φ that is Eghost(φ).
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Lemma A.7. Using the usual notation, the following hold for the ghost graphs:

(1) Let φ : Γ → Γ′ then Γ(φ) = �v′∈V ′Γv′ and φF |F ′
v′ : F ′

v′ → TΓv′ is a

bijection.
(2) Γ(φ� ψ) = Γ(φ) � Γ(ψ).

(3) For a composition of morphisms Γ
φ→ Γ′ φ→ Γ′′: Γ(φ′)◦β φ = Γ(φ)◦φF Γ(φ)

Proof. For the first statement, we define Γ(v′)(φ) as follows: The vertices are
φ−1
V (v′), the flags are �v∈φ−1

V (v′)Fv. The morphisms ∂v and iv are the restriction of

∂Γ and îφ, which are well defined. For ∂v this is guaranteed by condition (2) and for
iv we have to check that if a flag is in Fφ−1

V
(v′) then so is iφ(f) which is guaranteed

by condition (2) (b). Now φF is a bijection onto its image, which are precisely the
tails of the ghost graph. This restricts to the Γv. The second statement follows
from the first. The last statement is clear for the vertices and the flags. We have to
check that the involution coincide. These are determined by the ghost edges. The
ghost edges of the composition are the disjoint union of the ghost edges of φ and
the image of those of φ′ which is guaranteed by (A.1). �

Definition A.8. We let Graphs be the category whose objects are abstract
graphs and whose morphisms are the morphisms described in Definition A.5. We
consider it to be a monoidal category with monoidal product � (see Remark A.3).

A.2. The Feynman category G. Let Agg be the full subcategory of Graphs
whose objects are aggregates of corollas. Let Crl be the sub–groupoid of Agg whose
objects are corollas and whose morphisms are the isomorphisms between them and
denote the inclusion by ı.

Lemma A.9. Given a morphism φ : X → Y where X =
⊔

w∈VX
∗w and Y =⊔

v∈VY
∗v are two aggregates, we can decompose φ =

⊔
φv with φv : Xv → ∗v where

Xv is the sub–aggregate
⊔

φV (w)=v ∗w, and
⊔

v Xv = X.

Furthermore, Γ(φ) = �v∈V Γ(φv) and φ′F
v : Fv → TΓ(φv) is a bijection.

Proof. Explicitly (φv)V is the restriction of φV to VXv
and φF

v is the restric-
tion of φF to (φF )−1(FXv

∩ φF (FY )). This map is still injective. Finally iφv
is

the restriction of iφ to FXv
\ φF (FY ). These restrictions are possible due to the

condition (2) above. The penultimate statement follows from Lemma A.7. The
tails of the ghost graph are precisely the elements in the image of φF . �

Proposition A.10. The triple G = (Crl ,Agg , ı) is a strictly strict Feynman
category.

Proof. The proof follows from the Lemma above. Condition (i) is clear on
the object level. By the lemma an isomorphism factors as a disjoint union of
isomorphisms. It also shows that condition (ii) holds. Note that this condition
implies that decompositions are unique up to unique isomorphism. Indeed any
decomposition will be given by a permutation of the decomposition above and
isomorphisms of the vertices this will uniquely determine the diagram. Finally,
(iii), follows from the category of finite sets is essentially small. Strictness is clear
from the definition. �
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A tree is a connected, simply connected graph.
A directed graph Γ is a graph together with a map FΓ → {in, out}

such that the two flags of each edge are mapped
to different values.

A rooted tree is a directed tree such that each vertex has exactly
one “out” flag.

A ribbon or fat graph is a graph together with a cyclic order on each of
the sets Fv.

A planar graph is a ribbon graph that can be embedded into the
plane such that the induced cyclic orders of the
sets Fv from the orientation of the plane
coincide with the chosen cyclic orders.

A planted planar tree is a rooted planar tree
An oriented graph is a graph with an orientation on the set of its edges.
An ordered graph is a graph with an order on the set of its edges.
A γ labelled graph is a graph together with a map γ : VΓ → N0.
A b/w graph is a graph Γ with a map VΓ → {black, white}.
A bipartite graph is a b/w graph whose edges connect only

black to white vertices.
A c colored graph for a set c is a graph Γ together with a map FΓ → c

s.t. each edge has flags of the same color.
A connected 1–PI graph is a connected graph that stays connected,

when one severs any edge.
A 1–PI graph is a graph whose every component is 1–PI.

Table 6. Graph Dictionary

A.3. Extra structures.
A.3.1. Dictionary. This section is intended as a reference section. Recall that

an order of a finite set S is a bijection S → {1, . . . , |S|}. Thus the group S|S| =
Aut{1 , . . . ,n} acts on all orders. An orientation of a finite set S is an equivalence
class of orders, where two orders are equivalent if they are obtained from each other
by an even permutation. With this Table 6 provides a dictionary for standard graph
terminology.

A.3.2. Remarks and language.

(1) In a directed graph one speaks about the “in” and the “out” edges, flags
or tails at a vertex. For the edges this means the one flag of the edges is
an “in” flag at the vertex. In pictorial versions the direction is indicated
by an arrow. A flag is an “in” flag if the arrow points to the vertex.

(2) As usual there are edge paths on a graph and the natural notion of an
oriented edge path. An edge path is a (oriented) cycle if it starts and
stops at the same vertex and all the edges are pairwise distinct. It is
called simple if each vertex on the cycle has exactly one incoming flag and
one outgoing flag belonging to the cycle. An oriented simple cycle will
be called a wheel. An edge whose two vertices coincide is called a (small)
loop.
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(3) There is a notion of the genus of a ribbon graph, which is the minimal
dimension of the surface it can be embedded on. A ribbon graph is planar
if this genus is 0.

(4) For any graph, its Euler characteristic is given by

χ(Γ) = b0(Γ)− b1(Γ) = |VΓ| − |EΓ|;
where b0, b1 are the Betti numbers of the (realization of) Γ. Given a γ
labelled graph, we define the total γ as

(A.2) γ(Γ) = 1− χ(Γ) +
∑

v vertex of Γ

γ(v)

If Γ is connected, that is b0(Γ) = 1 then a γ labeled graph is tradi-
tionally called a genus labeled graph and

(A.3) γ(Γ) =
∑
v∈VΓ

γ(v) + b1(Γ)

is called the genus of Γ. This is actually not the genus of the underlying
graph, but the genus of a connected Riemann surface with possible double
points whose dual graph is the genus labelled graph.

A genus labelled graph is called stable if each vertex with genus label-
ing 0 has at least 3 flags and each vertex with genus label 1 has at leas
one edge.

(5) A planted planar tree induces a linear order on all sets Fv, by declaring
the first flag to be the unique outgoing one. Moreover, there is a natural
order on the edges, vertices and flags given by its planar embedding.

(6) A rooted tree is usually taken to be a tree with a marked vertex. Note
that necessarily a rooted tree as described above has exactly one “out”
tail. The unique vertex whose “out” flag is not a part of an edge is the
root vertex. The usual picture is obtained by deleting this unique “out”
tail.

A.3.3. Category of directed/ordered/oriented graphs.

(1) Define the category of directed graphs Graphsdir to be the category whose
objects are directed graphs. Morphisms are morphisms φ of the underlying
graphs, which additionally satisfy that φF preserves orientation of the flags
and the iφ also only has orbits consisting of one “in” and one “out” flag,
that is the ghost graph is also directed.

(2) The category of edge ordered graphs Graphsor has as objects graphs with
an order on the edges. A morphism is a morphism together with an order
ord on all of the edges of the ghost graph.

The composition of orders on the ghost edges is as follows. (φ, ord) ◦⊔
v∈V (φv, ordv) := (φ ◦

⊔
v∈V φv, ord ◦

⊔
v∈V ordv) where the order on the

set of all ghost edges, that is Eghost(φ) �
⊔

v Eghost(φv), is given by first
enumerating the elements of Eghost(φv) in the order ordv where the order
of the sets E(φv) is given by the order on V , i.e. given by the explicit
ordering of the tensor product in Y =

⊔
v ∗v.6 and then enumerating the

edges of Eghost(φ) in their order ord.

6Now we are working with ordered tensor products. Alternatively one can just index the
outer order by the set V by using [Del90]
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(3) The oriented version Graphsor is then obtained by passing from orders to
equivalence classes.

A.3.4. Category of planar aggregates and tree morphisms. Although it is hard
to write down a consistent theory of planar graphs with planar morphisms, if not
impossible, there does exist a planar version of special subcategory of Graphs .

We let Crlpl have as objects planar corollas — which simply means that there
is a cyclic order on the flags — and as morphisms isomorphisms of these, that is
isomorphisms of graphs, which preserve the cyclic order. The automorphisms of a
corolla ∗S are then isomorphic to C|S|, the cyclic group of order |S|. Let Cpl be the
full subcategory of aggregates of planar corollas whose morphisms are morphisms
of the underlying corollas, for which the ghost graphs in their planar structure
induced by the source is compatible with the planar structure on the target via φF .
For this we use the fact that the tails of a planar tree have a cyclic order.

Let Crlpl,dir be directed planar corollas with one output and let Opl be the
subcategory of Aggpl,dir of aggregates of corollas of the type just mentioned, whose
morphisms are morphisms of the underlying directed corollas such that their asso-
ciated ghost graphs are compatible with the planar structures as above.

In general, one needs to use so–called almost ribbon graphs, see e.g. [KL16] or
[Kau09, Appendix A1], and in §A.5.2.

A.4. Insertion. Given graphs, Γ,Γ′, a vertex v ∈ VΓ and an isomorphism φ:
Fv �→ TΓ′ we define Γ ◦v Γ′ to be the graph obtained by deleting v and identifying
the flags of v with the tails of Γ′ via φ. Notice that if Γ and Γ′ are ghost graphs of
a morphism then it is just the composition of ghost graphs, with the morphisms at
the other vertices being the identity.

A.5. Operad-types and their graphical Feynman categories. There is
a substantial list of examples that are generated by decorating the graphs of G
and restricting to certain subcategories, see Table 7. The decorations are actually
decorations in the technical sense of §3.2. Examples of the needed decorations are
listed in Table 8.

A.5.1. Flag labeling, colors, direction and roots as a decoration. Recall that
∗S is the one vertex graph with flags labelled by S and these are the objects of
V = Crl for G. For any set X introduce the following G-Op: X(∗S) = XS. The
compositions are simply given by restricting to the target flags.

Now let the set X have an involution¯: X → X. Then a natural subcategory
Fdir
dec X of Gdec X is given by the wide subcategory, whose morphisms additionally

satisfy that only flags marked by elements x and x̄ are glued and then contracted;
viz ıφ only pairs flags of marked x with edges marked by x̄. That is the underlying
ghost graph has edges whose two flags are labelled accordingly. In the notation of
graphs: X(f) = ıφ(f).

If X is pointed by x0, there is the subcategory of Gdec X whose objects are those
generated by ∗S with exactly one flag labelled by x0 and where the restriction on
graphs is that for the underlying graph additionally, each edge has one flag labelled
by x0.

Now if X = Z/2Z = {0, 1} with the involution 0̄ = 1, we can call 0 “out”
and 1 “in”. As a result, we obtain the category of directed graphs Gdec Z/2Z .
Furthermore, if 0 is the distinguished element, we get the rooted version. This
explains the relevant examples Table 8. More generally, in quantum field theory

Licensed to Max-Planck Institut fur Mathematik.  Prepared on Mon Jul 18 04:37:40 EDT 2022for download from IP 192.68.254.4.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms



FCS AND REP. THEORY 67

F Feynman category for condition on ghost graphs Γv for basic
morphisms and additional decoration

O (pseudo)–operads rooted trees
O¬Σ non-Sigma operads planar rooted trees
Omult operads with mult. b/w rooted trees.
C cyclic operads trees
C¬Σ non–Sigma cyclic operads planar trees
G unmarked nc modular operads graphs
Gctd unmarked modular operads connected graphs
M modular operads connected + genus marking
Mnc nc modular operads genus marking
D dioperads connected directed graphs w/o directed

loops or parallel edges
P PROPs directed graphs w/o directed loops
Pctd properads connected directed graphs

w/o directed loops
D� wheeled dioperads directed graphs w/o parallel edges
P�,ctd wheeled properads connected directed graphs
P� wheeled props directed graphs
F1 -PI 1–PI algebras 1–PI connected graphs.

Table 7. List of Feynman categories with conditions and deco-
rations on the graphs, yielding the zoo of examples

the involution sends a field to its anti–field and this is what decorates the lines or
propagators in a Feynman graph.

Finally, if the involution is trivial, then we obtain the colored version, where
ghost edges have flags of the same color.

A.5.2. Other decorating operads and connecting the bootstraps. The other dec-
oration operads are

(1) N ∈ Gctd -OpsSet given by N(∗S) = N with the composition given by
addition for edge contractions and n �→ n+ 1 for loop contractions.

(2) Assoc ∈ O-OpsSet , as defined in Lemma 3.37. Assoc(∗S ) = {orders on the
set S}

(3) CycAssoc ∈ C-OpsSet : CycAssoc(∗S ) = {cyclic orders on the set S} here
composition is given by splicing in the cyclic order, see e.g. [Kau04].

Using these decorations, we have a diagram of Feynman categories.

Theorem A.11. The following equalities can serve as a natural definition of
the right hand side or as a theorem identifying the right hand side as a decorated
Feynman category

(1) Odec Assoc = opereads¬Σ.
(2) The morphism i : O → C, given by forgetting the root, is an indexing, but

neither connected nor a cover.
(3) i∗(CycAssoc) = Assoc.
(4) Gctd

dec j!(T ) = M. By general theory j factors as j = forget◦k with k : C → M,

where k is the connected morphism defined by assigning the marking g = 0
to a corolla.
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FdecO Feynman category for decorating O restriction
Fdir directed version (Z/2Z, 0̄ = 1)
Frooted root (Z/2Z, 0̄ = 1) vertices have one

output flag.
Fgenus genus marked N

FC -col colored version (C, c̄ = c)
O¬Σ non-Sigma-operads Assoc
C¬Σ non-Sigma-cyclic operads CycAssoc
M¬Σ non–Signa-modular ModAssoc
Table 8. List of decorated Feynman categories with decorating
O and possible restriction. F stands for an example based on G in
the list or more generally indexed over G (see [KW17]).

(5) CdecOCycAssoc
= C¬Σ, the Feynman category whose Ops are non–sigma

cyclic operads.
(6) Mdec k!(OCycAssoc) = M¬Σ, the Feynman category whose Ops are non–sigma

modular operads as defined in [Mar16,KL16]. Here, k!(CycAssoc) is the
modular envelope of CycAssoc.

These fit into the diagram (A.4), where the upper squares are the one of the type
(3.6) and the triangle is also such a square by using the identification FdecT = F.

(A.4) O¬Σ i
′

��

p(Assoc)

��

C¬Σ k
′

��

p(CycAssoc)

��

M¬Σ

p(k!(CycAssoc))

��
O

i

�� C
k

��

j ����
���

���
���

��� M

p(j!(T ))
��

Gctd

Details: By calculating the push–forwards, one obtains that the basic objects
of Fmod are of genus marked corollas ∗g,S with g ∈ N0, while the basic objects
of F¬Σmod are marked corollas ∗g,s,S1,...,Sb

, where s, g ∈ N0 and S1, . . . , Sb are
non–empty sets which each have a cyclic order.

As a geometric mnemonic ∗g,s,S1,...,Sb
represents an oriented topological surface

of genus g with s internal punctures, b boundaries and marked points Si on the
boundary i.

These facts are now just a neat calculation using a Kan extension, with the
only inputs being j and cAss. This is another example of a radical reduction of
complicated concepts to more basic structures.

Appendix B. Graph description of F+, F+gcp and Fhyp

In this section, we will give a graphical version for F+,F+gcp and Fhyp . This is a
variation of the category for operads. There is a discrete version, see [KM20], which
uses the fact that for a strictly strict F, Obj (F ↓ V) are a Obj (V) colored operad and
hence there is a decoration of the Feynman category for Obj (V )–colored operads.
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FCS AND REP. THEORY 69

To obtain the correct behaviour for the isomorphism, we have to consider the “V–
colored operad Iso(F ↓ V)” and regard the corresponding decorated Feynman
category. This is what is captured below.

B.1. Combinatorial graph based description of F+ in the strictified
case. In this section, we consider F to be strictly strict, that is Iso(F) = V⊗ where
the latter is the strict free symmetric monoidal category.

B.1.1. Planar planted corollas. Recall that a corolla is a graph with one vertex
and no edges. In the in the notation of [BM08,KW17], see Appendix A, a corolla
with vertex v and set of flags S is given by vS = ({v}, S, ∂ : S → {v}, id). It is
planted planar, if S has a linear order. We say the smallest element is the root flag,
and denote is by s0. This gives S a natural structure of pointed set (S, s0) and we
denote the planar planted corolla by (vS , s0, <). The order is equivalent to a map
lab : S ↔ {0, , . . . , , n} with lab(s0) = 0 or in other words a bijection of pointed
sets.

B.1.2. The groupoid CrlF+ . An V–colored (F ↓ V) decorated corolla is a morally
rooted corolla whose lone vertex is φ ∈ Obj (F ↓ V) and whose leaves s(φ) =
∗1⊗· · ·⊗∗n and whose root is t(φ), where s, t are the source and target maps. This
is the view taken in [KW17].

To use graphical notation as introduced above with all the bells and whistles,
consider (vS , s0, <, cF , decV ), that is a planar planted corolla together with a map
cF that decorates the flags by objects of V : cF : S → Obj (V), and a decoration
of the vertex decV : {v} → Obj (ı⊗ ↓ ı) which is a compatible decoration of the
lone vertex by a morphisms that is a choice dec (v) = φv ∈ Obj (F ↓ V), such that
φv : cF (lab

−1(1))⊗· · ·⊗cF (lab
−1(n)) → cF (lab

−1(0)). Two corollas are equivalent
if (vS , s0, <, cF , decV ) ∼ (vS , s0, <

′, cF , decV ) they provide the same s(φ).

(B.1) cF (lab
−1(1))⊗ · · · ⊗ cF (lab

−1(n)) = cF (lab
′−1(1))⊗ · · · ⊗ cF (lab

′−1(n))

An V–colored (F ↓ V) decorated corolla is an equivalence class of planar planted
decorated corollas. [(vS , s0, <, cF , decV )].

Each morphism φ : ∗1 ⊗ · · · ⊗ ∗n → ∗0 thus naturally determines an F–colored
corolla [(v, {0, 1,→ n}, 0, cF (n) = n, decV (v) = φ)], which will simply be denoted
by ∗φ. This carries over to the notation used in [KW17] using the formalism of
[Del90]: φ :

⊗
s∈S ∗s → ∗t.

Let CrlF+ , which is short for V-Crl(F↓V), be the groupoid whose objects are
V–colored (F ↓ V) decorated corollas.

The morphisms of the groupoid CrlF+ are isomorphisms of corollas compatible
with the decorations. That is a tuple (f,σ) where f a graph morphism vS →
v′S′ given by: the only possible map fV : {v} → {v′}, a bijection fF : S ↔
S′ and involution ıf = ∅ which means no ghost edges. Note that fF induces a

permutation: p = lab ◦ (fF ) ◦ lab′−1. Let ∗i = cF (lab
−1(i)), ∗′i = cF (lab

′−1(i)).

Then σ = (σ0, σ1, . . . , σn) is an ordered tuple of isomorphisms σi : ∗′i
∼→ ∗p(i).

Now let Cp : ∗1 ⊗ · · · ⊗ ∗n → ∗p(1) ⊗ · · · ⊗ ∗p(n) be the permutation commutativity
constraint.
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70 R. M. KAUFMANN

Figure 5. A decorated rooted forest. The σe ∈ ı are written next
to the internal edges, while the σt ∈ σ are written next to the tails.
These trees give the flow charts to the ψ′

i and the forest is a map
φ = φ1 ⊗ · · · ⊗ φn → ψ = ψ1 ⊗ · · · ⊗ψm where the ψj are given by
(B.3).

Compatibility means that φ′
v′ = σ0 ◦ φ ◦C−1

p ◦ (σ1 ⊗ · · · ⊗ σn), i.e. the following
diagram commutes.

(B.2) ∗1 ⊗ · · · ⊗ ∗n
Cp

∼
��

φv

��

∗p(1) ⊗ · · · ⊗ ∗p(n)
φv◦Cp−1

��

∗′1 ⊗ · · · ⊗ ∗′n
σ1⊗···⊗σn

∼




φv′

��
∗0 ∗0 ∼

σ0

�� ∗′0

It is straightforward to check that this is compatible with the equivalence relation
∼ and hence independent of representative.

Note that these are precisely the isomorphisms allowed in (F ↓ V).
B.1.3. The monoidal category AggF+ . Again, AggF+ is short for V-Agg(F↓V).

LetAggF+ be the category whose underlying objects areObj (AggF+) = Obj (Crl⊗
F+)

and whose morphisms are given by morphisms of decorated aggregates of corollas.
That is compatible tuples (g,σ, ı), where

(1) g is an morphism of the underlying rooted corollas g = (gV , g
F , ıg). This

means that Γ(g) is a rooted forest and every ghost edge has exactly one
rooted flag that it is naturally directed e = (f = r, ı(f)) with r in the set
of roots.

(2) If F ′ is the set of flags of the target, then σ = {σ′
f : f ′ ∈ F ′} is a collection

of isomorphisms σf ′ : c(f ′)
∼→ c(gF (f ′)) and

(3) ı = {σe}, e ∈ EΓ(g) is a collection of isomorphisms σe : c(f) → c(ı(f)) for
each edge directed as e = (f, ıg(f))

This again clearly compatible with ∼.
An example of such a decorated tree is given in Figure 5.
To explain the compatibility condition, let τ ⊂ Γ(g) be a connected component,

viz. a rooted tree. Each such tree corresponds to a vertex of wj the target via the

map gv, viz. all the vertices the tree are precisely the set f−1
V (wj) and thus the
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components are can be enumerated as τj . The short version of compatibility is that
using g and ı each decorated τj represents a flow chart yielding a morphism ψj and
up to an isomorphism determined by σ: ψ1 ⊗ · · · ⊗ ψm � ψ. To define the flow
chart, we first notice that since there is a root, each vertex has a height which is
the distance from the root. Next, we notice that picking a representative of the
vertices, the tree actually is planar as there is a linear order at each vertex. This
gives a linear order to all the leaves. We proceed by induction. To start, assume
that τj has only one vertex, the root vertex vi with gV (vi) = wj . Let n = ar(vi) be
the arity, i.e. the number of incoming flags, of vi, let the incoming flags be colored
by ∗i1 , . . . , ∗jn , the outgoing (root) flag be colored by ∗j0 and let φi be the color of
vj that is φi : ∗j1 ⊗ · · · ⊗ ∗in → ∗j0 . We set ψ′

j = φj .
We can now proceed by induction. Assume that we have defined a morphism

ψ′
j(τj) for every decorated tree τj of maximal height n. Let τj be a tree of maximal

height n+ 1. Consider the leaf vertices of τj . Since τj is planar, they are ordered.
There are two types of vertices. The first is at height n + 1 and the second is at
lower height. Let vi be such a leaf vertex then the incoming flags are colored by
∗i1 , . . . , ∗iar(vi)

if vi is not at maximal height we set ψ′
i = id∗i1

⊗ · · · ⊗ id∗iar(vi)

If vi is of maximal height and φi, the color of vi, maps ∗i1 ⊗· · ·⊗∗iar(vi)
to ∗i0 .

There is a (ghost) edge e(i0, jk) which connects vi to some vj . Then σe : ∗i0
∼→ ∗vk

and we set ψ′
i = σe ◦ φi. Let {vi} i = 1 . . . l be the set of leaf vertices. Let τ ′ be the

tree obtained from τ ′ by cutting the outgoing edges of the leaf vertices of maximal
height. Then we set ψ′(τ ) := (ψ′

1 ⊗ · · · ⊗ ψ′
l) ◦ ψ′(τ ′). This defines a morphism

ψ′(τj). The source of the morphism is given by the color of the leaf flags. Let
∗l1 , . . . , ∗lL be the color of the leaf flags and ∗j0 be the color of the root of τj then
ψ′(τj) : ∗l1 ⊗ · · · ⊗ ∗lL → ∗j0 .

The map gF then identifies the flags of the vertices wj with the tails, that is
the leaves and the root, of τj and the decoration gives further isomorphisms. The
decoration is compatible if using these isomorphisms ψ′(τj) is isomorphic to ψj , the
color of wj . More precisely, let fj1 , . . . , fjL be the incoming flags of wj and fj0
be the root flag let σk : cF (fjk) → cF (g

F (fjk)) be the isomorphisms provided by
σ. Just as before, gF induces a permutation p on the image and a corresponding
commutativity constraint Cp. Then the compatibility equation reads

(B.3) ψj = σ−1
0 ◦ ψ′

j ◦ C−1
P ◦ (σ1 ⊗ · · · ⊗ σL)

In terms of morphisms such a forest gives a morphism of vertex colors φ1⊗· · ·⊗φn →
ψ1 ⊗ · · · ⊗ ψm. This construction is compatible with ∼, and thus does not depend
on the choice of particular order < in an equivalence class.

The monoidal structure on morphisms is given by disjoint union of decorated
forests. Composition of morphisms is given by composition of the underlying graph
morphisms and decorations. The composition of the graph morphisms has the effect
of inserting trees τj into the vertices wj of the ghost forest of the second morphism

in a composition �vk
g→ �wj

h→ �ul. One tree per vertex, see [KW17], where the
incoming flags of wj are identified with the leaves of τj and the outgoing flag of
wj with the root of τj . The decoration of this “blown-up” tree is given as follows.
For σ this is simply the concatenation of isomorphisms. I.e. if hF (f) = f ′ and
gF (f ′) = f ′′ then the isomorphism is σf ′ ◦ σf ′′ : cF (f

′′) → cF (f). For ı, for the
edges of the τj , the isomorphisms remain. For the image of the edges that connect
the wj one again composes the isomorphisms. Let e′ = (r′, f ′) be a directed edge of
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72 R. M. KAUFMANN

Γ(h). And let gF (f ′) = f, gF (r′) = r then the edge e = (r, f) is an edge of Γ(h ◦ g)
and the isomorphism is given by σe = σf ◦ σe′ ◦ σr : c(r) → c(f).

It is straightforward to check that this is associative. Let ı be the natural
inclusion of CrlF+ → AggF+ .

Theorem B.1. The triple OF+ = (CrlF+ ,AggF+ , ı) is a Feynman category equiv-
alent to F+.

Proof. Condition (i) is clear on the object level by definition. For the iso-
morphisms, we notice that a morphism in AggF+ is an isomorphisms if only if the
forest only has trees of height zero, that is each tree is simply a corolla. In the
corolla case, the morphisms in AggF+ coincides with the morphism in CrlF+ and
hence Iso(AggF+) � Crl⊗

F+ .

For the condition (ii) we first notice that each morphism in Aggrt,<
F

is a tensor
product of morphisms whose underlying graph is a tree, and a these are precisely the
morphisms Obj (Aggrt,<

F
↓ Crl rt,<

F
). Thus the condition follows on the object level.

For the morphism level, it is clear that any other decomposition up to isomorphism
is given by permutation of the trees of the forest and an isomorphism of the ψ′(τ )j.

Condition (iii) holds, since it holds in F and the morphisms in the slice cate-
gories are the morphisms are given by decorated trees and the trees as well as the
decorations satisfy (iii), due to the said condition for O and for F.

Thus the triple OF+ is a Feynman category. It remains to prove that this
equivalent to F+. For this it is enough to assume that F is strict.

First, we show that V+ is equivalent to CrlF+ . The morphisms for V+ due to (ii)
for F are given two generators, permutations of the source factors and isomorphisms
of the source factors and the target. The former correspond to corollas whose
decoration σ is given by identities, but with non–trivial p. The latter correspond to
non–trivial isomorphisms in σ, but trivial p. These are also exactly the generators of
CrlF+ . The relations are simply from composition of permutations and isomorphisms
in both cases. Formally the functor is given by sending φ : ∗1 ⊗ · · · ⊗ ∗n → ∗0
to ∗φ7. An iso-morphism (σ ⇓ σ′) : φ → φ′ in V+ to (f,σ, σ′) where if σ =
σ1 ⊗ · · · ⊗ σn ◦ p, p ∈ Sn, f = (id, p−1 � id, i∅), with i∅ the empty morphism, and
σ = (σ1, . . . , σn).

To show the equivalence for AggF+ , we proceed in a similar manner. Having al-
ready matched the isomorphisms, we define the value of a functor on an elementary
morphism in F+ to be to the morphism f whose ghost tree is a two level tree whose
source is the aggregate corresponding to the φi, i = 0, . . . , n and whose target is
the decorated corolla corresponding to ψ = φ0 ◦ (φ1 ⊗ · · · ⊗ φn), where fV is fixed
by this data, fF is the inclusion and ı is given by connecting the roots of vertices
1,. . . , n to the flags of the vertex 0. The decorations σ and ı given by identities.
Furthermore the two monoidal structures also agree in that taking tensor products
in F+ corresponds to � in the AggF+ . We extend the definition to all maps of
F+ by functoriality. This is possible since the relations are preserved. Composing
isomorphisms composes the permutations and the isomorphisms of the sources and
targets on both sides. Composing elementary morphisms corresponds to gluing in
two–level trees into vertices. And composing isomorphisms with elementary mor-
phisms is also the same on both sides. Finally, we see that there is a functor going

7For the fastidious reader a canonical choice of the one element set {v}, would be {φ}, viz.
using φ as an atom. Similarly naturally the set of flags is simply the set {∗1, . . . , ∗n}.
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Figure 6. A tree with levels and the leveling of a tree. The
marking (u) indicates the presence of a unit.

backwards, which is the given by the induction process above. At each step, we
have a collapse of a the leaf vertices with those below them, which is a combination
of the image of an elementary morphism and an isomorphism. It is straightforward
to check that this allows to recover any morphism in F+ by showing that every
morphism of F+ is encoded in a unique decorated forest. Notice that the associa-
tivity of composition manifests itself in the fact that one can “collapse” all edges
in any order. Here collapse means that this is a concatenation with an elementary
morphism and isomorphisms leading to a blow–up of the collapsed vertex. �

B.1.4. Leveling. In the description of the flow chart, we secretly leveled up the
trees by introducing unit morphisms for the leaf vertices not of maximal height.
This can be formalized in the tree/forest picture by introducing a new type of bi-
valent non-decorated vertex. We will call this a black vertex. This allows one to
level–up the tree to a level tree, see Figure 6.The leveling-up replaces the flags of
the vertices that are not of maximal height by a string of black vertices to get a
level tree of the height of the original tree. This is what we used above to define
the flow chart. This is not a unique choice. There are many choices of inserting
black vertices, but these do not alter the result of the flow chart. Thus, one has to
introduce the equivalence relation that two trees with black and white vertices are
equivalent if they agree after deleting all black vertices. The original trees become
canonical representatives as does the leveled–up tree.

For the composition of flow charts, one composes the underlying trees via in-
sertion and then levels up again. It is in this sense that the morphisms of F+ are
level trees/forests [KW17, §3.6].

B.1.5. The decorations (ı,σ) as b/w trees with marked black vertices. One can
think of ı as a tail as follows: Using that T (Γ(g)) = gG(F ′), set cT : T → Mor(V)
f �→ σ(gF )−1(f). This is used in Figure 5. The datum σ is directly a directed edge
decoration. Replacing each edge and each tail by a black two valenced vertex, we
can put the decoration on the vertex and thus encode the morphisms completely
combinatorially as •| σ, where the roots are now marked by •| σ−1

0 . See Figure 7.
In particular the morphisms (σ ⇓ σ′) now are encoded as marked black vertices,

See Figure 8.

B.2. The graphical gcp and hyper versions Fgcp+, Fhyp. In the gcp ver-
sion of the plus construction there are the extra morphisms iσ : 1 → ∗σ. We will

write these morphisms as 1
•| σ→ ∗σ. Pre–composition with such maps, changes the

color of the vertex ∗σ to black in the above b/w picture. The well–definedness of the
flow-chart is then guaranteed by (3.19) and (3.20) as the black vertices implement
the morphisms (σ ⇓ σ′).
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Figure 7. The morphism of Figure 5 as a b/w forest with iso-
morphism decorations on the black vertices.

σ2
σ3

0
−1σ

σ1

φ

φ

φ ’

Figure 8. The morphism D((σ ⇓ σ′)) : φ → φ′ with σ =
σ1 ⊗ σ2 ⊗ σ3 and σ′ = σ0 as a b/w corolla with isomorphism
decorations on the black vertices.

In the case of Fhyp , one can either omit the vertices ∗σ, or by abuse of notation
regard black vertices •| σ in lieu of ∗σ. In the first case, the morphisms are given by
decorations, where none of the (non-black) vertices is decorated by an isomorphism.
In the second case, one has to be careful that the •| σ are not quite vertices as they
do not belong to Vhyp , but rather denote an object isomorphic to 1.Making the
vertex black is a useful mnemonic of this. The abuse of notation is that we identify
the target of the isomorphism •| σ with the morphism itself.

Appendix C. Double categories, 2–categories and monoidal categories

In this appendix, we show that many of the constructions become natural in
the language of 2–categories and double categories as founded in [Ehr63,Bén67]
with the further developments in [BS76,BM99], see also [Fio07].

C.1. 2–categories and double categories. Before going into the definition
of 2–categories, we give a natural example:

Example C.1 (The 2-category of categories). We can set up a category of
categories, whose objects are categories and whose morphisms are functors. There
is another structure here though, namely there are natural transformation, which
are morphisms between functors. That is morphisms of morphisms or 2–morphisms.
These satisfy natural compatibility conditions which can be encoded into a 2–
category.

We will need a slightly more general notion. This is based on the fact that
a category can be given by the source, target and identity maps s, t, id with (s ◦
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id)(X) = (t ◦ id)(X) = X and an associative unital composition ◦

(C.1)
Obj (C)

s↑ ↓ id ↑ t
Mor(C)

◦ : Mor(C)s×tMor(C) → Mor(C)

Definition C.2. A double category is given by a diagram (C.1) in categories.
That is a category of objects Obj a category of morphisms Mor together with
functors s, t, id and ◦ an associative unital composition.

The objects of Obj are called objects, the morphisms of Obj are called vertical
1–morphisms, and their composition, vertical composition, is denoted by ◦v. The
objects of Mor go by the name of horizontal 1–morphisms, with horizontal compo-
sition ◦h given by the functor ◦. The morphisms of Mor are referred to as 2–cells
or 2–morphisms. The latter have both a horizontal and a vertical composition, the
vertical composition ◦v is the composition in the category Mor, while the hori-
zontal composition is given by the functor ◦. These two compositions satisfy the
interchange equations.

The usual diagrams for objects, vertical, horizontal and 2-morphisms and their
composition are given by

(C.2) X
φ ��

σ

��
⇓α

Y

σ′

��
X ′ φ′

�� Y ′

X
φ ��

σ

��
⇓α

Y

σ′

��
X ′ φ′

��

τ

��
⇓
β

Y

τ ′

��
X ′′ φ′′

�� Y ′′

X
φ ��

σ

��
⇓
α1

Y

σ′

��

ψ ��

⇓
α2

Z

σ′′

��
X ′ φ′

�� Y
ψ′

�� Z

The interchange relation reads:

(C.3) (α1 ◦h α2) ◦v (β1 ◦h β2) = (α1 ◦v β1) ◦h (α2 ◦v β2)

which means the two ways of composing the diagram (C.4), first horizontal then
vertical or first vertical then horizontal, yield the same result

(C.4) X
φ ��

σ

��
⇓
α1

Y

σ′

��

ψ ��

⇓
α2

Z

σ′′

��
X ′ φ′

��

τ

��
⇓
β1

Y

τ ′

��

ψ′
��

⇓
β2

Z

τ ′′

��
X ′′ φ′′

�� Y ′ ψ′′
�� Z ′′

There are also certain weakenings of the axioms for double categories and their
functors, which for instance relax the condition of associativity and units either up
to isomorphism or to simply having morphisms. In general, retaining an equality
adds the adjective “strict”, allowing for an isomorphism instead of an equality is
indicated by the attribute “strong” and only postulating a morphism from one side
of the equality to the other goes by the designations “lax” or “op–lax” depending
on the direction.
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Definition C.3. A strict functor between two double categories C and D is a
pair of functors (F,G): F : Obj(C) → Obj(D) and G : Mor(C) → Mor(D) which is
compatible with the source, target, unit and composition functors. A horizontally
lax functor means that the conditions are relaxed for the underlying categories of
morphisms.

Remark C.4. Another nice way of encoding a double category D is by the
four sets D0 of objects, DH

1 of horizontal 1–morphism, DV
1 of vertical 1–morphisms,

and D2 of 2–morphisms, which form four categories: the horizontal edge category
DH = Obj given by D0 and DH

1 , the vertical edge category DV given by D0 and
DV

1 , the horizontal category of morphisms DH
Mor = Mor with objects DH

1 and
morphisms D2 and finally DV

Mor with the same morphisms, but objects DV
1 , see

[BM99] for more details.

Example C.5. Given a category C, one can define a double category �C with
Obj(�C) = C and Mor(C) having objects Mor(C) with 2–morphisms given by
commutative diagrams. That is, there is precisely one 2–morphism (ψ ⇓ ψ′) : φ →
φ′ for any two morphisms ψ, ψ′ with ψ′ ◦ φ = φ′ ◦ ψ.

There is a sub–double–category IVC of �C given by restricting the vertical
morphisms to be isomorphisms. Explicitly, Obj(IV C) = Iso(C) and Mor(C) =
Iso(C ↓ C), that is D0 = Obj (C), DV

1 = Mor(Iso(C)), DH
1 = Mor(C) and D2(C) =

Mor(Iso(C ↓ C)) with horizontal composition given by ((σ ⇓ σ′))(φ)◦(σ′ ⇓ σ′′)(ψ) =
(σ ⇓ σ′′)(φ ◦ ψ).

IV C is a double category both of whose underlying categories are groupoids,
but its horizontal morphisms are not necessarily isomorphisms.

Example C.6 (Feynman categories and double categories). A Feynman cat-
egory F naturally yields the double–category IV F . The 2–morphisms are the
(σ ⇓ σ′) : φ → φ′, see (2.4).

Note that this is very natural as the condition (i) and (ii) can be rephrased
as: there is an equivalence of double categories (V⊗, (ı⊗ ↓ ı)⊗) and IVF , where the
horizontal composition in (ı⊗ ↓ ı)⊗ is the one naturally induced by the composition
of morphisms in F .

Definition C.7. Following [Ehr63] we define a 2–category to be a double
category whose category of objects is discrete, i.e. only has identity morphisms.

Example C.1 is the 2–category of categories whose horizontal 1–morphisms are
functors and whose 2–morphisms are natural transformations.

Remark C.8. Alternatively, one can simply omit DV
1 from the list and re-

tain only the three sets D0, D1 = DH
1 , D2 with their structural data. In terms of

diagrams, one shrinks the vertical sides, which are by definition identity maps:

(C.5)

X
φ ��

⇓α

Y

X
φ′

�� Y

� X

φ




φ′
��

�� ��
�� α Y

Example C.9 (Monoidal categories as 2–categories). Just as a group G defines
a category G with one object, any strict monoidal category defines a 2–category.
Any strict monoidal category (C,⊗, 1) is a 2–category with one object C. This
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is Obj (C) = {∗}, 1-Mor(∗, ∗) = Obj (C) with composition ◦ given by ⊗. That is
X ◦Y := X⊗Y . The identity 1–morphism id∗ is 1 ∈ Obj (C) = 1 -Mor(∗, ∗), where
one uses strictness. Associativity also holds due to strictness. 2-Mor(X ,Y ) =
MorC(X ,Y ) and ◦v = ◦. The units in 2-Mor(X ,X ) are the idX . The horizontal
composition is given by ⊗ again: For φ ∈ HomC(X,Y ), φ′ ∈ Hom(X ′, Y ′): φ′◦hψ =
φ⊗ψ′. Due to strictness this is associative and id1 = idid∗ is the unit for ◦h. Finally,
the interchange relation holds (2.1).

If the monoidal category is not strict, one has an example of a weak 2–category.
In particular, it will be horizontally strong. The associativity for the composition ⊗
is not strict and given by associators, which satisfy the pentagon axiom. Likewise,
the unit 1E is not strict and its strong unit property for composition composition
is given by the unit constraints.

In the same vein, one has lax and op–lax monoidal functors as examples of a
weakening of the conditions on the functor level.

Remark C.10. There are several relationships between double and 2–cate-
gories. Being supplied the data D0, D1, D2, there are three natural double cate-
gories one can construct:

(1) The horizontal double category, given by D0, D
V
1 = D0, D

H
1 = D1, D2

with the natural structure maps. Here the elements of DV
1 = D0 are

viewed as identity maps, and the 2–morphisms are expanded into squares
reversing the shrinking of (C.5).

(2) The vertical double category, given by D0, D
V
1 = D1, D

H
1 = D0, D2.

Where the identifications are as above, just switching the roles of hor-
izontal and vertical.

(3) The edge–symmetric double category is given by D0, D
V
1 = D1, D

H
1 =

D1, D2, where the two–morphisms for a square of the type (C.2) given by
a 2–morphism α : σ′ ◦ φ → φ′ ◦ σ.

Vice–versa, a double category has an underlying horizontal respectively vertical
2-category given restricting the horizontal or vertical morphisms to be identities.

Example C.11 (A monoidal category as a double category). Given a monoidal
category E , we define D(E) to be the horizontal realization of E .

Definition C.12. An enrichment functor for a Feynman category F with values
in a monoidal category E is a horizontally lax functor of double categories (F,D)
from IV F , see Example C.6 to D(E), see Example C.11.

Remark C.13. Note that there is only one possible component fuctor F , which
is the trivial functor F = T : T (X) = ∗ and T (σ) = 1E . Thus the data for an
enrichment functor is:

(1) A functor

(C.6) D : Iso(F ↓ F) → E
On objects, we have D(φ) ∈ E and for morphisms D((σ ⇓ σ′)) : D(φ) →
D(φ′) are isomorphisms.

(2) For each pair of composable morphisms φ0, φ1 a natural morphism

(C.7) D(φ0)⊗D(φ1) → D(φ0 ◦ φ1)

(3) An element in D(idX) for each X. That is a morphism idD(X) = id∗ =
1 → D(idX) which is a unit for the maps above.
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Definition C.14. We say that an enrichment functor is lax–monoidal, if in
addition one has the following data

(4) On horizontal 1–morphisms maps:

(C.8) D(φ)⊗D(ψ) → D(φ⊗ ψ)

(5) On 2–morphisms:

(C.9) D((σ ⇓ σ′))⊗D((τ ⇓ τ ′)) → D((σ ⊗ τ ⇓ σ′ ⊗ τ ′))

(6) A unit morphism:

(C.10) 1 → D(id1)

Such that the constraints are associative (i.e. satisfy the pentagon identity), the
interchange relation is functorially preserved and the unit constraints are trans-
formed into each other. On vertical 1–morphisms the morphisms T (σ)⊗ T (σ′) =
1E ⊗ 1E → T (σ ◦ σ′) = 1E are given by the unit constraints.

We say the functor is strongly monoidal if the morphisms in the last three
equations are isomorphisms, and strictly monoidal if it has equalities in the last
equations (C.8), (C.9) and (C.10).

Proposition C.15. For a Feynman category the data of an enrichment functor
that is strict monoidal is up to equivalence, determined by

(1) (Groupoid data) A functor

(C.11) Iso(F ↓ V) → E
(2) (Composition data) For φ0 ∈ (F ↓ V) and φ1 = φ1,1 ⊗ · · · ⊗ φ1,n, with

φ1,i ∈ (F ↓ V) that are composable, set φ := φ0 ◦ φ1. Morphisms

(C.12) D(φ0)⊗D(φ1,1)⊗ · · · ⊗ D(φ1,n) → D(φ).

(3) (Unit data) For each object ∗v ∈ V an element

(C.13) 1 → D(id∗v
)

which is a unit for the composition data.

Proof. Due to the condition (i) for a Feynman category Iso(F ↓ F) � Iso(F ↓
V)⊗. Since D is strict monoidal D is fixed up to equivalence on Iso(F ↓ V).
Again, since D is monoidal, we can use condition (ii) to reduce to the case where
φ0 ∈ (ı⊗ ↓ ı) and φ1 ∈ (ı⊗ ↓ ı⊗). Finally, since for and X, idX is isomorphic to⊗

v∈V id∗v
for some decomposition of X �

⊗
v∈V ∗v. We see that up to equivalence

the unit data is fixed on the id∗v
. �

Proposition C.16 (Ground monoid/ring). In the lax monoidal case, we have
that R := D(id1F ) is a unital monoid and if D takes values in a linear category it
is a ring. Moreover all the HomFD (X,Y ) become R-R–modules, and the category
is enriched in R-R–modules.

Proof. The multiplicative structure is given by D(id1) ⊗ D(id1) → D(id1)
corresponding to the composition id1 ◦ id1 = id1. The R-R–module structure is
given by the left and unit constraints. For the right action: D(φ)⊗D(id1) → D(φ⊗
id1) → D(φ), where the first map is given by the lax monoidal structure and the
second by the unit constraint in F . This provides the morphisms D(φ)⊗R → D(φ).
The unit comes from the structure map 1 → D(id∗). �
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C.2. Holonomy, connections, gcp and hyper functors.
C.2.1. Holonomy and connections. We briefly recall the pertinent elements

from [BS76,BM99,Fio07] and sketch how to adapt and apply them to the set-
ting of Feynman categories. A homolony for a double category D is a functor
¯ : DV → DH which is identity on the objects, viz. D0. A left respectively right
connection for a holonomy is assignment 	 respectively 
 from DV

1 → D2

(C.14) X
σ̄ ��

σ

��
⇓ �(σ)

Y

id
��

Y
id �� Y

X
id ��

id
��

�(σ)⇓

X

σ

��
X

σ̄ �� Y

which satisfy a natural compatibility, see [BS76]. A connection pair is a holonomy
together with left and a right connection for it.

A category with holonomy and a connection pair is called a category with con-
nection. A functor (F,G) of double categories with connections is a functor which
preserves this extra structure. It weakly preserves the holonomy if there are natural
morphisms F (σ) → G(σ̄). Such a functor is strong, if the morphisms are isomor-
phisms. Likewise, one can relax the condition on the connection; see §C.2.2 for a
concrete application.

Example C.17. Note that in the double category �C, we can choose ¯ to be
the identity functor. This restricts to a functor Iso(C) → C which is a holonomy
for IV C, and further restricts to a holonomy for the horizontal double category of
C. Since there is precisely one two morphisms for each square in both cases, there
are unique connections given by 	(σ) = (σ ⇓ id) : σ̄ = σ → id and 
(σ) = (id ⇓ σ) :
id → σ̄ = σ. This related to the fact that �C has a canonical thin structure. In
the horizontal double category case, σ is an identity.

C.2.2. Applications to Feynman categories. In particular, there is a canonical
connection on the double category of a Feynman category IV F and the horizontal
double category of E .

An enrichment functor weakly preserving the connection has natural morphisms
T (σ) = 1 → D(σ̄ = σ), i.e. D is groupoid compatibly pointed. It preserves the
connection if 1 = D(σ) and it is strong if D is a hyper functor. The conditions
for the weakness of a gcp functor and the strongness of the hyper-functor for the
connections are the diagrams (3.12) and (3.13). In particular, D(
(σ)) : 1 → D(σ)
yields the groupoid pointing and D(	(σ) : D(σ) → 1 gives the splitting as in
Definition 4.12.

Appendix D. Model structures

In this section we discuss Quillen model structures for F-OpsC . It turns out
that these model structures can be defined if C satisfies certain conditions and if
this is the case work for all F, e.g. all the previous examples.

D.1. Model structure.

Theorem D.1 ([KW17, Theorem 8.2.1]). Let F be a Feynman category and
let C be a cofibrantly generated model category and a closed symmetric monoidal
category having the following additional properties:

(1) All objects of C are small.
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80 R. M. KAUFMANN

(2) C has a symmetric monoidal fibrant replacement functor.
(3) C has ⊗-coherent path objects for fibrant objects.

Then F-OpsC is a model category where a morphism φ : O → Q of Fops is a weak
equivalence (resp. fibration) if and only if φ : O(v) → Q(v) is a weak equivalence
(resp. fibration) in C for every v ∈ V.

D.1.1. Examples.

(1) Simplicial sets. (Straight from Theorem D.1)
(2) dgVectk for char(k) = 0 (Straight from Theorem D.1)
(3) Top (More work, see below.)

D.1.2. Remark. Condition (i) is not satisfied for Top and so we cannot directly
apply the theorem. In [KW17] this point was first cleared up by following [Fre10]
and using the fact that all objects in Top are small with respect to topological
inclusions.

Theorem D.2 ([KW17, Theorem 8.2.13]). Let C be the category of topological
spaces with the Quillen model structure. The category F-OpsC has the structure
of a cofibrantly generated model category in which the forgetful functor to V-SeqC
creates fibrations and weak equivalences.

D.2. Quillen adjunctions from morphisms of Feynman categories.
D.2.1. Adjunction from morphisms. We assume C is a closed symmetric

monoidal and model category satisfying the assumptions of Theorem D.1. Let
E and F be Feynman categories and let f : E → F be a morphism between them.
This morphism induces an adjunction

f! : E-OpsC � F-OpsC : f ∗

Lemma D.3. Suppose f∗ restricted to VF-ModsC → VE-ModsC preserves fibra-
tions and acyclic fibrations, then the adjunction (f!, f

∗) is a Quillen adjunction.

D.3. Cofibrant replacement.

Theorem D.4. The Feynman transform of a non-negatively graded dg F-Op
is co-fibrant.

The double Feynman transform of a non-negatively graded dg-F-Op in a cubical
Feynman category is a co-fibrant replacement.
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