J. Noncommut. Geom. 16 (2022), 677-716 © 2022 European Mathematical Society
DOI 10.4171/INCG/470 Published by EMS Press
This work is licensed under a CC BY 4.0 license

A detailed look on actions on Hochschild complexes
especially the degree 1 coproduct and actions
on loop spaces

Ralph M. Kaufmann

Abstract. We explain our previous results about Hochschild actions (2007/2008) pertaining, in
particular, to the coproduct, which appeared in a different form in a work by Goresky and Hingston
(2009), and provide a fresh look at the results. We recall the general action, specialize to the afore-
mentioned coproduct and prove that the assumption of commutativity, made for convenience in
a previous article (2008), is not needed. We give detailed background material on loop spaces,
Hochschild complexes and dualizations, and discuss details and extensions of these techniques
which work for all operations given in two previous articles (2007/2008).

With respect to loop spaces, we show that the coproduct is well defined modulo constant loops
and going one step further that in the case of a graded Gorenstein Frobenius algebra, the coproduct is
well defined on the reduced normalized Hochschild complex. We discuss several other aspects such
as “time reversal” duality and several homotopies of operations induced by it. This provides a coho-
mology operation which is a homotopy of the anti-symmetrization of the coproduct. The obstruction
again vanishes on the reduced normalized Hochschild complex if the Frobenius algebra is graded
Gorenstein. Further structures such as “animation”, the BV structure, a coloring for operations on
chains and cochains, and a Gerstenhaber double bracket are briefly treated.

Introduction

In [20,22] (first published on arXiv in June 2006), we gave an action of a dg-PROP of cel-
lular chains of a CW complex, based on arc systems, on the Hochschild cochain complex
of a Frobenius algebra, algebraically realizing and expanding the Chas—Sullivan string
topology [7] operations. Among many other operations, this includes a product of degree
0, a coproduct of degree 1 and a pre-Lie operation of degree 1 whose cellular represen-
tatives together with the computation of composition of product and coproduct appear
in [20, Figures 4 and 5]. The action of the open version of the degree 1 coproduct was
explicitly given the generalization to the open/closed context in [27, §5.4.2].
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Such a coproduct was constructed by Goresky—Hingston [13] in a geometric setting
and has found its way into a symplectic setting [8], see also [40, 43] for further devel-
opments after the announcement of our results presented here. There are precedents for
such operations going back to the basic string topology [7] with further clarifications and
developments in [47-49]. For the coproduct to descend to homology of the loop space,
one has to work relative to constant loops. This idea can be traced back to Sullivan [46].
The vanishing of the obstruction for descent to cohomology has geometric meaning and
has been used to distinguish homotopy equivalent non diffeomorphic manifolds [4].

We will recall our coproduct, explain the background and give the geometric interpre-
tations and show that the geometry of the product of [13] agrees with the our previously
defined algebraic version using the cosimplicial setup of [9, 16]. Specifically, the relevant
cellular chain complex whose cellular chains act as a dg-PROP on the Hochschild chain
complex CH*(A, A) of a Frobenius algebra A was defined in [20, Definition 5.31]. The
action of cells was proven in [22, Theorem B]. Specializing to the case of A = H*(M),
with M a compact simply connected manifold, we make the action explicit. We show that
using translation, provided by [9, 16], the coproduct geometry agrees with that of [13] on
the E;-page. This matches with the original foliation geometry for the whole gamut of
operations which goes back to [30, §4], see also [18, §5.11] and [31, §1 esp. Figure 1].

In the course of this discussion, we give many details for the calculations and inter-
pretations as well as generalizations that are universal and useful for other operations
contained in the PROP and the algebras over it. We prove that the assumption of com-
mutativity for the Frobenius algebra, made out of convenience in [22], is not needed, by
showing that all the equations that need to be satisfied for the action to be well defined
and independent of choices hold for a general associative Frobenius algebra. This also
yields a succinct formula for correlation functions in terms of 2d OTFT correlation func-
tions. Lastly, we consider restricting the PROP to operations which are already defined for
associative algebras.

There are several stages to defining the actions. The first is to simply define individual
operations, the next is to give compatible operations, that is an operad, PROP or modu-
lar operad structure, and last stage provides dg-actions. In [20,22], we provided modular
operad actions for cell complexes from moduli spaces and dg-PROP actions for Sullivan-
type surfaces yielding the dg-operations under discussion. Iterated k-fold operations, as
considered, also already appear in our framework and are readily treated using our for-
malism. As we prove below, if one restricts to the reduced Hochschild complex, one
automatically discards constant loops and hence the results of [14] follow algebraically
from our formalism. We also discuss different methods for lifting the operations from the
Frobenius algebra level to a chain level, e.g. from H*(M) to C*(M) and C,(M).

The individual operations inherently have a naive duality by virtue of being defined
as correlation functions given by switching input/output designations. For instance, the
degree 0 product is dual to a degree 0 coproduct, which is different from the natural
degree 1 product. However, there is PROPic “time reversal symmetry”, basically rooted
the asymmetric treatment of “in” and “out” boundaries. The prime example of being
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related by this symmetry are the degree 0 product and the degree 1 coproduct. The sym-
metric partners are obtained from the same underlying arc system, but differ by switching
the “in” and “out” boundaries. Moreover, there is an operadic structure, which is in/out
symmetric, used for moduli space operations [20,22] in which this symmetry is natural.
For the moduli space actions, this is part of a modular operad.

The string topology operations are recorded by applying degeneracy maps to “outs”.
This asymmetry is needed to obtain the correct dg-operations, see [22].

Just as Gerstenhaber’s bracket comes from the homotopy of U and U°P, so too can the
coproducts, as well many other operations, be identified as operations from homotopies—
a point stressed by B. Tsygan. Our formalism also naturally identifies such homotopies
for instance the coproduct, its anti-symmetrization, the Gerstenhaber double bracket and
with extra decorations the BV structure in the setting of “animation” [44].

Finally, to incorporate the extra dualities from the naive duality operadically, or better
PROPicly, we introduce a two colored PROP to keep track of extra dualization which
specifies co (cohomological) and ho (homological) inputs and outputs. In the actions this
gives operations on Hochschild chains and cochains. This subsumes the operations of [45]
into the correlation function formalism of [22]. The details of these computations are
consigned to [32], where, in particular, we show that the mixed m3 operations of [45]
stem from a natural homotopy which is a double Gerstenhaber bibracket of degree 2 in
the sense of [42,50].

Organization

The paper is organized in a formula forward way, first giving the algebraic formulas and
then going deeper into their origin which at the lowest level is rooted in the cell geometry.

After fixing notation and giving essential remarks in Section 1, we give the formula
for the coproduct and its boundary in Section 2, which is based on the cell [20, Figure 4]
with action according to [22] in Theorem 2.1. With the explicit form of the action, one
can see in which ways this (co)chain operation descends to an operation in (co)homology.
This is made explicit in Proposition 2.3 and Theorem 2.4. The technical discussion on
how to define the correlation functions and dualize them is contained in Section 2.2. The
application to the coproduct is in Section 2.3 and a discussion of generalizations of the
particular actions follows in Section 2.4.

In Section 3, we review the Hochschild chain and cochain models for loop space
according to [9, 16]. This allows to complete the geometric identification of the action,
and hence the coproduct, in the case of loop spaces. We identify the constant loops with
cH’ (C*(M), C«(M)) in Proposition 3.5 and which allows us to deduce that the coprod-
uct is well defined on H4(LM) in Corollary 3.6. We also discuss several ways regarding
the operations we defined in other natural contexts in Section 3.3. In Section 3.3.3 and
Section 3.3.4 we give the geometry of the coproduct and its boundary terms.

The geometry of the CW complexes and dg-action of the cellular chains is discussed in
Section 4, where we also succinctly define the action in terms of local OTFT correlators.
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The concrete calculations are performed in Section 5. This contains the various dualiza-
tions and relaxations for the conditions of existence of the basic operations (Section 5.1)
and the proof that the commutativity assumption is superfluous; see Corollary 5.2, which
also contains an explicit formula for the local OTFT correlators.

Several dualities are defined in Section 6.1, in particular the naive and “time rever-
sal symmetry”, which bridges the different treatment of inputs and outputs in the actions
and string topology. Further topics, such as dualization, A, versions and “animation” are
briefly discussed in Section 6.2. Finally, Section 6.2.2 contains a preview of the upgrad-
ing of the naive duality into a colored action on Hochschild chain, cochains and the
Hochschild-Tate complex and the Gerstenhaber double bracket. The full details are rele-
gated to [32].

1. Preliminary remarks and notations

1.1. Removing assumptions

In [20,22], we used the notation k for the coefficients thinking about fields. This made life
easier, due to the Kiinneth formula. However, we can take Z coefficients throughout. In
order to not confuse with the references, we set k = Z. This also conforms to the notation
of [38].

In [22] commutativity of A was assumed, see [22, Assumption 4.1.2]. This is not
necessary as had been announced and detailed in several talks and discussions over the
years. Here we write out the proof. Indeed all the needed equations, see [22, Remark 4.2],
hold for any Frobenius algebra. This follows from a direct verification by calculation,
which is done in Section 5.2 and the resulting expression is (5.10). With hindsight, it also
follows from the well-definedness of 2d Open Topological Field Theory (OTFT) and the
equivalence of OTFTs with Frobenius algebras, see Remark 4.1.

1.2. Notation for the various complexes

For an A-A bimodule M, we let CH.(A, M), HH.(A, M) be the Hochschild chain
complex and homology and set CH«(A) := CH+«(A, A), HH..(A) = HH.(A, A). Thus,
CH,(A) = A®"*1 For A = 1@ A, where k is generated by the unit, the normalized
complex is CH, (A, M) = M ® A®".

Dually, CH"(A, M) = Hom(A®", M) = M ® A®" denotes Hochschild cochains
and H H* Hochschild cohomology. An element f € CH"(A, A) is a linear function f :
A®" > A. We use the short hand CH*(A4) = CH*(A, A) and HH*(A) = HH*(A, A).
The normalized cochains CH - (A, M) are those functions f(a; ® --- ® a,) which vanish
if one of the a; = 1.

IfM=Athen CH"(A, A)=A ® A®", andif M = A then CH" (A):= CH" (A, A) ~
A®"+1 ~ Hom(A®"t! k). In particular, as complexes CH*(A)=Hom(CH,(A), k),
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see [38, Section 1.5.5]. See [22, Lemma 3.5], and [38, Section 2.5.9] for the relation
to the cyclic complex and cyclic cohomology.

The reduced Hochschild complex is defined as CH H,(A)=CH,(A)=A4® A®" n>0
and CHo = A. Its homology is denoted by HH, (A). The reduced complex CH* (A) is
the dual to CH » (A) and is also the normalized complex modulo the constants in C H 0(A).

If A is Frobenius, then

A®" ~ CH,(A) ~ CH,(A, A) ~ A®" ~ CH" (A, A) ~ CH"(A),

see Section 2.2 for more details. The duality A ~ A extends to the duality between
CH.(A) and CH*(A) as complexes.

We will call graded algebra A of finite type if all the graded pieces are finite dimen-
sional. In this case, we consider A as the graded dual.

1.3. Levels of action
There are three levels to the actions of [20,22]:

1.3.1. Dg-PROP action on CH*(A, A) for a Frobenius algebra A. This was estab-
lished in [22, Theorem B]. The definition of the action uses that linearly CH*(A) is
isomorphic to the reduced tensor algebra T 4 on A.

The operations are defined via correlators, which are morphisms Y : (T 4A)®" — k.
These dualize to the dg-PROP action as detailed in Section 2.2. This entails specifying
inputs and outputs which yields a morphism in Hom(C H ®"1, C H ®"2), for a specification
of n1 inputs and n, outputs with ny 4+ n, = n. These are compatible with the differentials
and give a dg-PROP action if the input/output designation is the one specified by the cell
model. The asymmetric treatment of inputs and outputs gives rise to two types of duality,
a naive one which works on the level of operations—allowing to assign inputs and outputs
in the operations arbitrarily—and a time reversal duality, see Section 6.1.

Since the two complexes CH *(A) and C H,.(A) are duals, we can furthermore identify
the complexes Hom(CH®"1, CH®") ~ (CH*)®" ® (CH,)®"2. This allows one to
dualize CH * outputs, as specified by the cell, as C H, inputs and likewise dualize factors
of CH*, which are inputs according to the cell marking, to C H, outputs, augmenting the
naive duality. Structurally this is handled by a two colored PROP, which we introduce in
Section 6.2.2—more details and examples will be given in [32].

1.3.2. PROP actions on CH*(D, lv)), for D a quasi Frobenius algebra and a lift
of the Casimir aka. diagonal. A quasi Frobenius algebra, see [22, Definition 2.7] is
a unital associative dg-algebra (D, d) with a trace [, i.e. a cyclically invariant counit,
such that [da =0 and A = (H(D,d), [;) is Frobenius. In [22, Theorem A and B],
we lifted the cochain operations to the cocycles of such a dg-algebra using a lift of the
Casimir from H to A. The prototypical example is D = C*(M), for a compact simply
connected manifold M, with the lift being a choice of a lift of the diagonal. The cocycle
condition was introduced to avoid the ambiguity introduced by the choice of lift. This also
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means that the induced operations on cohomology are well defined and independent of the
lift. However, fixing a lift it is clear that the operadic correlation functions [22, §2, §2.3]
actually lift to all of D, thatis to C*(D) ~ CH*(D, D).

One has to be careful with the dualizations if D is not finite dimensional or of finite
type. In the case of D = C*(M) the (degree shifting) quasi isomorphism

CH*(C*(M),C*(M)) ~ CH*T4(C*(M), C(M))

was established in [9]. The double complex gives rise to a spectral sequence, whose E!-
term is isomorphic to CH*(H*(M), H*(M)) and the action via correlation functions
gives a PROP action on CH*(C*(M), C* (M) which induces the dg-action on E!. The
discussions pertaining to the coproduct are in Section 2.4 and Section 3.3.

1.3.3. Subsets of operations which do not need dualization. Finally, upon inspection
of operations or sub-PROPs operads, dualizations may not be necessary. As remarked,
e.g. in [22, §4] this is the case for the suboperad action yielding Deligne’s conjecture [21].
More details are given in Section 2.2.1 and Section 2.4, specific, relevant examples are in
Section 5.1, while general background is discussed briefly in Section 4.3.2 and Section 5.1.

1.4. Frobenius algebras

A Frobenius algebra A is an associative, unital (possibly Z /27 graded) algebra over a
commutative ring k, with a non-degenerate even symmetric perfect pairing 1, commonly
written as (, ) which is invariant, that is {(a, bc) = (ab, c¢).

Remark 1.1. It is possible to work with an odd pairing as well. This introduces extra
Koszul signs. This happens for non-geometric situations, for instance algebraically if one
shifts a complex, see [34] for the induced odd structures. For string topology applications,
we will be mainly concerned with the geometric case and will omit this extra layer of sign
complexity.

A ® A is again a Frobenius algebra with the usual multiplication (a ® b)(c ® d) =
ac @ bd, and (a ® b,c ® d) = (a, c)(b,d) as the perfect even symmetric invariant
pairing. Here and often in the following, for simplicity, we omitted appropriate Koszul
sign stemming from the use of the commutator 7,3, or simply add a £ sign. There are
several schemes for sign conventions for operations discussed at length in [21,22], see
Section 4.2.2 and Section 4.3.1 for the sign convention for operations.

Using these pairings, a product p has an adjoint A4 defined by (A4(a),b ® ¢) =
{(a,bc). The pairing n defines a counit for this comultiplication ¢ via e(a) = (1,a) = (a, 1).
Alternate notations in use are (a) := ¢(a) =: [ a. In this notation: (a, b) = (ab).If 4 is
not commutative, A4 is not cocommutative in general. The relationship between 4 and
A4 in this convention is

Aa(ab) = Au(@)(b ® 1) = (1® a)Aa(b), (1)
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as (Ag(ab),c ®d) = (ab,cd) = (a,bcd) = (Ag(a),bc @ d) = (Ag(a), b® 1)(c ®
d)) = (Aa(@)(b ® 1), ® d). Since Ay (@) = Aalal) = Ay(la),

Agla) =A@ ®1) = (1 ®@a)As(1). (1.2)

The element e = pA(1), called the Euler element, will play an important role. The quan-
tum dimension of A is tr(id4) = &(e).

We set Ag(l) =:C =) CD®C?® e A® A and call it the Casimir element. We
will use Sweedler notation throughout. In particular,

a=>Y (a.cM)Cc® =3cW qa)Cc?. (1.3)

Explicitly, if A is free as a k-module and e; is a basis for 4, gi; = (e;, e;) and g/ is
the inverse matrix then C = ), . ¢e; ® e = ), ¢; ® €' with ' =), g"e; and
e=pa0As(1) =pa(C) =Y, g"eie;.

A is isomorphic to its dual A= Hom(A, k) via a + (a,-). Via this duality n € A®2
is dual to C. The Casimir element C allows to express the dual perfect pairing 77 on A via
(¢, ¥) = (¢ ® ¥)(C). As usual, Ay defines a multiplication 4 ; on A via (Pp¥)(a) =
(¢ ® ¥)(Aa(a)) and g a comultiplication A ;(¢)(a ® b) = ¢(ab).

1.4.1. Geometric/Gorenstein A. In case that A = H™*(X) for a compact oriented con-
nected d-dimensional Poincaré duality space X, or more generally if A4 is graded Goren-
stein with socle d, we set eg = 1 and e, the unique degree d element with e(ep) = 1.
In this case e = sdim(A)eyyp, where sdim is the super or Z /27 dimension.

In particular, if A = H*(M), where M is a compact oriented manifold, and & =
f[ M) = Eag©. N [M], where e, is the augmentation map, then e is the Euler class,
1 is Poincaré dual to the fundamental class of [M] and e, is Poincaré dual to a point,
g(e) = y(M) is the Euler-characteristic and e = g(e)eyqp.

2. The algebraic formula for the coproduct and its boundary

The coproduct is defined by the action of a particular cell, which was already given in
[20, Figure 4]. It is depicted in Figure 1. We will state the algebraic result and then give
the derivation of the explicit formula for the operation from the general setting of [22].
We will use the short hand CH = CH *(A, A).

2.1. The coproduct on CH*

Theorem 2.1. Given a Frobenius algebra A consider CH := CH*(A, A). The cell for
the coproduct given in Figure | acts, according to [22, §3.2.1], as a coproduct morphism

Acy € Hom(CH, CH®?). 2.1
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Figure 1. The cell for the product I and a non-planar depiction II, the coproduct III and a non-
planar depiction of it IV. The weights in the product case are both normalized to one, since each
arc is incident to one input boundary. Asymmetrically, for the coproduct both arcs are incident to
a single input boundary, so that only their combined weight is normalized to 1, yielding a cell of
dimension 1. These operations are time reversal dual to each other. In the string picture V of [18] the
two strings merge for the product moving down and moving up for the coproduct one string forms
a figure 8 and breaks apart into two strings with the relative lengths # and 1 — 7. The transformation
to arcs is in VI where each arc represents a piece of string of the indicated length.

The formulas for its non-zero components Acg (f) € @
plicitly given by

p+q=n—1 CH? ® CH? are ex-

Aca(Hla1 ® - ®ap) @ (Apt1 @ -+ ® ap—1)]

= (=D? Z cVfa® - ®a,CPCE Qapy1 @+ @ ap_1) @ C2.
C1,C2
2.2)

According to [22, Theorem B] the boundary of this chain operation is given by the
operation of the boundary of the cell, given in Figure 2. It has two components and the
operations corresponding to these are

doAcy :CH" > CH"® CH® and 9,Acy :CH" - CH® ® CH"
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inl

Figure 2. The 1-dimensional cell and its two boundary points.

which are given by the following explicit formulas, using CH®(A, A) = Hom(k, A),
choosing aj € Aand A € k:

DAcH(HA® (1 @ ®dy) = A1 ® flar,....an) A1),

; 2.3)
NAcH (a1 ® - ®an) ®A) = AAD) (f(ar,...,an) @ D).

Furthermore, the coproduct is well defined as a cohomology operation if A(1)2 = 0. It
is also a well-defined cohomology operation modulo the “constant term” CH® or relative
to the constant term.

Proof. The proof is in Section 2.3.3, which also contains equivalent forms of the boundary
operation involving A4( f), see (2.14). ]

2.1.1. Geometric/Gorenstein case.

Lemma 2.2. Let A be graded Gorenstein—in particular this is the case if A = H*(X)
for a connected Poincaré duality space X. Then,

A(1)? = g(e)ewp ® eop = (1 ® e)A(1) = Ayle).

Furthermore, the following are equivalent:

O A@?=0
(i) e(e) =0and
(iii)) e=0.

Proof. If A has socle in degree d, the total degree of A(1)? is in degree 2d and this space
is spanned by ey ® eqp. It suffices to compute (¢ ® €)(A4(1)?) = (A(1)%,1® 1) =
(Aq(1), Ag(1)) = (u(A(1)), 1) = e(e). The other equation follows in similar fashion,
using (1.2). Since e = &(e)e,op, the equivalences follow. |
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Proposition 2.3. If A is graded Gorenstein, the action corresponding to the boundary
components, which is the boundary Acw, factors through maps to the degree 0 part Ay
of A, that is CH* (A, A) C ker(do/1(Acw)) and

Im(dgAcy) C CH™ (A, Ag) ® CH(A, Ag) C CH™ (A, A) ® CH (A4, A),

2.4
Im(d; Acy) C CH(A, Ag) ® CH"(A, Ag) C CH®(A, A) ® CH"(A, A). @4

Proof. This follows from Corollary 2.12. ]
Summing up:

Theorem 2.4. If A is graded Gorenstein, the coproduct induces an operation on coho-
mology relative to or modulo the constants CH®(A, Ag) ~ Hom(k, k) and thus is well
defined on the reduced complex CH *(A). In particular, this is the case for A = H*(X)
for a connected Poincaré duality space X .

Furthermore, if the Euler characteristic €(e) = O vanishes, the coproduct is a coho-
mology operation on HH™* (A, A) directly. |

Remark 2.5. If 4 is graded Gorenstein then split A as A = Ao & A, with A = P, -, Ak-
A is an A-A bimodule, and the constant maps, that is maps to Ao = k, can be identified
with CH*(A, A)/CH*(A, A).

Remark 2.6. There is another way in which the constants in CH° appear in quotients. If
A = 1@ Ais augmented, then C H, (A) which is linearly given by 7 A computes the naive
Hochschild (co)homology of A [38, §1.4.3], and in the Gorenstein case the coproduct is
well defined on this complex and consequentially on its dual as well.

2.1.2. The coproduct as a homotopy. The two boundary terms are homotopic and so
are the operations. In fact, the coproduct is the homotopy between the left and right mul-
tiplication by elements of C H°. The boundary terms are also homotopic to the algebraic
version of the pointwise coproduct of [48], see Section 6.1.1.

Similar to the brace operation, which is obtained from anti-symmetrizing the pre-Lie
product, we can regard the symmetrized coproduct Ay, := Acyg + A?H. Note that if
one adopts signs as for the usual bracket, that is shifted degrees with the operation in the
middle, see [21, §4.4], the operation is actually the anti-symmetrization of A.

Proposition 2.7. Ay, is also a well defined homology operation. It is null-homotopic
modulo CH®(A) or the constants in CH®(A) in the case of A being graded Gorenstein.
Thus, the coproduct is cocommutative modulo CH®(A) or in CH *(A) if A is graded
Gorenstein.

Proof. See Example 6.4. ]

Note, one does not really need to assume that the algebra is connected. It could be the
direct sum of connected (graded Gorenstein) components.
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2.2. Correlation functions and operations on Hochschild (co)chains

2.2.1. Hom spaces and correlation functions. The power n®" ® 57®™ is a perfect pair-
ing for A®" ® A®™. For simplicity, we denote all these by (, ). Which precise form is
used is determined by the type of elements the form is applied to; e.g. (a ® b,c ® d) =
(a,c){b,d).

Using the various dualities:
Hom(A®", A®™) ~ A®™ @ A®" = A®"+™M ~ Hom(A®"*™ k). (2.5)

Maps Y € Hom(A®" k) are called correlation functions. Explicitly, a correlation function
Y : A®" — k defines an element in Hom(A®?, A®9) for any (p, ¢)-shuffle o via

signz02(0) Y. Y(o@® 04 e acM)cP o0 Cc?. 2.6

where the sum is the multiple Sweedler sum for ¢ copies of the Casimir element and
signy /,7(0) is the Koszul sign for the shuffle. These dualities extend to the tensor algebra
Hom(TA®", TA®™) ~ Hom(TA®"*™ k).

Remark 2.8. By (2.6), Y gives rise to different morphisms f’p’q € Hom(A®?, A®4) for
each p + g = n, which will be called forms of Y. If A is Frobenius then all these are
equivalent. If it is not, some of these forms might exist apart from the others, see Sec-
tion 5.1 for explicit examples and in particular Section 5.1.2 for the calculations relevant
for the coproduct.

2.2.2. Dualization to functions. An element in CH" (A, M) is a sum of expressions
M®dy @@y withm € M and the &; € A. For a Frobenius algebra, Hom(A%®", A) ~
A® A®" ~ A®"F1 A function f = ag ® dp ® -+ ® dy with d; = (a;,.) dualizes to
f =ay® - ®a, € A®"T1 € TA. The first tensor factor plays a special role and will
be called the module variable. Vice versa, given f , we recover f as f(by,...,by) =
ao [1i=;{a;. bi). The particular ordering is chosen to avoid an extra Koszul sign, see
e.g. [21].

2.2.3. Operations on CH*(A, A). The dg-PROP action of [22] on CH has homoge-
neous components defined via correlation functions whose definition proceeds as follows:
Via the procedure given in Section 4 a cell ¢ defines correlation functions (4.3), which are
morphisms

Y(c)pi,q_,- e Hom(A®p1+1 ® - ® A®Pntl ® A®a1+1 R ® A®qm+1,k), 2.7)

where n and m are part of the given data of c. Dualizing the A% ™1 according to (2.6)
one obtains a PROP action on T A:

Y (€)piq; € Hom(A®PIT @ ... @ A®PiHl g®01H] ... @ g®dmtl) (2.8)
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Finally, identifying the A®¥*1 ~ CH¥ (A, A) as in Section 2.2.2, one obtains a dg-PROP
action

n m
opcr (€)p;.q; € Hom (@ CH" . (X) Cqu). (2.9)

i=1 j=1
Remark 2.9. By Section 2.2.1 there are additional possible dualizations for the individual

operations, see Section 6.1.1. For composable (PROPic) versions one needs to dualize
these operations using Hochschild homology, see Section 6.2.2.

2.3. Correlation functions and action on CH * from cp

The PROP cell for the coproduct 1-dimensional cell ca is parameterized by an interval.
The cell and its boundary 0-cells are given in Figure 2. Notice that d;C = 712,0d9C where
712 switches the “out” labels 1 and 2. Switching these two labels produces the cell for A°P.

2.3.1. The coproduct correlation function. Using the procedure reviewed in §4 one
duplicates arcs, assigns a local correlation function for each complementary region, and
then takes the product of the local correlation functions to obtain the correlation function
of the cell. For the cell cA one obtains one summand for each pair (k, n) where the left arc
is duplicated n and the right arc is duplicated k — n times. The complementary regions are
a central octagon and n + k quadrilaterals. This homogeneous component corresponds to
amap CH®* — CH®" @ CH® "1 The (8, 4) term is depicted in Figure 3.

Proposition 2.10. The total correlation function for the cell cp defining the degree 1
coproduct Acg is a product over the local correlation functions Y(cp) = Y4(Pg) ®
YA(P4) @ -+ ® Y4(P4) o g, where the Y(Pay,) are given by (4.2) and o is a permuta-
tion. The formula of the operation on homogeneous components is given by

Y(ca)((@o® + ®an) ® (bo ® - ®bp) ® (co ®  ® cu—p—1))
D q
= +(aoboap+1co) H(aici) . H(ap+l+jbj)~ (2.10)

i=1 j=1

Proof. Decorating according to Section 4.3.1, the input pieces of the boundary are deco-
rated by ay, ..., a, starting at the marked point going clockwise, that is in the opposite
orientation of the boundary as it is an input. The two outputs are decorated by by, ..., b,
and cy, ..., ¢4 respectively, also going clockwise, which is the induced orientation, used
for outputs. Cutting on the arcs, one sees a central octagon whose sides are decorated by
(@0, bo, ap+1, co) in this cyclic order. The alternating sides of the quadrilaterals P4 are
decorated by a;, b; on the left and by a,4 14, c; on the right. The sign comes from the
shuffle, shuffling the tensors into the given place according to Section 4.2.2. ]

2.3.2. The boundary correlation functions. For the boundary of ca the correlation
function is more complicated as the complementary regions are not simply polygons. The
action according to [22] is given by introducing in a system of extra cut-arcs decomposing
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Figure 3. Middle: The (8, 3) summand of the component of the degree 1 operation on CH ™ corre-
sponding to CH® — CH?3 ® CH*. Cutting at the arcs yields one octagon Pg and 7 quadrilaterals
(P4s). Left: the component of the dg boundary operation CH* — CH* ® CH?P. Right: The com-
ponent of the 31 boundary operation CH* — CH® ® CH*. The extra cut for the annulus is the
dotted line and decorated by C = A(1) = C W ec@.

each of the non-polygonal regions into polygons and decorating the two sides of the extra
cut-arcs by Casimir elements. The procedure is reviewed in Section 4, see Figure 3 for the
relevant example. In Section 5.2, we prove different cut systems yield the same correlation
function and show that the assumption of commutativity of A made in [22] is unnecessary.
The formula for the local correlation function is in (5.10). The appearance of the Casimir
element is what makes the boundary factor through the constants. After cutting these extra
arcs, one is again left with a decorated polygon as above. In the case of the boundary of
ca one cut-arc suffices, see Figure 3.

Decorating by elements of A, reading off the cyclic word, and integrating, one obtains
the following operations:

Proposition 2.11. Let dgca be the boundary att = 0 and 01cp the boundary at t = 1,
then they define the following correlation functions:

n
Y(d0ca)(do @+ ® dn ® by & co @+ ® ¢) = £ Y (aoC VboCPeo) [(ascs),
i=1
n
Y(@1ca)(@ao ® -+ ® dan ® by ® -+ @ by ® co) = £ ) _(aoboC VeoCP) [ Jaity).
i=1
(2.11)
Proof. Treating boundary at t = 1, there is only one arc to replicate. The input is decorated
by ag, ..., ay, the first output by by, ..., b,,, and the second output by c¢q. After cutting,
besides the P4 quadrilaterals labelled by a;, b;, there is a central surface which is an
annulus. One of the two boundary components labelled by ag, bg and the other by cp.
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Inserting one cut-arc and decorating it by the Casimir element yields the given correlation
function according to (5.10), see Figure 3. The boundary at # = 0 is analogous, albeit that
the sole arc now runs to the other input. ]

2.3.3. Proof of Theorem 2.1. Let ap ® -+ ® a, be the input tensor and by ® -+ ® b,
and ¢g ® - -+ ® ¢,—p—1 be the two output tensors. Using the calculations for the dualization
of f2 and |, 4 givenin Section 5.1.2, (1) and (3), and summing up the contributions

Y(ca)(ao ® -+ ® an)

n
= Zzi(a(()l) ®a; Q- ®ap) ®(a(()2)ap+1 R Upir @+ ® ay)
p=0

n
=Y Y #(CWa®a1® - ®ay) ®(CPep11 ®ap2 ® - ®ay) (2.12)
p=0
where = is the sign coming from shuffling in a(()z).
Identifying the tensors with elements of CH™, this translates to Acgy := op(ca)

according to Section 2.2.2. Since
(CPap1)(C5) = (P ap41, C5P) = (ap1, 5V CP) = dpr(C5VC)
for f € CH" the components Acu (f) € D4 =n—1 CH? ® CH is given by (2.2).

For the boundary the calculation for f 5 in Section 5.1.2 (4) results in

Y@rea)ao® - ®an) =Y (CVa’ ®a1 ® - ®an) ® CPal’,  (2.13)
where we used Sweedler’s notation. This in turn yields the operation

WACH(N(d1®- ®dp) ®A) = (=1)" Y _A(CV @ CO)AL(f(dr, ..., dn))]

= AA(M)A4(f(dr,....dn))
=AAD2(fdy,....dy) R 1) (2.14)

and similarly for dg Ay, where the last equality comes from (1.2), viz.
(€W ®CP)Ag(a) = Aa(1)As(a) = A1) (@ ® ). "

Corollary 2.12. If A is graded Gorenstein, then the boundary correlation functions van-
ish unless ao, bo, co € Ao. Dually, do;1 Acu(f) = O unless f : A®"T! — Ay ~kisa
constant map and the image of 091 Acy (f) has image as specified in (2.4).

Proof. Let A have socle in dimension d, we see that each term aoC MpoC@cg has degree
at least d and hence all the terms of the correlation functions are 0 unless aq, bg and c¢g
are of degree 0 and hence all multiples of the unit 1 € Ay.

In particular, the condition that ay € A implies that on CH the operation is zero on
any map f not having Ay as image, and by, co € A¢ implies that the output functions are
also maps to Ayp. ]
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Corollary 2.13. If A is graded Gorenstein, the coproduct is a well-defined cohomology
operation, in the complex CH*(A, A). ]

2.4. Generalizing the actions

Using the point of view of Section 5.1.1, the operations generalize from a Frobenius alge-
bra in several ways. As the f2 terms represent identity morphisms, see Section 5.1.2 (1),
the term |, 4 is the only interesting one in )A’(CA). In the form presented in (2.12), the
module variable a¢ needs to be of the type 24 with the rest of the tensor variables lying
in A, see Section 5.1.2 (3). This means that the equation is well defined as a morphism
CH.(A,4Q4)—>CH4(A,424)RCH (A, 4224), for instance on CH,(C*(M), Cx(M)).

If Ais a coalgebra, for instance if A is finite dimensional of finite type, then the
operation exists as a morphism CH (4, /I) — CH« (A, /I), where A only needs to be
associative. If this is not the case and one cannot identify (4 ® A)Y with A ® A then
one can still specify a special element C, see Section 5.1.2 (1), and use the formalism of
operadic correlation functions [22, §2]. Such an element is given if the coalgebra 4€24 is
pointed in Quillen’s sense.

Using the alternative form, (5.4), one obtains a map

CH*(A,A) - CH*(A, 4Q4) ® CH*(A, 424)).
thus in particular,
CH*(C*(X),C*(X)) > CH*(C*(X),Cx(X))  CH*(C*(X), Cx(X)).

If X = M is a manifold using the isomorphisms (3.11) and (3.7) one obtains a map
Hyoyrg(LM) - Ho(LM) @ H(LM).

For the boundary operations, the discussion is analogous using Section 5.1.2 (4), but
in any formulation, due to the cut, there is the need for the special element C.

3. Actions on (co)chains of loop spaces and their geometric
interpretation

3.1. Manifolds, Poincaré duality and intersection

Let M be a compact oriented connected manifold, then A = H*(M, k) is a Frobenius
algebra over K with g = U, ¢ = |, u 1s the cap product with the fundamental class of
[M] followed by the augmentation map. The duality between A and A = H, (M, k) is
known as Poincaré duality.

The integral [ ab has the following dual geometric interpretation. Let ¢ and b be
Poincaré dual cycles intersecting transversally then [ ab is zero unless ¢ and b have com-
plementary dimensions and then [ ab = # of intersection points a f b.
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3.2. Loop space models using Hochschild (co)chains

3.2.1. Geometric motivation. If we regard a singular chain ¢ on the free loop space
LM = C(S', M), we get a chain b.(c) in M by the push-forward with respect to the
base-point map b : LM — M which sends ¢ to ¢(0). Evaluating at different points of S
gives similar maps.

The algebraic structure of Hochschild cochains is given by sampling S! by sequences
of n + 1 points that are cyclically ordered and coherent—the first point always being O.
The n + 1 points yield n + 1 singular chains. This gives a sequence parameterized by 7.
The i-th point may collide with the i + 1-st point lowering the point count in which case
one should obtain the family with less points. This is the coherence. Both points 1 and n
can collide with 0 which gives the extra degeneracy.

In terms of elements of A®"*! the element ag ® - -+ ® a, represents the dual homol-
ogy classes swept out by the n 4 1 points, that is g; is dual to the homology cycle swept
out by the i-th point and ay is dual to the base points of the loop.

3.2.2. Cosimplicial viewpoint according to Jones/Cohen—Jones [9,16]. The sampling
is formalized as follows: using a simplicial structure S! on S' one obtains a cosim-
plicial structure on Hom(S}, X) whose totalization gives back the loop space. In fact,
Hom(S/!, X) is cocyclic since S¢ is cyclic. This cyclic structure is the reason for the
existence of the BV operator. More precisely, one has maps

fe: AP x LX — xk+1,

3.1
which one can think of as discretizing the loop. These maps dualize to
i : LX — Hom(AK, X*¥T1),
i ( ) 32)

y = (o, ... i) = (y(to). ...y (1))
which are compatible with coface and codegeneracy maps; see Section 3.2.3 for details.

Theorem 3.1 ([9, 16]). Let X be a space and [ : LX — [[z=o Map(A¥, X*) be the
product of the maps fk then f is a homeomorphism onto its i_mage. The image is the
subspace Tot(Map(S!, X)), whose elements are those sequences that commute with the
coface and codegeneracy maps.

A singular /-chain ¢; : A’ — LX can be regarded as a family of loops y; depending
ont € A, Its discretization gives a family of maps A’ x A¥ — X**1 whichisan/ + k
chain on X*¥*1_ The chain is given by the usual shuffle product formula which expresses
the bi-simplicial A’ x A¥ as a union of simplices.

Therefore, pulling back along the f; and using the Alexander Whitney map AW :
Ci(XK+1) — C,(X)®k+1 one obtains maps

[ CHX)® 5 R (LX), (3.3)
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Theorem 3.2 ([9, 16]). The homomorphisms f,* define a chain map
¥ CH.(C*"(X)) - C*(LX), 34

which is a chain homotopy equivalence when X is simply connected. Hence it induces an
isomorphism

F*HH.(C*(X)) > H*(LX), (3.5)
dualizing these maps and using that HH,.(C*(X)) = HH.(C*(X); C*(X)) yields

S Co(LX) - CH*(C*(X); C«(X)), (3.6)

which is a chain homotopy equivalence when X is simply connected. Hence it induces an
isomorphism

fo i Ho(LX) > HH*(C*(X), Cx(X)). (3.7)

Remark 3.3. The direct dualization yields the dual of the complex
Hom(CH.(C*(X)), k).

If A is finite dimensional or of finite type, then as remarked previously, up to signs
CH*(A) = Hom(CH«(A), k) >~ CH*(A, A) [38, Section 1.1.5], with the isomorphism
given by F < f as defined by

F(ag,...,ay) = f(ai,...,an)(aop). (3.8)

Taking (3.8) as a definition of F given f always defines a map CH *(A, /f) — CH*(A).
In total, the map fx can be seen as a the map that takes an /-dimensional family of loops
¢ to the evaluation maps

Fic = eVAW@(0),... (1)) € Hom(CH™ (C« (X)), k), (3.9

where on the right hand side the degree is k + 1 and the total degree is k + /. This gives
the explicit description with homological coefficients.

Using the same kind of rationale Cohen—Jones also prove a second description with
cohomological coefficients.

Theorem 3.4 ([9, Corollary 11, Theorem 1]). For any closed (simply connected) d-di-
mensional manifold M : Hyg(LM) ~ H,(LM~T™™)_And, there are naturally defined
chain maps fy « which fit together to define a chain homotopy equivalence

fu: Cx(LM™T™) 5 CH*(C*(M),C*(M)) (3.10)
inducing an isomorphism

fo i He(LM™™) ~ HH*(C*(M),C*(M)) ~ Hypq(LM). (3.11)
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3.2.3. Discretizing and dualizing. We give the explicit (co)face and (co)degeneracy
maps of the simplicial/cosimplicial structures at the various level. This allows us to iden-
tify the constant loops in the Hochschild cochain complex. They may also be used to find
the Hochschild cochain representations of families of loops used in the arguments of string
topology [7, 13] using the totalization.

For a discretized loop y these are

§i @ Ak — Akt Hom(A¥, X*+1) = Hom(AK*!, xk+2)
G.oovtiye. ) (o tis .., Y.ty )=yt ),
o 1 AFF1 5 AK Hom(AKH!, X*+2)  Hom(AK, x¥+1)
Contivo )= (G h, ), vt )y ).

Thus, the map §; induces the map A; . which after applying the AW map Cy (X ky —
C«(X*+1) is just the coproduct.

For families/homology classes using the diagonal maps A; which repeat the i -th entry
and projections 77; which omit the i -th entry, we have that A; : X — X**1 induces the
map

GCoosviso )= G v(), (), ..0).

This translates to a map A; « : Cx(X¥) — Cu(X*+1) given by

yt("-9tiv"')Hyt("'5tl‘7ti5-")v

andamap A; == id® - QIdRAR®id® - ®id : Cx(X)®* — C.(X)®**! which is

given by

1)

N QY > Y& QY @

@y ® - ® .

Similarly, 77; : X**1 — X* induces the map

Cooayt)s ) = (o y (@), 0.
This translates to a map Cy(X¥+1) — C,(X*) which is given by
vl tiv. ) vl k)
andmaps &; '=id® - ®idReRId®--- ®id : Co(X)®kT1 - C,(X)®* given by
Yo® - QVk —> Yo ® - Qe(yi) @+ y.

Finally, dualizing, in the manifold setting, we see that these morphisms go to

wi=id® - QduId® - ®id: C*(M)®+1 - C*(M)®*,
i =id® - QdeN®Id®---®id: C*(M)®* - C*(M)®F+!,

where  is the multiplication given by the U product and  : Z — C*(M) is the unit.
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3.2.4. Constant loops. The discretized series for a constant loop y(¢) = x € M is given
using the maps §;
(¥(0).....y(t)) = Sx—1 -0y (0).

Thus a constant family of loops has the series
AW(yo ® -+ ® yk) = Ag—1 0+ 0 A(yo)
which can be reconstructed from
Yo==¢10--061(yo ® - ® Yk).
Dually the cochain/cohomology sequence is given by
(Yo ® -+ ® Vi) = AW* (g © -+~ 0 1 (Vo))

From these formulas one obtains that evaluation at a constant loop in degrees bigger than
0 is in the degenerate subcomplex and these do not appear in the normalized complex.

Proposition 3.5. In higher degrees, the image of constant loops is in the degenerate sub-
complex. In the normalized complex their image is WO(C*(M), Ci(M)) = Ci(M).
Moreover, choosing a base point for M defines a constant loop as a base point for LM
and the reduced homology of H, (LM ) is quasi isomorphic to the dual of the reduced
chain complexes HH, (C*(M)) and HH* (C*(M)) computed by the reduced (co)chain
complexes.

Proof. The only thing left to prove is the surjectivity. For this, one identifies a singular
chain f : A¥ — M as a family of constant loops. ]

3.3. Geometric interpretation for loop spaces

The preceding theorems and corollaries translate the algebraic results to a geometric inter-
pretation in terms of loops. By this we mean that the given algebraic operations reflect a
geometric situation, in which usually transversality is assumed. This is analogous to the
discussion of transversal intersection in Section 3.1 and quantum cohomology [39], where
the true operations are the Gromov—Witten invariants and the geometry they reflect is the
enumerative geometry, which is itself elusive.

For the loop space geometry this agreement with the geometry that applying dis-
cretization given via the totalization to a geometric input family, e.g. constant loops or
figure 8 loops, is commensurate with the algebraic operations.

3.3.1. Figure 8 loops. We define the subspace of figure 8 loops Fg C Tot(Map(S!, X)),
those maps that factor through Tot(Map(S! v S!, X)) for a given simplicial model of
the map S} — S! v S!. These can be represented by sequences (y(0), y(t1), ..., y(tx))
for which y(¢;) = y(0) for some i. That is, they are in the image of the small diagonal
map Ag,; : Xk*+1 — X*+2 duplicating the first and i + 1-st factors. Decomposing AF =
AR AR=k1=1 jnduces maps

Hom(AK, X¥+1) = Hom(A*1, X¥1+1) x Hom(Ak*1—1 xk—ki—1)
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When restricted to Fg these maps yield coherent families and yield a map Fg —
Tot(S}, X) x Tot(S, X). Let LgM C LM be the space of these loops and Ag : LgM —
LM xpr LM C LM x LM the map constructed above via the totalization. That is, we
obtain models for the maps

1 A
LM <& Fg 23 LM xpy LM C LM x LM,
where ig : Fg — Tot(S!, X) ~ LM.

3.3.2. Levels of action. By Proposition 3.5, one can identify the constant loops with
C_HO in the normalized chain complex and hence Corollary 2.1 tells us that the operations
are well defined modulo constant loops as in [13]. We even have more, namely that the
coproduct already descends to operations relative to a base point constant loop. The three
levels of Section 1.3 as they relate to loop spaces are:

(1) Since

EY(CH™(C*(M)). C«(M)) = CH*(H* (M), H\(M)) ~ CH*(H*(M)),

an action on this page is exactly the case discussed above for the action on CH *(A, A)
for the Frobenius algebra A = H*(M).

(2) Note that in the formulas using & = [ lifts to the chain level as it can be replaced
by capping with the fundamental class N[M]. The multiplication U-product also lifts the
chain level. This means that the correlation functions all lift to

CH*(C*(M)) = CH*(C*(M), C«(M)) ~ CH*(C*(M),C*(M)),

which means they are well defined and induce the operations on the E! page. To obtain
PROP action one has to “dualize” the outputs. This can be done by choosing a cochain
representative of the diagonal C = > C M @ C@ and simply using (2.6) as a definition.

The formalism of using a propagator C to define actions is discussed in detail in [22,
§2] under the name of operadic correlation functions. The relevant result is [22, Theorem
4.15].

(3) Lastly, if one does not look at the whole PROP of operations on one space, one
can pick individual operations and see if picking cleverly from the descriptions
CH*(C*(M),Cx(M)), CH*(C*(M),C*(M)) or CH«(C*(M)) for C«(LM) yields
a formula that does not utilize dualization.

The classical example is the product. In this case, one can take the coefficient module
to be an algebra. This was the motivation for [9]. In fact, it is clear from our formulas, that
the whole little discs suboperad will act when picking cohomological coefficients [21].
For the BV action, the natural space is cH" (A), for a Frobenius algebra A together with
its cyclic structure [24]. For the coproduct the natural morphism is

CH.(C*(M),Cx(M)) — CH*(CH*(M), CH.(M))

as now the coefficients have a coproduct structure, see Section 2.4.
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3.3.3. Coproduct on loop space. We will now discuss the degree 1 coproduct from all
three different points of view.

(1) In terms of dual classes, we see that the first term says that ag, bg, ap+1 and co
“coincide” in the sense that if we use the interpretation of the U product as intersection
of the dual homology chains, see Section 3.1. The degree count says that the loci need to
intersect in points (counted with multiplicity).

This means that all the base points and the p + 1-st point coincide, which is indeed
the situation of [13,47-49]. Summing over all p re-parameterizes the loop. The map sends
the first loop which is a figure 8, to the two loops as in Figure 4.

(2) Lifting to chains, we see from (2.12), that the coincidence conditions for spawning
off of a the loop via the coproduct are being forced by the intersection with the diagonal—
again forcing the situation of [13] that encodes [47—49].

(3) As discussed in Section 2.4 the operations lift to operations

CH™(C™(M),C*(M)) - CH*(C* (M), C«(M)) ® CH*(C*(M), C+(M))

which also give a chain model for the loop space homology. Interpreting this as homol-
ogy classes given by discretizations of loops, and uses C € C«(M) ® Cx(M) as a chain
representative of the diagonal the terms C Vaq and C (Z)apﬂ becomes the intersections
C M (ap ® ap+1)- Restricting to the space where there is such intersections is the starting
point of [13].

3.3.4. Boundary operations. We again have the three points of view as above:

(1) On the level of classes and dual intersections, we see that (2.13) says that the loop
itself is left alone and spawns off a second constant loop at its base point. We furthermore
see that due to degree reasons ag, by, co all must be of degree 0. This is due to the fact that
the coproduct and the intersection with the diagonal produce a term A(1) which is already
in top degree. This means that dually a¢ and hence by and ¢y which coincide up to scalars

Figure 4. The blue graph is the dual graph to the weighted arc system. The tails and dotted tail keep
track of the almost ribbon structure and the base points [25, Appendix Al].
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have to sweep out the entire M. The dual interpretation is consistent with the intersection
interpretation. Indeed, just like the cup product with 1 is trivial, so is the intersection with
all of M. The loop that spawned off is a constant loop.

(2) The lift to chains is possible along the same lines as in the coproduct case and the
geometric statements are those made above.

(3) The interpretation of C as a chain representative of the diagonal intersected with
the relevant homology classes applies as in the coproduct case.

3.3.5. Identifying coproducts. An algebraic realization of the loop space is given by a
Frobenius dgA model for M. This exists for instance if M is formal. Such a model has
also more generally been provided in [36].

A transversal realization of the string topology operations is a geometric construc-
tion which on transversal families of loops induces the type string topology operations
of [7]. The coproduct of [13] is of this type. Transversal realization is also the input
for Umkehr maps [10] and guarantees a Cohen—Jones [9] type of setup as postulated in
[30, §4.6]. Umkehr on (co)homology uses Poincaré duality [10] and as in Section 3.1
turns intersection into cup products. The map should be Al ig) : Hi(LM) — H (LM) ®
H..(LM)where ig is a Umkehr map, that means a map going the “wrong way”. This and
other geometric schemes can be traced through the discretization and starting at E! the
transversal intersection of loops can hence be characterized via the previous calculations.

Corollary 3.6. For an algebraic realization of the coproduct or a transversal realiza-
tion, the coproduct descends to a cohomology operation on the reduced complex
I/{\Ifl*(C*(M)), inducing a coproduct on Hy(LM). Such a realization induces a mor-
phism on the E' page of the spectral sequence which is given by the Acy.

Proof. Following through the discretization as detailed above, we see that the formula for
the coproduct is indeed the transversal intersection in the form of cup products. ]

4. Geometry and actions of CW complexes and dualities

4.1. Cells

The correlation functions of [22] are given for cells in a CW complex # together with an
interval marking via data indexing the cell. The complex #4 is a CW complex whose cells
are indexed by classes represented by an oriented surface 3, with enumerated boundary
components 3% = [ [/_, S', one marked point p; in each boundary component, and an
arc system. An arc system is a set o of nonintersecting embedded curves, aka. arcs, that
run from boundary to boundary not hitting the marked points which do not intersect, are
not parallel to each other and not parallel to the boundary. This configuration is considered
up to isotopy and mapping class group action. The classes ¢ = [(X, p;, «)] index the cells
of a CW complex +. The dimension of a cell is || — 1 and the interior of a cell is naturally
identified with the open simplex Al®/=1 < RI¢l The attaching maps or equivalently the
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cell boundaries are given by removing arcs. This is induced by a simplicial differential
for which all arcs are enumerated first according to the boundary components and then
according to their order on the boundary, see [20,30] for more details.

4.1.1. Discretization. An integer weight for a set of arcs « is given a map wt : o« — Ny .
A discretized cell is given by cgisie = [(c, wt)]. As an arc system, this is represented by
replacing each arc a by wt(a) parallel arcs. The differential is again given by removing
arcs, which now is a sum of lowering the degree wt of the arcs in @ by 1 and removing the
arc if the resulting weight is 0, see [22] for details.

4.1.2. Interval/angle marking and action. An interval is the part of the boundary be-
tween two arcs. In [22], the intervals are called angles as they are the angles of the arc
graph [22, Section 1.1.2]. A marking is a morphism mk : interval — {0, 1} with the con-
dition that each interval that contains a marked point, also called the module-interval, has
value 1. Intervals between parallel arcs are called splitting intervals. For simplicity we
will restrict the value of mk to be 1 on splitting intervals. The other intervals are called
inner intervals and the function mk is completely determined by its value on these. The
data (c, wt, mk) defines a homogeneous correlation function (4.3). The correlation func-
tion for a marked cell (c, mk) is given by summing over all possible weights (4.4), with
the marking being the one fixed by its value on inner intervals.

Intervals with value 1 will be referred to as marked or active and the intervals with
value 0 as unmarked or inactive. This terminology avoids a possible confusion as marking
by 0 means decorating by the unit 1 € A for the correlation functions.

4.2. Correlation functions for a cell

4.2.1. Local OTFT correlators. Let S be a surface with enumerated boundary compo-
nents dF = ]_[j-’zl S1 and d; marked intervals on each boundary component. An OTFT
based on a Frobenius algebra A assigns a correlation function

Ya(S): ABN @ ... @ A®D — [ 4.1

which is given by the formula (5.10). Note that the formula is invariant under cyclic rota-
tions of the tensor factors at each boundary component, and is equivariant with respect
to renumbering the boundary components, see Section 5.2. The simplest OTFT corre-
lation functions, which suffice to define the product, coproduct, pre-Lie and braces, are
the Y4(P2,) where Py, is a 2n-gon for which every other side is marked. The general
correlation function specializes to

Ya(Pan)(a1 ® - Q@ an) = (a1 -+~ ay). 4.2)

Remark 4.1. Usually, OTFTs are defined as involutive functors Z from a cobordism
category, see e.g. [31,37]. The Frobenius algebrais A = Z(I), I = [0, 1]. The correlation
function Y(S) is the value of Z on S as a cobordism with all intervals being inputs and
an empty output. As Z(¥) = k this gives the map above. Vice versa, since the functor



R. M. Kaufmann 700

Z is involutive, A and the correlation functions fixes all of Z up to equivalence. When
specifying inputs and outputs, one has to be careful with the orders, this explains different
versions of the Frobenius equation (1.1). Dualizing inputs and outputs yields the different
forms discussed in Section 5.1.

4.2.2. Global correlators for a cell. Given (c, wt) represent each integer weighted arc
a € « with weight p is represented by p parallel arcs. These decompose the surface into
sub-surfaces given by the complementary regions X = | J, .y Sy Where the intersections
are at the boundaries of the S, along the arcs, see Figure 3 for an example. The set V is the
set of vertices of a dual description in terms of almost ribbon graphs, [25, Appendix A1]
and Figure 4. Let /; be the number of intervals at boundary d; ¥,i = 1,...,n marked by 1
in (¢, mk, wt), then

Ya(e.mk, wi) := Q) Ya(Sp) o0 : A% @ -+ @ A% — k (4.3)
veV

where ¢ is the shuffle that shuffles the factors of A into their relative position. We used
indexing by sets to make the formula easier. There is a natural order on V' given by enu-
merating each S, by the first appearance of an interval that belongs to it. The intervals
themselves, and hence the factors of A, are enumerated first by the boundary component
and then in their natural orientation starting at the interval containing the marked point, see
also Section 4.3.1. These homogeneous components (4.3) sum up to a correlation function

Ya(c.mk) = > Ya(c.mk, wi). 4.4)

4.3. PROP cells and their action

In order to obtain the relevant PROP, one partitions the boundaries of ¥ into inputs
Iny, ..., In, and outputs Outy, ..., Out,, enumerating them separately. Furthermore, one
restricts the arcs to run from input to output only and requires that every input boundary
has at least one incident arc. This is the Sullivan quasi PROP Are . Lastly, one retracts
the cells to a normalized version by scaling the coordinates so that the sum of barycentric
coordinates separately at each input boundary is 1. Let s; be the number of arcs incident
to In;, then the retracted cell ¢y is a product of simplices AS171 oo A1 These cells

make up the cell complex called Arcll(_)o, see [20] for details.

4.3.1. Standard marking and action. Each PROP cell has a standard marking dictated
by the input/output designation, see [22]. All module intervals are active. All inner input
intervals are active and all inner output intervals are inactive. This defines Y4(c1). The
operation has degree dim(cq) which is the number of input intervals not containing the
base point. The main result for this complex is that the cellular chains have a dg-action
on CH*(A, A) see [22, Theorem B]. Here a cell ¢; with n inputs boundaries and m
output boundaries acts via the operation opcg (c1) : CH®" — CH®™ with the graded
components given in (2.9).
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The standard order is as follows: The module variable is assigned to the module-
interval. This is followed in the linear order of T A according to the following rules. The
input intervals are enumerated in opposite order to the orientation and the output intervals
are enumerated according to the orientation.

4.3.2. Standard decomposition. There are several ways to find standard decompositions
of the operations into standard operations. The most useful for CH*(A, A) being the
following:

Theorem 4.2 ([22, Proposition 4.13]). All the operations of the Sullivan PROP or even
those of moduli spaces are expressible in terms of shuffles, deconcatenation coproducts <
(on TA) and integrals.

This kind of decomposition can be rewritten easily in other contexts, to lift operations
to the various versions of CH. If one has a different context, then one should simply
keep track of the fact that in (2.7) the leading tensor is the one from the coefficients and
which form of the operation defined by the integral in the Frobenius case is being used,
see Section 5.1. Sample considerations are given in Sections 2.4, 3.3.3 and 3.3.4.

Remark 4.3. The deconcatenation coproduct ¢ is a coproduct for the following monidal
structure on A-Mod-A: M KN = M ®i A @k N. A similar coproduct appears in [3] as
a cotensor product in a different, but maybe not unrelated, context. This is the coproduct
for the inputs corresponding to the interval marking by 1. On the outputs, the product is
the simple tensor product. Using the unit u : k — A, there is an embedding M @ N —
M K N, which is precisely the application of the degeneracy maps.

From a simplicial point of view, X corresponds to the join, see Section 6.2 and Sec-
tion 3.3.1. The Joyal dual monoidal product “4”—see e.g. [11, Appendix B] and [11,
§3.5] for explicit formulas—is what is used on the outputs.

4.3.3. Remarks on PROP and quasi PROPs. Although the relevant structures on the
chain level are PROPs, that are strictly associative, on the topological level there are two
complications. The first is, that there is a rescaling involved. This is possible without
penalty for the operad part as a global scaling and expressed as a bicrossed product with a
scaling operad [19]. For the multi-gluings in the PROP one has to perform local scalings
and this results in associativity only up to homotopy, which is the content of the notion
of quasi PROP [20, Definition 5.22]. The explicit homotopies are controlled by rather
intricate flows on the geometric level [31] that even work in the more general modular
operad setting. The second complications, which already appeared in the operad part [21,
24], is that in order to obtain a cell complex with cells of the right dimension, one needs to
retract to a smaller complex given by normalization, which is also a local scaling. Hence,
the second problem and the first one are of the same ilk. Already the normalized operad
is only a quasi operad [19, 1.1.1 Definition]. The full statements for the topological level
are contained in [20, Theorem D].
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4.3.4. Geometry of the PROPs on the topological level. The cell itself can be viewed
in different ways as giving “geometric actions”, either as foliations [30,31] or as a cellular
chains [20, 22]. Here it is helpful to regard the dual graph, marked in blue in Figure 4.
Combinatorially this is a dual graph on the surface. Geometrically, the dual graph is the
image of a map called £Loop defined in [30, Definition 4.3] which identifies the points of
the various geometric in- and output circles using a foliation, see [30,31] for more details.
In the particular example of Figure 4, this means that the outside circle gets identified
with the figure 8 configuration in such a way that all the base points coincide and the
length of the two parts is given by 1 — ¢ and ¢, yielding a 1-parameter family. The length
in the picture is given via a partially measured foliation indicated by parallel lines. At the
boundaries, one of the blue loops obtains length zero, the graph is however still embedded
in the surface. The extra tails or spines give the base points and the dotted spine keeps
track of the polycyclic structure [25, Appendix A] in which the extra tail pointing to the
“empty boundary” is a cycle by itself. There is no extra genus, but an extra boundary com-
ponent with one interval, which is a module-interval. Geometrically this means that there
is a second constant loop that is identified with the input base point. The polycyclic struc-
ture and extra markings appear in the combinatorial compactification of moduli space,
[20], that was axiomatized with graphs in [25] using polycyclic graphs aka. stable ribbon
graphs [35]. It also related to non-Sigma modular operads [5, 17,28,41]. The extra deco-
ration manifests itself in the action, which does not only involve polygon correlators. The
interpretation of the partially measured foliations as moving pieces of string according to
[18, §5.11] is in Figure 1, which also illustrates the time reversal.

This is also exactly the action that is induced on loop spaces which is algebratized in
Section 3. The totalization is the discretization of the map £Loop. By Section 3.3.3 and
Section 3.3.4 is exactly realized via an intersection interpretation of Section 3.1 cosimpli-
cially on the loop spaces, see Section 3.2.3.

5. Calculations

5.1. Correlators

We give the dualizations for the functions fn =g oul"l: 4%" — k, which is given by
fn a1 ®---®a, = (ay ---a,), where /LT is the iterated multiplication. This defines
different forms of the operation, and we discuss which of these forms may exist, without
the Frobenius assumption. These forms may break the cyclic symmetry. The tensor factors
may simply be a k-module V or its dual V, an associative algebra A, or a coassociative
coalgebra 2, e.g. A for A finite dimensional or of finite type. We will tacitly assume such
a condition, when we use A as a coalgebra variable. Subscripts indicate modules, e.g.
A My stands for an A-A-bimodule M . The idea is that there is a hierarchy of operations on
tensors: shuffles, contractions, multiplication, comultiplication, actions. This is the point
of view underlying [12] and [22].
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5.1.1. Relaxations of the Frobenius condition for f,. The basic form [, ., exists for
an associative algebra A with a morphism of k-modules ¢ : A — k. This is cyclic if ¢ is a
trace. It also exists for an algebra A as a morphism of k-modules

evou: A A®" Sk, do®ay ® - ® an v dolar-+-ay)

as the multiplication followed by the dual pairing, aka. evaluation. The latter form is basis
of the action of the little discs [21], since the restriction on the surfaces says that all the
regions are polygonal and have one distinguished coalgebra tensor. Dualizing in the last
slot generally yields the iterated multiplication map ug’) € Hom(A®", A):

1P (@) ® - ®an) = ay---an,

which is defined for any associative algebra A. Dualizing all but the first entry yields
the iterated co-multiplication Ag’ ) e Hom(2, 2®") which exists for any coalgebra 2.
Dualizing all entries yields the element A”*1 (1) which exists for a pointed coalgebra
(2,1).

5.1.2. Calculations for low n.

(1) [, = n: Interpreted as a morphism A — A this is id4. As a morphism k — A®?
this is C = A(1), that is the Casimir element dual to the form.
Restrictions: The form n is simply the dual pairing and exists as the evaluation
map ev : V ®V — k. The form idy : V — V only needs a k-module V. As
k — V ® V is a bilinear form. In the form k — V ® V it is simply a fixed
element—sometimes called a propagator—which is needed to operadically com-
pose correlation functions [22, §2].

2) f3: By dualizing in the third slot, this represents 4 € Hom(A®?2, A).
a®br> (/a Rb® c“>) ®CP = "(ab.CV)C? =ab=p(a.b). 5.1)
3

By dualizing in the second and third slot this yields Aq € Hom($2, 2%?).

1 1 2 2 1 1 2 1
ars Z(La@(:f)eacz“)cf’@cz‘): Y (a.cPeM)e? o cfP

C1,C C1,C
=Y (a@.c" @ )P ® P = A). (5.2)
C1,Co

(3) [,: We will give the dualization in the 2nd and 4th slot. The map A®* — A%®? is

a®br Y (/a@Cl(l)®b®C2(1)>Cl(2)®C2(2)
e, 74

=Y @by P @
C1,C2
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= Y (Au@.c ®bCP)c@ @ Y

C1,C
=Y (M@ eb).c’ @) o c
C1,C2
= > {Au@). (1@ b)) & )P @ ¢
C1,C2
= A)(1®b)=aV @ aPb. (5.3)

This form exists as a morphism Q24 ® A — Q24 ® 4, i.e. a is a decoration by a
coalgebra element, where the coalgebra is a right A module, and b is an algebra
element. Using (1.2), also A(a)(1 ® b) = A(1)(a ® b) = C(a ® b), where now
there are no restrictions of a, b at first, but there has to be some module structure.
E.g.,ifa,b e Aand C € A ® A then this is a morphism 4 ® A — A® A etc.
Switching the roles of @ and b, one also has the form A ® 4Q — 4Q ® 4Q:

a®b>ab®@bM = (a® AT (D). (5.4)

@ /. 5- We compute the dualization in the 2nd and 4th slot. The map A®3 5 A2 4

a®bRcr— Z (/acl(l)bcz(l)c) Cl(l) ® C2(2)

C1,C
= Z (Cl(l)bCZ(l)c,a) Cl(z) ® C2(2)
C1,C2
= Y (€M) & (Vo). As@) P @ P
C1,C2
=Y (" @V (b ®)A@) P ® ¢
C1,Co
=(b®c)A@ =Y baV ®ca?. (5.5)

which exists as a morphism 42 @ A ® A — 42 ® 492.
From (1.2) it follows that

(b®c)Ayla) = (b ®c)As(1)(@a® 1) = (b ® ca)Ay(1).

5.2. OTFT from a Frobenius algebra

We will now show that [22, Assumption 4.1.2] of commutativity of A is not necessary
and that the equations of [22, Remark 4.2] hold for any Frobenius algebra. Let A be a
Frobenius algebra as in Section 1.4. Since [ is cyclic, we have that

(a;j---anay---ai—1) = (aj---agay---aj_) foralll <i,j <n. (5.6)
Using thata = 3" (aCM)C?@, we get the factorization

(a1--an) =Y (ar-+-a;iCONCPaiyy---ap). (5.7)
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Proposition 5.1. Let A be a Frobenius algebra. Using the notation of Section 1.4 and the
one above it follows: Forall1 <i,j <nand1 <k,l <m

Z(al °~~aiC1(1)bk~“bmb1 "-bk—1C1(2)ai+1 )
= a1+++a;CPby .. bbby 3 a1y - an). (5.8)
Also,
Z(al "‘aicl(l)ak+l "'alcz(l)ajﬂ "'akcl(Z)ai+1 "'ajcz(Z)al—i-l cay)
=Y (a1 --an VSV C?). (5.9)

This fact is well known, albeit maybe not in this presentation, as it is equivalent the
theorem that 2d Open Topological Field Theories are equivalent to Frobenius algebras,
see Remark 4.1. The two equations correspond to cuts for the annulus and the torus with
one boundary, see Figure 5.

Proof. For (5.8), assume without loss of generality i < j and k </,
S @ ai CObg - bpby - by CPaiir --a)
= 3 (a1 anar - ai COby by CV)
C1,C
P ACP by bby b 1 CP a4+ a;)
= ar-a;CPby . bwby b1 C3Vaj i - ap),

where in the first step we used (5.6) and then (5.7) to first rotate until a; is at the end and
then split. In the second step, we rotated both expressions with (5.6) so that C 1(1) is on the

1 1

Figure 5. The cut on the annulus corresponding to (5.8) and the cuts on the torus with one boundary
component (5.9). The equations say that the choice of endpoints of the cuts does not matter.
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right and C 1(2) is on the left and then used (5.7) to merge them. For (5.9) we have

1 1 2 2
> a ;i CPVag gy a1 CVa 1 - apCPaisr - a; CPary - an)
C1,C

1 2 2
= Y {ar--ai@iyr---a;Apary o ayCPVagsr a1 CPaj - ar )

C1,C
1,0 2 2
= Y lar-aiaipr - ajajer - arCUCPapy - anCPagg a1 CF)
C1,C2
= Z (ar---ai@iy1---ajaj41 - akdg+1 "'alcl(l)cz(l)cl(z)alﬂ ”.ancz(z))
C1,C
1D ~1) ~(2) ~2
= Z (al s Aidi4] ...ajaj+1 s ApQg41 - ...ancl( )CZ( )Cl( )CZ( ))7
C1,C
where we used (5.8) to move each block not yet in place by one in each step. ]

Corollary 5.2. The assumption of commutativity [22, Assumption 4.1.2] is unnecessary
and all the operations of [22] are defined for the Hochschild cochains of any associative
Frobenius algebra A. The local correlation function Y(S) in [22, (4.3)] for a surface S of
genus g with b decorated boundaries where the i-th boundary is decorated by elements
a’i, ... ,af,i the non-commutative case is

b nj b
Y(S)(®®aij) = <(a% ceah) 1_[ (ch(l)all ...ailcl(z))
=2

j=1i=1
: 1) ~(1) ~(2) ~(2)
) 1_[ ( Z Ckl Ckz Ck1 Ck2 )>» (5.10)

k=1 Cklck2

which is simply the correlation function Y4(S) of the 2d-OTFT of the marked surface for
the OTFT defined by A.

Proof. The operations a priori depend on a choice of triangulation by extra arcs/cuts.
Since the two equations (5.8) and (5.9) hold, the result is independent of such a choice as
they can be used to put the cuts into a standard position yielding (5.10). This follows from
the transitivity of Whitehead moves on triangulations. By the gluing axioms of an OTFT
this is the correlation function corresponding to the given surface. ]

Note that (5.10) seems to depend on the enumeration of the boundary components but
the result is independent of that ordering, again by applying (5.8). By the same equation, it
also only depends on the cyclic order of the elements at each boundary. There is a standard
order of all the elements given by the fact that the boundary components are labelled.
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5.2.1. Pseudo-commutative Frobenius algebras. We call A pseudo-commutative if
nA(ab) = eab.
Lemma 5.3. If one of the following conditions holds, A is pseudo-commutative.

(1) A is commutative, or

(2) A is graded Gorenstein, or

3) AaD@® 1) = Ag()(A ®a), or

4 (1 ®a)Ay(1) = (a ® DA4(1).
Proof. A is pseudo-commutative if and only if 3 CMaC®ph = 3~ CDCPgab, which
is the case if A is commutative. If 4 is graded Gorenstein of degree d then }_ CWaC @b
is of degree at least d and unless deg(a) = deg(b) = 0 both sides are 0. As all elements

in degree O lie in the center, the equation holds.
For (3) using (1.2), we have

D> CWa®CPb =As(1)@® 1)1 ®b) = Ag(1)(1 ®a)(1 ®b)
= A(H(A®ab) =Y €D @ CPab,

which after applying i to both sides yields the defining equation. If 4 is graded Gorenstein
of degree d then Y. C(VaC @b is of degree at least d and unless deg(a) = deg(bh) = 0
or both sides are 0. As all elements in degree 0 lie in the center, the equation holds. The
case (4) is similar. ]

Lemma 5.4. In case that A is pseudo-commutative, equation [22, (4.3)] holds, that is

b nj b nj
Y(S)(@@a{) = <]‘[ ]_[a{e—x<s>+1>. (5.11)

j=1i=1 j=1i=1

Proof. If A is pseudo-commutative, we can move all the factors Ci(l)Ci(z) next to each
other to the right. C(VC® = A(1) = e and there are b — 1 + 2g = —y(S) + 1 such
factors. [

Remark 5.5. Note that if A is graded Gorenstein, for degree reasons, (5.11) is O unless
—x(S)+1<Tlandif y(S) =0, thatis S is an annulus, then all the a{ must be of degree 0,
so that in this case, the correlation function vanishes modulo the constants Ay.

5.2.2. Stabilization and the semi-simple case. We call A E-unital if e = 1. In this case,
e(a) = tr(Ly) where L, is the left multiplication by a, as e(a) = Y (a, CWC®) =
Y (aCW,CD) = g(tr(Ly)).

Lemma 5.6. A is commutative and E -unital if and only if A is isometric, i.e. uq4 Aq = idy.
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Proof. “=":(1.2) implies that if A is commutative and E-unital, it is isometric.
“«": By the assumption 1 = uA(1) = e and using (1.2),

pBa@) = pda@@ ) =) cPaCc? =a.
Using this and Proposition 5.1,
(ab.c) =Y (CWabCPc) = (CPVbaCPc) = (ba.c). .

Remark 5.7. If A is isometric, then the operations pass through the stabilization [25] and
contain an E, structure [23].

Remark 5.8 (Semi-simplicity). If A is free of finite rank and semi-simple, there is a
basis e; with e;e; = §;;e;. This implies that ) ; e; = 1. Setting A; = ¢(e;), el = %iei, and
e = Zi %l_ei is invertible with inverse e ™1 = Zi Aze;. If all A; = 1, which is sometimes
called normalized semi-simple, then A is E-unital. In case A is semi-simple, there is a flow
to a normalized A, see [23]. In [2] it is shown that if A is even commutative, then being
semi-simple is equivalent to e being invertible.

6. Dualities and further topics

6.1. Dualities

6.1.1. Naive duality. The operations were defined by dualizing the arguments of Y, see
Section 2.2.3. The choice of mputs and outputs is dictated by the cell. One can ask about
the other forms of the operation Yemas T Ais graded isomorphic to its dual. As operations
these always exists, but their PROP structure is more complicated, see Section 6.2.2.

Switching all inputs to outputs for the PROP one obtains a naive input/output dual
operation that is an (m, n)-ary operation from every (n, m)-ary operation via

Hom(CH®",CH®™) ~ Hom(CH®™*" k) ~ Hom(CH®™, CH®").

Example 6.1. For instance, the degree O product is dual to a degree 0 coproduct, which
is different from the natural degree 1 product. It corresponds to the pointwise coproduct
of [47]. Similarly the degree 1 coproduct is dual to a degree 1 product which shares the
same correlation function (2.10). This is the sum over the products LI, see [22, §4.1.1, eq.
(4.10)], where the degree n — (p,q),n = p + g + 1 part of the coproduct dualized to LI
in degree (p,q) — p+q+ 1 =n,

fUga® - ®ap) = fa1® - Qap)apt18(ap12 @ -+ ® ap). (6.1)

To obtain the usual cup product, one needs to apply a degeneracy, that is set a, 1 = 1.
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6.1.2. Time reversal symmetry (TRS). Given a cell ¢ represented by an arc family and
a boundary input output marking, we define the TRS dual ¢ by reversing the “in” and
“out” labels. This changes the normalized cell and the interval marking in the discretized
PROP.

For a cell ¢ with arcs only from inputs to outputs in which all boundaries are hit, that
is a cell of Arci<*? in the notation of [20], the TRS dual ¢ is also a cell of Arci<0 and
hence retracts to a normalized cell ¢; of M’f". If ¢ is the normalized cell of ¢ then the
TRS dual of the operation op(c;) is TRS(op(c1)) := op(¢1). Unlike the naive dual, the
TRS dual operation usually has different degree. The degree of a normalized cell with n
inputs and m outputs, and thus the degree of the corresponding operation, is # arcs — n.
The degree of the TRS dual which is an m to n operation is # arcs — m. Thus the degree
difference of the operations is m — n.

Remark 6.2. This can simplicially be understood as two different join decompositions.
Acellc = (Z,a) of Arc Cisa A=l If S hasn inputs and m outputs, then there are
two partitions of &, @ = [ [, o; and o = ]_[;"=l o This gives rise to two join decompo-
sitions [or; — 1] % -« % [y, — 1] = [ — 1] = [} — 1] % - -+ * [e;,, — 1]. The normalization

drops the * and replaces it with the polysimplicial product.

Example 6.3. The cell ca for the comultiplication is the TRS dual of the cell ¢,, for the
multiplication, which has 2 arcs, see Figure 1. The (2, 1) multiplication of degree2 —2 =0
has as TRS dual the (1, 2) comultiplication of degree 2 — 1 = 1.

Several interesting cells appear as homotopies for the Gerstenhaber and BV struc-
ture [30]. Their TRS duals give new interesting homotopies for the TRS dual operations.

Example 6.4. The TRS dual for the pre-Lie or Gerstenhaber product gives a homotopy
relation for A and A°P. Further, Acyg + A?H ~ C where C only has components C :
CH" — CH"™!' ® CH® which, using notation as in Theorem 2.1, are given by

C(f" a1 ® - ®an_1 QN)

n
=Y (@1 ® - ®ap1 ®CV ®a,® - ®an1) ® CVCICP. (62)
i=1
This follows from applying the general procedure laid out in Section 4 to Figure 6. The
cell given in Figure 6 gives that homotopy of the sum of the two operations to the oper-
ation of the base side. Since the boundary of the operation C and A 4+ AP is 0 they are
cohomology operations.
Note that in the graded Gorenstein case, by degree reasons, operation equals

n
Y EAM(@1® @y 1 ® ey ®ap @+ ® n_1) ® up. 6.3)
i=1
This is a sort of Poincaré dual degeneracy map, which geometrically corresponds to
spawning off a loop at some point of the loop. In the Gorenstein case, this operation is
zero for the reduced cochains CH* (A4, A).
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Example 6.5. Using the TRS dual of § of [30, §2.2, Figure 7], see Figure 6, one obtains
the following relation for the BV operator, see Figure 7—denoted by BV here to avoid
confusion with the coproduct Acgy (BV(f)) = d(f) + t120(f), where

V) (ao® - ® ay)
n—2

=

p=1

® (ap+m+lc(2) ®apt1 ® & dpim). (6.4)

-2
Z :I:E(ao)(apc(l) Ra1 Q- Qap—1 Qdprm+2 Q-+ Q an)

n
m=0

s=0 In

3
>0
B®

g

—_
|

Out

RECHCINGIEIC
-

3 i,

Figure 6. The TRS dual of the pre-Lie product as a homotopy, the TRS dual of the operator § and
the double bracket.
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Out

Out @ Out Out

Figure 7. The animated BV as a homotopy and one discretized operation. The example is the
morphism ag ® -+ ® ag > €(ag)as ® f(as) ® f(ag) ® a1 ® az ® az. Omitting reference to f
is the original BV.

Note that the TRS dual of the homotopies for the Gerstenhaber structure and the BV
property [30, Figures 10, 11, 12] should also yield interesting operations.

6.1.3. Treating empty boundaries. More generally, there can be empty output bound-
aries allowing to “bubble off constant loops”, while “in” boundaries all have to be hit.
Upon reversal, this condition gets switched, to all “out” boundaries are hit. The correla-
tion function is well defined as well in this case, by using the standard marking. This may
lead to additional factors of A, which in the loop space operations stem from the inclusion
of constant loops. These operations are also in the TRS dual PROP where the incidence
conditions on the arcs on the input and outputs are switched. The TRS dual operations and
correlations functions are summarized in Table 1.

6.2. Further topics

Note that in this setting the intervals between parallel arcs all belong to quadrilaterals
and the relevant form of correlation function fz is id passing on the variable, see Sec-
tion 5.1.2 (1). The interesting part of the action is therefore on the surfaces that are defined

in — out out — in
No empty boundary Hom(CH ®", CH®™) Hom(CH®™, CH®")
Correlation function Hom(CH ®"+™ k) Hom(CH ®"t™ k)
r empty boundaries Hom(CH®",CH®"® A®") Hom(CH®"® A®", CH®")
C (CH®", CH®™+T) C Hom(CH®™+ CH®")
Correlation function Hom(CH®"t"® A®" k) Hom(CH®" " @ A®" k)
C Hom(CH®™+n+r k) C Hom(CH®m+n+rk)

Table 1. The TRS duals of operations and their correlation functions.
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by the original, not replicated, arc system. The original choice is to use OTFTs and the
pairing, we will briefly discuss other choices. A fuller discussion is relayed to [29].

6.2.1. Animation. In [44] a so called animation is introduced. This is naturally incorpo-
rated into the present framework. Given an A module M and a morphism f : A — A, one
has the new module structure ps(a,m) = f(a)m. In this way, one can twist the coeffi-
cient bimodule 4 M4 by f. Furthermore, one can act on TA by powers of f thus inducing
new twisted Hochschild complexes. In the presented formalism, this simply means allow-
ing to replace the propagator for the quadrilaterals to be given by f. In particular, given
a set of A-endomorphisms ¥, we define an ¥ marking for an arc system to be a map
f :a — F. We define the operation for an ¥ marking for a cell ¢ to be given by f(a)
on the quadrilaterals. In the general case, one should use self-adjoint maps f and set the
marked quadrilateral function to be (@, f(b)) on quadrilaterals marked by f. The form
which used to be id4 then becomes a + f(a). Figure 7 shows the twisted B operator
which is a homotopy from id4g74 to idg ® f® as an example. The operation is

ap® - @ ay »—):I:Zs(ao)ap®f(ap+1)®"'®f(an)®al ®---Qap_1. (6.5)

6.2.2. Dualization to Hochschild chain operations. Further, following discussions with
Z. Wang, we can also look at the dualization to CH«(A, A). This allows reinterpret-
ing the naive duality as an additional coloring for the PROP, and includes the products
on Hochschild chains as found in [1,45] into our package. For this, one labels naively
dualized inputs and outputs by ho for homological and the ones keeping their original
input/output designation as co for cohomological. This yields a bi-colored dg-PROP which
acts on Hochschild chains, via the ho color, and Hochschild cochains via the co color. The
correlation functions are the old correlation functions of [22]. The decoration is according
the both in/out and ho/co marking. That is, co outputs and ho inputs are decorated in the
induced orientation while co inputs and ho outputs are decorated in the opposite of the
induced orientation.

In [32], we furthermore show that the action on the Tate—Hochschild complex [45] can
be subsumed into the formalism of correlation functions [22] by a coloring keeping track
of dualizations. This allows us to realize the homotopy transfer concretely. We naturally
obtain the operations that are found in [1,45]. For instance, dualizing the coproduct from
co to ho colors for all three boundaries, one recovers the degree 1, (2, 1) product on C H
given by the formula

bo®:++®bpUco®-++® Cp—p—1
=+ hCP®c1® ®np1®cCPRb® - ®b,  (6.6)

which can be read off (2.10).
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Another upshot is a nice interpretation of the mixed m3 products CH* @ CH, ®
CH* - CH*,CH,  CH* ® CH, — CH, in terms of the dualization of a double
bracket, which arises as a natural homotopy incorporating the coproduct and its opposite
simultaneously and is a Gerstenhaber double bracket operation CH®? — CH®? in the
sense of [42,50]. The operation is given in Figure 6. The action is given by

(a0®"‘®an)®(b0®"'®bm)
=Y H{ap b (CPhy @ a1 @+ ®ap1 ®byi1 @+ ® byy)
p.4q

®(C(1)a0®b1®"'®bq—1®ap+l®"'®a")' (6.7)

6.2.3. Ao-version. In [33] we showed that one can relax the condition of A being asso-
ciative to Ao for the brace operations, aka. A.o-Deligne conjecture, and in [51] the same
was done tor the BV operators, aka. cyclic A conjecture. As described in [26], this cor-
responds to introducing diagonals into the non-quadrilateral surfaces to specify an Ao
version of the OTFT. This type of different theory for the S, defined by « can be treated
quite generally [6]. There should be a nontrivial relation to the A, case to the double
brackets above and those of [15].
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