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We introduce the operation of forming the tensor product in the theory of analytic
Frobenius manifolds. Building on the results for formal Frobenius manifolds which we
extend to the additional structures of Euler fields and flat identities, we prove that the
tensor product of pointed germs of Frobenius manifolds exists. Furthermore, we define the
notion of a tensor product diagram of Frobenius manifolds with factorizable flat identity
and prove the existence of such a diagram and hence a tensor product Frobenius manifold.
These diagrams and manifolds are unique up to equivalence. Finally, we derive the special
initial conditions for a tensor product of semi-simple Frobenius manifolds in terms of the
special initial conditions of the factors.

Introduction

e

This paper is devoted to the study of Frobenius manifolds and their tensor
products.

The foundations of the theory of Frobenius manifolds were laid down by
Dubrovin [4]. Such manifolds play a central role in the study of quantum co-
homology and mirror symmetry (cf. [10, 15, 21]). In the realm of mathematical
physics they appear for instance as the canonical moduli spaces of Topological
Field Theories (TFTs). Recently they have also emerged in the study of differen-
tial Gerstenhaber-Batalin—Vilkovisky algebras [3]. Frobenius manifolds first arose
in Saito’s study of unfolding singularities (cf. [5, 21]) where they were called flat
structures [24]. Further examples of Frobenius manifolds built on extended affine
Weyl groups were constructed in [7]. For an introduction to the subject the reader
can consult [5, 11, 19].

In a way one can regard Frobenius manifolds as a non-linear structure on coho-
mology spaces. This non-linear structure is rigid and has weak functorial properties.
However, it admits a remarkable tensor product operation.

In the formal setting this operation has been introduced in [15]. In quantum
cohomology it corresponds to the Kiinneth formula (2, 12].

The main goal of this paper is to introduce and study the tensor product of
analytic Frobenius manifolds in the non-formal setting. This is done in two steps.
First, we show that the formal tensor product of two convergent potentials is con-
vergent, so that we can define the tensor product of two pointed germs of analytic

159

International Journal of Mathematics Volume 10, No. 2 (1999) 159-206
© World Scientific Publishing Company



160 R. M. KAUFMANN

Frobenius manifolds. The convergence proof is based upon the study of one-
dimensional Frobenius manifolds, carried out in [17]. Secondly, in the presence
of flat identities, we show that inside the convergence domain the so defined tensor
products corresponding to different base-points are canonically isomorphic. This
observation is translated into the existence of a natural affine tensor product con-
nection on the exterior product of the tangent bundles over the Cartesian product
of two Frobenius manifolds. Using this connection we define the notion of tensor
product diagrams for Frobenius manifolds with factorizable flat identities. To patch
together the local pointed tensor products we need the technical assumption that
the flat identities of the factors are factorizable which means that they can be split
off as a Cartesian factor Al. This is the case in all important examples. In this
situation, we prove the existence of such diagrams and uniqueness up to equiva-
lence. One of the pieces of data for these diagrams is a tensor product Frobenius
manifold for two Frobenius manifolds, which contains a submanifold parameterizing
all possible tensor products. The size of the manifold itself depends on the conver-
gence domain of the tensor product potentials and cannot be controlled a priori.
Therefore, we regard two tensor product manifolds as equivalent if they agree in an
open neighborhood of this submanifold. We also extend the situation to a slighly
more general setting and prove the analogous results.

In the examples stemming from the unfolding of singularities the tensor prod-
uct corresponds to the direct sum of singularities [21]. For TFTs it provides the
canonical moduli space for the tensor product of two such theories. The theorem
of the existence of a tensor product then implies that the moduli space obtained
by tensoring all possible natural perturbations of two given TFTs is included as a
subspace in the natural moduli space of the tensor theory.

Frobenius manifolds often carry the additional structures of an Euler field and a
flat identity which are sometimes included in the definition [5]. Our tensor product
can also be extended into this category.

In the special case of semi-simplicity the structure of Frobenius manifolds
becomes particularly transparent. Roughly speaking, the Frobenius structure is
determined by the Schlesinger special initial conditions {5, 19, 22] at a given tame
base-point. In this setting we calculate the special initial conditions of the tensor
product.

Since we need to review the formalism of formal Frobenius manifolds and their
tensor product, this paper gives a complete analysis of the tensor product in the
theory of Frobenius manifolds in all of its presently known facets.

The paper is organized as follows: We begin by recalling the necessary definitions
and facts of the theory of formal Frobenius manifolds and Frobenius manifolds,
including the tensor product in the formal setting in Sec. 1. We also introduce
the notion of pointed germs of analytic Frobenius manifolds and give a one-to-one
correspondence with convergent formal Frobenius manifolds. In Sec. 2 we define the
tensor product in the category of formal Frobenius manifolds with flat identity and
Euler field and prove that the tensor product of two convergent potentials is again
convergent yielding a tensor product for pointed germs of Frobenius manifolds.
Section 3 contains the definition of a global version of the tensor product in terms
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of an affine tensor product connection on the exterior product of the tangent bun-
dles over the Cartesian product of two Frobenius manifolds. In the framework of
tensor product diagrams for Frobenius manifolds with factorizable flat identities,
we prove the existence of such a diagram and show uniqueness up to equivalence.
By generalizing the setting to general tensor product diagrams and introducing
new natural restrictions, we are again able to show existence and uniqueness up to
equivalence. The last section is an application of the previous results to semi-simple
Frobenius manifolds. In particular, we calculate the special initial conditions at a
tame semi-simple point of the tensor product Frobenius manifold in terms of those
of the pre-images.

1. Frobenius Manifolds

We begin by reviewing the necessary material from the theory of Frobenius
manifolds:

1.1. Formal Frobenius manifolds

We will follow the definition from [19]. Let k be a supercommutative Q-algebra,
H = ®qcakd, a free (Zy-graded) k-module of finite rank, g : H® H — k an
even symmetric pairing which is non-degenerate in the sense that it induces an
isomorphism ¢’ : H — H?, where H* is the dual module.

Denote by K = k[[H"]] the completed symmetric algebra of H*. This means
that if Y, %9, is a generic element of H, then K is the algebra of formal series
k[[z%]]. We will also regard elements of K as derivations on Hgx = K Q) H with
H acting via contractions. We will call the elements of H flat.

Definition 1.1.1. The structure of a formal Frobenius manifold on (H,g) is
given by a potential ® € K defined up to quadratic terms which satisfies the asso-
ciativity of WDV V-equations:

Va,bye,d: Y Babeg® Bpoa = (—1)7FD D " Byeegf B, (1.1)
ef ef

where ® 45, = 0,0,0.P, g¥ is the inverse metric and & := 7% = 8, is the Zo-degree.
From Eq. (1.1) it follows that the multiplication law given by 8,00, = 3_, 5,0,
turns Hx = K @ H into a supercommutative K-algebra.

There are two other equivalent descriptions of formal Frobenius manifolds using
abstract correlation functions and Comm.-algebras (cf. [19]).

Definition 1.1.2. Anabstract tree level system of correlation functions (ACFs)
on (H,g) is a family of S,-symmetric even polynomials

Y, :H® -k, n>3 (1.2)
satisfying the Coherence axiom (1.3) below.

Set A = 3 8,9*8. Choose any pairwise distinct 1 < 4,4, k,I > n and denote
by ijSkl any partition S = {S1,S2} of {1,...,n} which separates ¢,j and k,!,
i.e. i,j € 81 and k,l € S2. The axiom now reads:
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Coherence: For any choice of 4, §, k, [

SN Vism <® Yr ® Ba) 9°Y]s, 41 (ab X% %)

ijSkl a,b reSy r€S;

Y Y Vi (@ . ®aa) - (m ® %) )

ikTjl a,b reTy reT:

1.1.3. Correspondence between formal series and families of polynomials

Given a formal series ® € K, we can expand it up to terms of order two as

— 1
=) ~Yn, (1.4)

n>3 "

where the Y,, € (H*)®". We will consider the Y;, as even symmetric maps H®" —
k. One can check that the WDVV-Eq. (1.1) and the Coherence axiom (1.3) are
equivalent under this identification, see e.g. [19].

Remark 1.1.4. Using Y;, one can define multiplications o, by dualizing
with g

g(on(717 . ~77n)a7’n+1) = Yn+1 : H®(n+1) - k’ YTL+1(’Yl R ® ’Yn) (15)
which define a so-called Comm,-algebras.

Theorem 1.1.5 (IIL.1.5 of [19]). The correspondence of 1.1.3 establishes a
bijection between the following structures on (H,g).
(i) Formal Frobenius manifolds.
(i) Cyclic Commey,-algebras.
(iii) Abstract correlation functions.

Definition 1.1.6. An even element e in Hg is called an identity, if it is an
identity for the multiplication o. It is called flat, if e € H. In this case, we will
denote e by Jp and include it as a basis element,.

1.1.7. Euler operator

An even element F € K is called conformal, if Lieg(g) = Dg for some D € k.
Here, we take the Lie derivative of the tensor g bilinearly extended to K w.r.t. the
derivation E. In other words,

VX,Y € K: Lieg(g):= Eg(X’ Y)- g([EaX]aY) _g(X) [E’ Y]) = Dyg(X, Y) .
(1.6)

It follows that E is the sum of infinitesimal rotation, dilation and constant shift,
hence, we can write F as

E= )" das®d+ ) 1%0,:=E1 + Ey, (1.7)
a,beA a€A
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for some dgp, € k. To avoid too many supersigns, we shall assume that the dgp are
even. However, everything can be derived for the general case as well. Specializing
X = 0,,Y = 8 we can rewrite (1.6)

Va,b: Z dacgeh + Z dpcGac = Dgab - (1-8)
In particular, we see that [E, H] C H and that the operator
D
V:H—-H: VX):= [X,E]—EX (1.9)

is skew-symmetric.
A conformal operator E is called Euler, if it additionally satisfies Lieg (o) = dgo
for some constant dy.

1.1.8. Quasi-homogeneity

The last condition is equivalent to the quasi-homogeneity condition (Proposi-
tion 2.2.2. of [19])

E® = (dy + D)® + a quadratic polynomial in flat coordinates. (1.10)

1.2. The tensor product of formal Frobenius manifolds

The tensor product of formal Frobenius manifolds is naturally defined via the
respective Cohomological Field Theories (Cf. [15, 16, 12]) which in terms of corre-
lation functions manifests itself in the appearance of operadic correlation functions
and the diagonal class Ay € A3 (Mo, x Moy).

1.2.1. Trees and the cohomology of the spaces Mos

We will consider a tree T as quadruple (Fy,V;,8;,j-) of a (finite) set of (of
flags) F,, a (finite) set (of vertices) V;, the boundary map 8, : F. — V;, and an
involution j, F, — Fy,j2 = j,.

We call a a tree S-labeled or an S-tree if there is a fixed isomorphism of the
tails (one element orbits of j) and S. We will only consider trees at least three tails.
A tree is called stable if the set of flags at each vertex is at least of cardinality 3:
Y € V(7)|Fr(v)| > 3.

If a tree 7 is unstable we define the stabilization of T to be the tree obtained from
T by contracting one edge at each unstable vertex. There are just three possible
configurations at a given unstable vertex and it is easily seen that the result of
the stabilization is indeed stable and that the stabilization does not depend on the
chosen edge.

1.2.2. Keel’s presentation

As was shown in [13], the cohomology ring of Ms can be presented in terms of
classes of boundary divisors as generators and quadratic relations as introduced by
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[13]. Thus we have a map
[]: {stable S-trees} - H*(Mpg). (1.11)

The additive structure of this ring and the respective relations can then be naturally
described in terms of stable trees (see [15, 16]).

1.2.3. Operadic correlation functions

By identifying the index set @ = {1,...,n} of ACFs or more generally any finite
set S with a set of markings of a S-tree, one can extend the notion of ACFs to
operadic correlation functions. These are maps from H®% which also depend on a
choice of a stable S-tree 7 (cf. [15]).

Y(r): H®T 5 k. (1.12)

In fact under certain natural restrictions there exists a unique extension to trees
for any system of ACFs {Y,,} (cf. Lemma 8.4.1 of [15]).

Remark 1.2.4. Given a set of ACFs {Y,} the correlation function of the above
cited Lemma for a stable n-tree 7 is given by the formula

Y(7)(0ay ® - ®0a,) = <® Yn) (Oay ® -+ ® B,,, ® A®IET]). (1.13)
‘Uev-r

If fact due to the Coherence axiom (1.3) the operadic correlation functions only
depend on the class of the tree [r] € H*(Mo,): Y (1) = Y ([7]).

Remark 1.2.5. To shorten the formulas, by abuse of notation, we will also
denote the following function from H®Fr to k by Y (7):

Q) Yr, = ¥(r). (1.14)

veEV,
Which function is meant will be clear from the index set of the arguments.

1.2.6. The diagonal of Mo, x Mgn

Denote the class of the diagonal in H"~3(Mg, x Mo,) by AMOn and write it in
terms of a tree basis:

At = ) lolg e, (1.15)
[o],[r]€Bn
where g(5)ir) = J57 Ton 7] and By, is some basis of H*(My,). Notice that
gl = 0 unless |E,| + |E,| =n —3. (1.16)

For explicit computations one can use the basis B,, presented in [12].
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1.2.7. Tensor product for ACFs

The tensor product of two systems of ACFs (H(1), A, {Yél)}) and (H®),
AD Y1) is the system of ACFs (HV) @ H® AW @ A® {V,}) defined by

(P 99 @ @ (r{V @ +P))
= (v, /)Y D YD) Ay N @1P) @ @ (1) ®4)), (1.17)
where for each summand
YO YD) (& o) (1" 81?) @ 8 (1) ®1P))
= (YD, YD) (P @ @YD ()1 & - @4P). (1.18)

Definition 1.2.8. Given two formal Frobenius manifolds (H®), (¥, ®1)) and
(H®, g@ &), let {¥ "} and {¥;{”} be the corresponding ACFs. The tensor
product (H,g, ®) of (HW, g, W) gnd (HP, g2 &®) is defined to be (HM ®
H® ¢(1) g &) where the potential @ is given by

2(1) = Y2 (D @ YO)(Ag, ). (1.19)

n>3

As in 1.1.3, to make sense of (1.19) one should expand v = ) z* 8" Byrgr in
terms of the tensor product basis ( v = 3(1) ® 8%2)) of the two basis {6(1)} and

all

{6,(1?,)} and the dual coordinates ¥ for this basis.

Inserting the explicit basis B, with its intersection form given in [12] allows to
make (1.19) explicit (cf. [12]). In the case of quantum cohomology this provides
the explicit Kiinneth formula. Here the tensor product of the potentials &V and
®Y belonging to some smooth projective varieties V and W is the Gromov-Witten
potential of ®V*W (cf. [15, 16, 12, 2]).

1.3. Frobenius manifolds

Definition 1.3.1. A Frobenius manifold M is a quadruple (M, TA{I, g,®) of a
(super)-manifold M, an affine flat structure ’Tl\f,, a compatible metric g and a poten-
tial function whose tensor of third derivatives defines an associative commutative
multiplication o on each fiber of Tyy.

For the notion of supermanifolds and supergeometry in general we refer to [20].
Below we will consider only manifolds in the analytic category.

Definition 1.3.2. A pointed Frobenius manifold is a pair (IM, myp) of a Frobe-
nius manifold M and a point mg € M called the base-point.

When considering flat coordinates in a neighborhood of the base-point mg of a
pointed Frobenius manifold, we require that the coordinates of mg are all zero. In
other words, the base-point corresponds to a choice of a zero in flat coordinates.
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1.3.3. Euler field and identity

Just as in the formal case, a Frobenius manifold may carry two additional struc-
tures; an Euler field and an identity. They are defined analogously.

Definition 1.3.4. An even vector field E on a Frobenius manifold with a flat
metric g is called conformal of conformal weight D, for some constant D, if it
satisfies Lieg(g) = Dg. A conformal field E is called Euler, if it additionally satisfies
Lieg(o) = dgo for some constant dy.

1.3.5. From germs of pointed Frobenius manifolds to convergent formal
Frobenius manifolds

Regarding a germ of a pointed Frobenius manifold (M, myg) over a field k of
characteristic zero, choose a flat basis of vector fields (,) and set H = ®,kd, and
keep the metric g. Choose corresponding unique local flat coordinates z° s.t. Va :
z%(mg) = 0 as we demanded in 1.3.2. A structure of a formal Frobenius manifold
on (H, g) is then given by the expansion of the potential into a power series in local
flat coordinates (x*) at mg. Up to quadratic terms we obtain

1
Cp ()= D, @Y%, 80,), (120

n>3 " a1,0.08n€{L,..,n}

where the functions Y;, are defined via
Yr:no (aal K@ 6an) =0, - '6an‘1)|mo = (aax ®-® aan)q’mo(x)fﬂ (1~21)

&, obviously obeys the WDV V-equations.

Furthermore, in the presence of an Euler field or a flat identity writing E and
e = Jp in flat coordinates defines the same structures in the formal situation.

We stress again that we are dealing with pointed Frobenius manifolds. Due
to this a zero in flat coordinates has been fixed and {¥;™}, E and e are uniquely
defined.

On the other hand, the functions in (1.21) and E are dependent on the choice
of the base-point. Choosing a different base-point 7 with z-coordinates z() =
z§ in the domain of convergence of ®,,, yields the new standard flat coordinates
¢ = x* — x§. The corresponding functions Y transform via

P (0, ® -+ @ D)
=0, 0, Pl
= Buy -+~ Oy Brmoas

1

7 Z wgw..‘mgxynﬁoN(abl®...®abN ®0y, ®--®8,,)
N>0" (b1,....bn):b;€A

1
_ - Z e(b|a).’l:gN"'$81Y7:'_:_°N(3a1®"'®8an®ab1®"'®abw)v

N2>0 -(bl,...,bN)ibieA
(1.22)
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where €(b|a) is a shorthand notation for €(p, - - - Opy |Ga, - - - 84, ) which we define as
the superalgebra sign acquired by permuting 8,,...,0, past the 8,,,...,8,,:

6b1 cre abNaou T 6an = e(b|a) 601 T 8an6b1 e abN . (123)

Notation 1.3.6. We denote the convergent formal Frobenius structure ob-
tained from a pointed Frobenius manifold ((M, TI{,[, g, ®M), p) with a choice of a

basis (8,) of T}, by
(P Bar g, @) . (1.24)

1.3.7. From convergent formal Frobenius manifolds to germs of pointed
Frobenius manifolds

Starting with any formal Frobenius manifold (H, g) with a potential ®, we can
produce a germ of a manifold with a flat structure by identifying the z* as coor-
dinate functions around some point my, choosing H as the space of flat fields and
considering g as the metric. To get a Frobenius manifold, however, we need that
the formal potential ® has some non-empty domain of convergence. If

1
o(7) =) —¥a(y®") (1.25)
n>3
with v = 3" 2%/, is convergent, we can pass to a germ of a pointed Frobenius man-
ifold. If necessary, we can, in this situation, even move the base-point as indicated
above.

2. The Tensor Product for Euler Fields, Flat Identities and Germs of
Frobenius Manifolds

2.1. The tensor product for Euler fields and flat identities

In this section, we extend the operation of forming the tensor product to the
additional structures of an Euler field and an identity. In order to achieve this,
we first rewrite the quasi-homogeneity condition and the defining relation for an
identity in terms of operadic correlation functions. To this end we introduce the
morphisms 7*, m, on trees.

2.1.1. Forgetful morphisms and trees

The flat and proper morphisms 7, : Mos — MO,S\{S} which forget the point
marked by s and stabilize if necessary induce the maps 7, and 7* on the Chow
rings where we omitted the subscript s which we will always do, if there is no risk
of confusion.

We will now define the maps 7., 7* on trees corresponding under | ] to the
respective maps in the Chow rings of Myg.

Define , via
o (7) {forget the tail number s and stabilize, if the stabilization is necessary,

8% -

0 otherwise.
(2.1)
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For any S-tree 7 and any s ¢ S, set

75 = the (S U {s})-tree obtained from 7 by adding an additional tail
marked by s at the vertex v. (2.2)

For the notion of stabilization of a tree cf. 1.2.1.
Now we define

(1) = Z T (2.3)

veV;

Taking the definition of [ | from [15] it is a straightforward calculation using
e.g. [13] to check that indeed [7*(7)] = #*([7]) and [m.(7)] = ma([7]).
2.1.2. Quasi-homogeneity condition in terms of correlation functions

Lemma 2.1.3. In terms of the abstract correlation functions Y, the quasi-
homogeneity condition (1.10) is given by

Z (Z da,-a,Yn(aal & - ®?a ® & 8an)+7'ayn+1(aa,1 ®-Q 6an ® 80,))

a€A \i=1

i

=(do+ D)Y,(8,, ®---®3,,). (2.4)

Proof. Applying the vector field F in the form (1.7) to (1.4) and making a
coefficient check yields (2.4). O

Lemma 2.1.4. The correlation functions (1.14) obey the following relation.
For a given n-tree 7 :

> (Z diaY (1) (( X af,) ®aa) + 1Y (7% (1)) ((@ af) ®aa))
acA \feF, FreF\{f} feF,

= [V2|(D + do)Y () ( X af) : | (2.5)

feF,

Proof. Recall that by definition Y (7*(7)) = 3y, Y(7;*1). By applying (2.4)
at every vertex v of 7, we obtain

Y > daY(r) (( X af)®aa)

feF; a freF\{f}

-y

veEV,

feF(v)  wEV, FIEFA(F}

> dia @ ik ) (( X af,)®aa)]
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=3y l(D +do)Y (7) (@ af) = ey (et ((@ af) ®aa)]
vEV;, feF acA fer:

= V2I(D + do)Y (7) (® af) = S () (( ® af) ® aa) . (26)
feF: acA feF:

O

Proposition 2.1.5. For the operadic correlation functions {Y (1)} the quasi-
homogeneity condition is equivalent to

ZZdamY(r)(am@ '®90 8-+ ®8,) = |Br| do¥ (1) (0, ® - +® 0a,)

i=1 a€A

+ 3 Y (*(7)) (90, ® @ By, ® D)
a€A
=(do+D)Y(7)(0s, ®---®0,,). @7)

Proof. Writing out the Casimir elements A = ) 9,gP?0, and applying
Lemma 2.1.4 yields

ZZda,aY ()00 8+ ®0a® -+ ©8a,) +|Er| DY (7)(0y ® -+ ® Oar)
i=1 a€A

3

—sza,ay )(aal® ®a ®- ®aa")

i=1a€A

i

|Er|
+|E-| D Z <® YFu) (6111 ®®ba, ® ®(0pjgqu1 ® 6(11‘))

(P11 P g, |)Pi€A \VEV, Jj=1
(9149 B, | )9 €A

© [Z 3" dayaY (1)

(1, P g, )Pi€A Li=1l a€A
(4159, )9 €A

|B, |
(8a1® '®0.®: < ® Ba,, @ R)(9p, 9™ ® By, ))

j=1

i

+|§T:|Zdia<®yﬂ,>

i=1 a€A veV,

|E-|
X (6,“ @ ®0, ® X (Bp, 6™ ® ;) ® Dag ®8qi)
i=1,i#i
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3 (@)

i=1 a€cA vEV,

(B |
X (06, ® - ®8,, @ ® (Bp. 7% ® 8,,) ® Bp, g"% ® B,
j=Lj#i

=(|Er| +1)(D +do)Y (1)(Ba, ® - ®8s,)
- Z r¢Y (" (7))(Oa, ® - @ Oq,, ® 0s) . (2.8)

ac€A
O

The equality () holds due to (1.8). Rewriting (2.8), we obtain (2.7). Vice versa
postulating (2.7), we see that it reduces to (2.4) for the one-vertex tree (p,).

2.1.6. The identity in terms of correlation functions

As previously remarked, we will assume that the identity is a flat vector field
e = 0. As the semi-simplicity of F this restriction is satisfied in the case of quantum
cohomology.

Remark 2.1.7. From Corollary 2.1.1 of [19], we have that
Y3(04,00,00) = gap and Yy (0o, ® -+ ® 0y, _, ®p) =0 Vn >3 (2.9)
are equivalent to the fact that Jp is a flat identity.
In terms of operadic ACF's one obtains

Proposition 2.1.8. For a flat identity e = 0y and for any stable n-tree T with
n>3,

Y(7) (00, ® - ® Ba_y, ®00) =Y (mu(7))(00, @ -+ ® Da ) - (2.10)

Proof. From (2.9) we know that Y (7)(8g, ® - -®8,,_, ® ) = 0, if the valence
of the vertex vg with the tail marked with n is greater than three or, in other words,
if the vertex remains stable after forgetting the tail n. Assume now that the vertex
has valence three. Noticing that for a flat identity Y3(8,, 8, 30) = gap the result
follows by direct calculation. There are two cases: either vg has two tails marked
n and ¢ for some ¢ and is joined to one other vertex v’ by the edge e or vg just has
one tail and is joined to two other vertices by the edges e; and eg. In the first case
we get

Y(7)(8a, ® -+ ® Ba,_, ® 8o ® A®IE-])

- & QR Yrw | ®Yr )

veVr\{vo} \feF:(v)

X (00, ® 080 @ ®Ba,_, ®AEIFI" 1R A, ®8,, @)
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Z( ® ( ® YFT(v)))
ra \veV:\{vo} \fEF,(v)

X{(0g, ® -+ ® 5;- ® ® 8, ® A1 g 059" 9qa;)

( ® ( ® YF.,(v))) (B2, ® -+ ® B,,_, ® A®IE-I-T)

veVr\{vo} \fEF:(v)
= Y(W*(T))(aal Q- 6an~1) )
likewise in the second case,

Y (1) (04, ® -+ ®8a,_, ® 8 @ ASIF7I)

=( X (@ YF, (v) ®YFT(vo))
veV\{vo} \SEF ()

X (0, @ ®8a, , ®A2IF 120 A, ®A,, ® )

=2 | ® X Yrw

pg,rs \veVr\{vo} \fEF:(v)

Il

X (Oay ® @ Ba,_, ® A®IP7172 ® 8,0P794,9™ @ B;)

:( ® (@ YM)))(am@...@a%‘lm@w_l)

veV\{vo} \fEFr(v)

=Y (mu(7))(0a, ® +* ® Oa,,_,) -
]
Remark 2.1.9. In the setting of operads and higher order multiplications
9, 8], the formulas (2.9) for a flat identity e = 0 correspond to the statements that
e is an identity for o and acts as a zero for all higher multiplications o, > 3.
The contents of Proposition 2.1.8 is the extension of these properties to any con-
catenation of these multiplications.

After these preparations, we come to the main result of this section:

Theorem 2.1.10. Given two formal Frobenius manifolds (H®, g, &) and
(H®, ¢ 0@) with Euler fields

EW = Z dfj},,:c(”“'a,ﬁ,l) + Z r(l)“/c?((z}) of weight DV and (2.11)

a’t’ € A1) a’€eA)
E@ = Y d@a@ 80 + 3 r@9"8%)  of weight D@ (2.12)
a”b”GA(z) alIGA(Z)

and with flat identities €)@ of the same weight df)l) = d((,z) =d, then
e=eV@e® =8 ®a> = dyo (2.13)
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and
E= ) > @)+ > (@@t - da¥ | Gy
(b 0EAM X AP [a/eAW) a'eA®)
+ Z T(l)alaa/()—l— Z 'r(2)a//80a1/ (2.14)
a’€ AN a’’ €A

define a flat identity of weight d and an Euler field of weight DY + D@ — 2d on
the tensor product (H, g, ®) of (H),gM, &MY and (H®, ¢ $2),

Before we can prove the above theorem, we need one more lemma about the
properties of the diagonal class A,

Lemma 2.1.11.
(id, m)(AMOn) = (“*vid)(AHo,,_l) (2.15)

and
(m,m)(AM—OH) =0. (2.16)

Proof. Consider any two strata classes D, € A*(Mg,), D, € A*(Mon_1).
Using the projection formula twice, we obtain

[ DTUW*(D(,)=/_ r(Ds) U D,
Mon Mon-1

& (D- R7*(Do)) Uy,
MD'nXMOn

- [ @@)ED)uag,
Mon—1XMon-1

o (DR D,)U(id, m)Ag

MonXMon-1

=/ (D, ®D,) U (r*,id)Agz, ..
MOnXI_VI—On 1 "

Since the intersection pairing is non-degenerate and the classes D, X D, generate
A*(Mon-1 x Mg,), the formula (2.15) follows. Using the same type of argument
for

/_ _ (D,®D,)U(m,m) Ay,
Mon-1XMon_1
:/__ (" )(D.BD,) Uy
Mop—1XMon-1
=/_ F*(DT)UW*(DU):/_ 7 (D UDg) =0
MOn MOn

where the last zero is due to dimensional reasons, we obtain the second claim (2.16).
O
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Proof of the theorem. As in 1.2.8, we choose the coordinates 2" corre-
sponding to the basis d,r ® y». The metric for the tensor product is given by
ga’b’,a”b" = g(aal ® 60/1, 6b/ ® ab”) = (—1)b a g(l) (aa/, abl)g(z) (aa//, 6’)”)

= (~1)¥%" g gD (2.17)

Euler field.
First we check that E is conformal of weight D) + D2 — 2d. On the basis of flat
vector fields we calculate

g([aa’a”y E]a ab'b”) + g(aa’a”1 [ab’b”y E])

b' a" 1) (1) (2 2 1) (2 1
= (Z di clg((:!b)l ill)bll + Z dgl?cllgﬁlb)l gll)bll + Z dl(),glg((], Zlgallbll

ot
2 1 2 1 2
+ Z dé//) //gl(lll))/g((lu)cu - 2dg,(1;g/g‘(1u)bn)
o
— (D(l) + D(2) — 2d)ga’a,”,b'b” . (2'18)

We will prove the fact that F is indeed an Euler field by verifying the quasi-
homogeneity condition (1.10).

Set D = D 4 D<2> 2d and v = Y 2¢9" 8} @ 89
Ei%(y) = B Z V(¥ =By~ L0 oY) (ag, J0®)
'n>3 n>3
1 ! " 1t n
= Z = ZOn0n ... p010] ( Z de}l;z,(y(l) ® Y(2))(Aﬁ0n)
n23 ‘ (alli "1a'ln,) a,EA(l) =1
(af,....al))

x(0F 08 @ @ 0P 80l @8 (0 ®a)
b Y Y00 ev®)ag,)
a”EA(Z) =1

x (0} %) @& (@) @) e -8 (0} ® )
nd(Y® @ Y®)(Ag, (0 00l e @0 ®o fﬁ))))

) Z Z B ST (DW + D@ _dyy® ®Y(2))(AM(,,,)
n>3 (‘h, ,a )
(a',...,al)

x((0 ® i) @ @ (8 @)
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- Y YW e YO, id)(Ag,,)

a’c A1)
X((B(l) ® 8(2)) R ® (8(1) (2)) ® 3(}))

_ Z r(z)“”(Y(l) ® Y(2))((2'd, W*)(A—MOn))

aneA(z)

x((8)) @) ® -+ (85 ® 8%%)) ® 8L2))

all

= Z (D + (YD Y®)(Ag )(v®™)
n>3

= X YO e Y®) (@, id)(Ax, )" @ )

aleA(l)

= . OV eY®)(d,m)(Ax,, )" © ;).

a’’€A2)

To obtain (%) write Ay = Y [rlgiM?) @ [0] as in 1.2.6 and apply Proposition 2.1.5
to both tensor factors of each summand. Furthermore, notice that the [r], [o] are

homogeneous and glll"] = 0 unless |E,| + |E,| = n — 3 (1.16).

On the other hand, applying Proposition 2.1.8, we obtain up to quadratic terms

a'€ A

Ey®(~ Z ( o ( Z r(l)a'(y(l) ® Y(2))(A_Mon)(7®n—-1 ® 3‘9) ® 382))

+ 3 @YW eY®) Ay )P le sl ®

a’ EA(Z)

n>3

a’€AD)

a’’ EA(Z)

= Z ( Z pDa’ (YD @ Y@)(d, ™) (A +1)(7®n ®3¢(1}))

+ > @YW @YD) (m,, id)(Agy +1)(7®"®3§%)))- (2.20)

Applying the formula (2.15), we see that the sum of (2.19) and (2.20) is just the
quasi-homogeneity condition for E and therefore E is an Euler field.

Identity.

The proposed identity 861) ® 662) is a flat field by definition. Furthermore,

Y0 0% 28V @ 9 @ 8V ® 82)

=00 28 09" ) (0P ® 8 ® 8(?) =

bll
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and for n > 3 by Proposition 2.1.8 and (2.16)
Yu((@F @08 & 00 ®dl) )o@ @)

= (¥ @ YO)((m, ) Az, (05 ©07) © - @ (2 ®Ly) )
0 (222)

which proves that (9((,1) ® 8((]2) is indeed an identity by Remark 2.1.7. The weight of
this identity can be read off the Euler field as d + d — d = d, proving the theorem.

Remarks 2.1.12. The condition that the weights of the identities are equal
can be met by a rescaling of the Euler fields as long as not only one of the weights is
0. In the following, we will always assume this when considering the tensor product.

Since, given a metric and the multiplication on the fibers of a Frobenius manifold,
the identity is uniquely determined cf. [19] —, the above identity is the only identity
compatible with the choice of the tensor metric (2.17).

The theorem, however, contains no such uniqueness property for the Euler field,
but there are several reasons for the choice of this particular type of Euler field. If the
E;-part is regarded as providing the operator V of (1.9), then our choice of E; for the
tensor product is equivalent up to the shift by d which is necessary to accommodate
the dependence of the tensor product on the diagonal in H* (Mg, X Mo,) to the
natural definition:

V=V id+ideV®. (2.23)

As remarked in [19], if the action of ad(FE) is semi-simple on H, there is a natural
grading of H induced by the action of ad(E), shifted by dg. This grading basically
fixes the E; component. In the setting of quantum cohomology, this grading is
just (half) the usual grading for the cohomology groups. The additivity is just the
fact that under the Kiinneth formula the total degree of a class is the sum of the
degrees of the two components. The natural grading on the space of H M o H®
is consequently given by the grading operator ad(E(") ® id + id ® E(®) shifted by
d, so that the tensor product of Y and 6,52) of degrees 5(9) and 503,) is of degree
62) +d+ 55?,) + d — d. Recalling that d, was the eigenvalue of —ad(E), we obtain
dyrar = d) +d%) — d.

In the physical realm of topological field theories [6], the above argument for the
choice of E; just reflects the additivity of a U(1) charge.

The choice for Ey is motivated by quantum cohomology where the Ep-part
corresponds to the canonical class. Thus, the definition of Eq = E((,l) ® 882) + 8(()1) ®
E(()z) corresponds to the formula Kxxy = Kx ® 1+ 1® Ky. More generally, it
corresponds to the map H*(V) x H*(W) — H*(V x W) : (v,w) — pri(v) +pr3(w)
which generally reflects the structure of the tensor product of Frobenius manifolds
in the presence of flat identities, see Sec. 3.4 below.

Furthermore, in view of (2.19) and Lemma 2.1.11, Ey seems to be the only

possible choice, if one postulates (2.23).
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2.2, The tensor product for two germs of pointed
Frobenius manifolds

Due to the following main Theorem of this section, we can define the tensor
product in the category of pointed germs of Frobenius manifolds.

Theorem 2.2.1. The tensor product potential of two convergent potentials is
convergent.

Definition 2.2.2. Given two germs of pointed Frobenius manifolds (M),
m((,l)) and (M(2),m((,2)), let (HM, gV &W) and (H®, g, ) be the associated
formal Frobenius manifolds. We define the tensor product (M, mg) of (M®, m(()l))
and (M@, m(()2)) to be the associated germ of a pointed Frobenius manifold.

We will now prove the main Theorem of this section in several steps starting with
invertible 1-dimensional CohFTs and proceeding to full generality. In the course of
the proof, we will utilize a Theorem on complex series cited below for convenience

(cf. e.g. Grauert, Einfiihrung in die Funktionentheorie mehrerer Verénderlicher,
Satz 1.1).

o
Theorem 2.2.3. Let z; €C":= {z = (21,...,2,) € C" ] 2 # 01 <k <
n}. If the power series Z?:o a,z¥ converges at zy, then the series is uniformly
convergent inside the polycylinder Py, := {z € C™ | |z| < |z,(cl)|}.

2.2.4. Invertible rank one CohFTs
For invertible rank one CohFTs (i.e. C3 # 0) we have the following property:
Theorem 2.2.5 (3.4.2 of [17]) Define the bijections

CohFT, (k) %3 +zt k] & 1+ nk[[H)], (2.24)

where the first map assigns to a theory A its potential ® 4(x) and the second map
is defined by

o o)
O(z) 0 Un) = / e~ )/ 4 (2.25)
0
or alternatively by assigning to ®(x) = %—w:’ + -+ the power series U(n) = 3 ooy
B.n", wherex =Y Bn(% = y+--- is the inverse power series of y = &2 () =

x + ---. Then the tensor product of 1-dimensional CohFTs corresponds to mul-
tiplication in 1 + nk(n]] : Usrguae (M) = Uawy () U@ (7). The coefficients of
—logUa(n) are the canonical coordinates of A.

2.2.6. Explicit formulas

The above theorem can be used to give explicit formulas for the coefficients of
U(n) in terms of the coefficients of ®(x); see [17, Sec. 3.5]. The explicit law for
the tensor product of two normalized invertible CohFTs in terms of the coefficients
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of their potential functions can be derived by combining these formulas with the
identity U4y ga@ (1) = U (M) Ua (m):

Cy= C(l) + Cf)
= cM +5cVc? + ¢,
Cs = OV + (8CM° ey P + ¢ 8CP” + ¢y + ¢,
Cr =W 4+ @scV e +140M) 0P + 6100 P + 3300
13300 ¢ 11900 ¢P) + ) (35C2 ¢ +14CP) + P, ...
Proposition 2.2.7. The tensor product potential of two convergent invertible
rank one CohFTs is a convergent invertible rank one CohFT.

Proof. First assume that C§1) = Cz(f) =1. a

As in Theorem 2.2.5 write the inverse power series of the second derivatives of
the potentials

(@)
D . +1 2) . n +1
v = Z(n+1 ‘I'()‘_Z(nﬂ)!yn '

These series are convergent, if the respective potentials are and so is the product
& @
of their positive counterparts |¥(V| := 3" %ﬁy"“ and || := 3" (llg—n—ylfy"“ as

well as its derivative:

o, ntl BYB,
NP ACHERAL) m
L 8y(|‘1’ =) = ZZ i1 z!(n—i—l—z).y ’

n>0 i=0

By [17] (see Theorem 2.2.5 above) we have the following expansion for the inverse
of the second derivative of the tensor potential ¥:

B(I)B(z) "
'n i n
¥ = E E (n+ ! . (2.26)

n>0 1=0

This series is dominated by T at any point inside the domain of convergence of @,
since

7,l+2<n—!—1)>1,f0r0§i§n,
141 )
and thus
1) (2 1) (2 1) p(2
ZB( )B() ZlB( )B()I n+1 |B£ )Br(z-zil
~ (n+1)! (n+1)! z,=0z'+11'!(n+1—i)!

proving the convergence of the tensor product potential if Cél) = C§2) =1.
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In case that C( ) and/or C. ( ) are not equal to one, but not equal to zero, we
can scale 8() and 8(2) in such a way that they are one. Notice the following scaling
behavior for potentials of one-dimensional theories

Dr5(z) = Po(Az) = ®3(2),

where the subscript d refers to the chosen basis vector of the theory and ®}(z) is
the potential for the scaled theory C? = XC;,i > 3 which is convergent, if ® is.
Furthermore, for the tensor product potential of two such theories:

Q% ® ‘I>(<2) (Auzx) = By gam (Auz) = (I)Aa(l)®p.3(2) ()

1 2 2
- q)g\a)ﬂ) ;8)(2) (z) = (1) 1® ‘1)59()2’;(1') .

Choosing the appropriate scahngs the ri ht hand side is the tensor product

of two convergent potentlals Wlth C = 1 which converges by the first

argument. It follows that ® (1) ® q)gz(z) also converges, proving the proposition.

2.2.8. The case of general rank one CohFTs

In the previous section, we used the fact that we have a good handle on the
tensor product potential in the case that the two rank one theories are invertible.
We will show below that one can basically use the same formula even if the theories
in question are not-necessarily invertible.

Denote by C,, the coefficients of the tensor product potential of two rank one
CohFTs.

For a monomial p = const. x Cj, - - - C;, define the degree deg(p) := 141 +--- +1ip
and the length length(p) :=n

Lemma 2.2.9. In the notation of the previous section

Co =YW @YD (A0,)(0%") = Po(C,...,c10,08Y,...,c¥),  (2.27)

where P, (C(l) C(l) C§2), .. .,C,(f)) is a universal polynomial. Furthermore,
Po =) monomials Yy, vy g gcyin the O, CFY (2.28)

with bideg (b wey g gry) = (6D, kP), bilength (p
(1D 1) and the bidegrees and bilengths satisfy:

@ ) =
n, (KD, k@), 1))
KD~ 21D = @ _91® = —2 gnd 1MW +1P =p 1. (2.29)

Proof. Just express YV @Y () (Ag,)(8%") as a sum over trees (7(1), 7(2)), The
restriction then follows from the observation that bideg (p) is (|F, |, |F = ]|) and
bilength (p) is (|V,w|, |[V;@|). Finally, notice that |E )|+ |E,@| = n — 3. O
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Lemma 2.2.10. For a fized n there is a unique way of extending a monomial
pr, in 051),01(2);4 < i,j < n of given bideg (K, k@) and bilength (I(V),1()
into a monomial p™ in the Ci(l), C]@); 3 < 1i,j <, s.t. the bideg and bilength of p”
satisfy the Eqs. (2.29) and p™ coincides with pf,q for C:,(,l) = C§2) =1.

Proof. The monomials must be of the form p™ = predC(l)zC(z)j

restrictions (2.29) we find

and using the

i=n—2—k® 42 andj=n -2 - k@ + 2@, (2.30)
O

Corollary 2.2.11. The universal polynomials P, are given by the unique poly-
nomials extending the Cp, =: p&, given in [17].

Proposition 2.2.12. The tensor product of two convergent rank one CohFTs
8 again convergent.

Proof. Given the potentials ) and ®®, we assume after scaling that C{",

c? € {0,1}. Denote by 1/ the potential with Cg( "® _ 1 and Ci ARl

Ci(l)/ (2),1, > 4. These potentials are both convergent and 1nvert1ble. Using the
propos1t10n for convergent and invertible potentials, we obtain that their tensor
potentlal B is convergent. Now, due to t the Corollary 2.2.11 there is a unique power
series & € C[[Cj ciY, (2), z]] extending 3, s.t. <I>|C(1) P T = & and the conditions
(2.29) are satlsﬁed. O

First, assume that only one of the potentials is not invertible say Cs ) =1,C5 @ _
0. Regarding the power series <I>|C(1) o = = @ € (C[[C3 ,z]], notice that ®, con-

verges at all points (1,z¢) with z¢ inside the domain of convergence of 3 and is
therefore — again by Theorem 2.2.3 — convergent at points (0,zp). However,

Z}:| oo = ® and thus ® is also convergent.

In case that both C?(,l) = 0 and C:gz) = 0, we see that 5|C(1>_1 Py = ® and
3 ~ Y3 T
® converges at all points (1,1, xg) with zo inside the domain of convergence of .

Therefore — again by Theorem 2.2.3 — it is also convergent at points (0,0, zo).
Now, @ W@ g = ® and we again obtain that ® is convergent.
3 T3 =

Proposition 2.2.13. In case that both potentials are non-invertible, i.e. Cél) =
C§2) = 0, we even have that <I>|C(1>_C(z)_0 =& =0.
3 —vYs —

Proof. By Lemma 2.2.10, all summands of ® are of the form p" = predC(l)zC(z)j
with preq of given bilength (I(V),1®) and bideg (1), k() and 4, j given by (2.30).
Furthermore from the last equation in (2.29) we obtain IV +1® =n—1- (i +j).
Thus, using the inequalities

FD > 40 (@ > 4@
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we find
0=2n—4— (kW 4+ k@) 4 20W 11P) — (4 4 5) < =2+ (i + §).

So that (i + j) > 2 and all p™ vanish for C?(,l) = éz) =0. a

2.2.14. The higher dimensional case

Given two formal Frobenius manifolds (V), ¢, (V) and (V3 ¢ &2)
with convergent potentials ®(1) and &), denote the corresponding ACFs by Y1)
and Y9,

Let (V, g, ®) be the tensor product formal Frobenius manifold. Choosing a basis
(05, a € A resp. (8,52)), b € B for V(1) resp. V@, the tensor potential in the tensor
basis Oy 1= 8((11) ® 8152) takes the form

oo
1
P = 2:3 o Z Za, b, ---walblY(l) ® Y(2)(A0n)(6a1b1 ®-®0a,p,). (2.31)
n—=

(b3,--0s bn)

2.2.15. Pure even case

In the pure even case, we can consider the points yqiag Whose coordinates are
given by zq, =y, y € C constant Va € A and b € B. The potential at these points
reads

o
1
® = Z myny(l) ® Y (Agn) (0 ® §@)®n) (2.32)
n=3
with
oW =" 8" and 6@ = Y~ o> . (2.33)
a€A beB

Proposition 2.2.16. The potential of two convergent pure even CohFTs is
convergent.

Proof. First scale the chosen basis in such a way that |g?°| < 1. Now, consider

the series
x

3 #yn YD @ YO (Agn) (8 @ 82))EmY)

n=3

Due to the condition |g®®| < 1, this series is dominated by the tensor potential for
two rank one CohFTs given by the coordinates:

O 1= [YDEWEm), O = YD @@em). (2:34)
O

Since the two given potentials ®1) and ®® are convergent, so are their restric-

tions to the line 2 = y Tesp. w,(,z) = y as power series in C[[y]]. Thus they are also
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absolutely convergent and the positive counterparts of these restrictions are just
the rank one CohFT given by the coordinates (2.34). The potential of the tensor
product of two convergent CohFTs of rank one is convergent by Proposition 2.2.12.
Therefore, we have convergence of the tensor potential ® of ®(1) and ®®) at some
points Ydiag, by the remarks above. Using the theorem on complex series 2.2.3, we
find that the potential ® is indeed convergent.

2.2.17. The general case

Consider the underlying Z, graded space of the theory V = V, @V with a basis
(Oa, | i € Iy) of Vp and (8, | i € Ir) for some subsets Iy, I; of a set I = o I1I; with
an order <. Again chose the basis in such a way that |g?°| < 1. Denote the dual
coordinates of Vp by (z; | i € Ip) and those of V; by (y: | iely).

The potential can now be written as

e = Z Z Yan - - - Ya1 Pas,v0n (2.35)

n ap>-->ailai€l

1
q)al,u-,an = ZW Z xbm"'xhyn—l—m(aa] ®"'®8an ® O, ®"'®abm).
m (bm,---bl)El(;("

(2.36)
The potential ® is by definition convergent, if all the ®,,,... 4, are:

Proposition 2.2.18. If ® is the tensor product of two convergent series o
and ®2), then all the ®ayb,,... anb, With (ai,bi) € I are convergent with the usual
notation for the variables and index sets for tensor products.

Proof. Consider the following auxiliary pure even series in the even variables
zij | i€ IW,jeI®

1
=" Y e CanValus @ @)l (237)

N (a3,...,ap)el(DXn
(b1,...,bp )EI(D)X R

O

To prove convergence we again look at points x; = y with y # 0. In the tensor
case, i.e. ¥, = YU @ Y(?(Aq,) this series is dominated by the tensor product
potential of the following two one-dimensional series:

¥ = %yncvgl) cP=lv.| ¥ a((é)ébn ’ (2.38)
n : e J ()
1
o@ = Zmyncéz) c® =y, Z 3‘(3)@7» ’ (2.39)
n * 1eI(2)

where I and I® are the index sets of the two original theories ®1) and ®(®.
Notice that the Zy-grading and the order of the 8,, is irrelevant, since we take the
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absolute values of the correlators. Because the series ¥(1) and ¥(?) are convergent,
by the assumption of convergence of ®(1) and &), their tensor product potential
converges by Proposition 2.2.12. Therefore, ¥ converges as well.

Finally notice that

0 0

a$a1b1 6wanb’n lmaibi =0:(ai,bi) €l
1
=> ml > Lemdm " * " Terdy
m ((e1,d1), 1(cm1dM))€I(;<"

X |Yogm(Bashy ® @ Bapb, ® Oy ® -+ e, a,, )| (2.40)

and these functions again converge for some points ygiag With Z; (Ydiag) = ¥ | (¢,5) €
Iy. This shows that ®q,,,....a.5, is absolutely convergent at some points on Ydiag
of the above type and thus the proposition follows by Theorem 2.2.3.

Collecting all results, we arrive at the general Theorem 2.2.1.

3. The Tensor Product for Frobenius Manifolds

In this section we will only deal with analytic Frobenius manifolds.

3.1. The exterior product of two Frobenius manifolds

Given two Frobenius manifolds M(), M(®) we can consider the vector bundle
Ty BTy on M (1) x M@ which we call the exterior product bundle. Since we
have an affine flat structure on both M and N, we also have such a structure on
M) x M given by T]{/I(l) 5% T1(/1<2) on Ty - In addition we have an affine
flat structure on Thy X Ty in the sense that

Tl{/ﬂl) ® TI{/[(Z) ® Oy xmp@ = Tpay B T2 (3.1)

3.2. The tensor product relative to a pair of base-points

Reminder 3.2.1. As explained in Sec. 1.3.5 given any pointed Frobenius man-
ifold (M, p) there is an associated convergent formal Frobenius manifold (T}, g, ®p)
given by the expansion of the potential ® of M at p in terms of the coordinates (x;)
of a chosen basis of flat vector fields (X;).

3.2.2. The tensor product of Frobenius manifolds relative to a pair of base-points

Using the notion tensor product for formal Frobenius manifolds in the context
of pointed Frobenius manifolds, we arrive at the following construction:

Given a pair of points (p, ¢) in the product M® x M® there is an associated
convergent series ®p, := M Yo <I>(11VI ? in the dual coordinates of Ty Ty ppa,
which defines a Frobenius manifold structure on the domain of convergence of ®p,
(cf. Sec. 1.3.7). We will denote the resulting pointed Frobenius manifold by

(Tp,m ® Tg yy,0) . (3.2)
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Its germ corresponds to the convergent formal Frobenius structure

(@ Ch, ® Oy, gpr) ® gM(z),q);,u(l) ® ‘I’,IJM(?)) . (3.3)

3.3. Frobenius structures on the affine exterior bundle

In the construction of the previous section we have defined over each point
(p,q) € M) x M® a pointed Frobenius manifold on a neighborhood V;, the zero
section s of the fiber of the exterior product bundle. Let V' be the union of all the
Vog-

VC—-—>~ TM(I) X TM(z)

Ny

MO x M@

Definition 3.3.1. A bundle will be called a bundle of pointed Frobenius man-
ifolds if there exists a neighborhood V' of the zero section s.t. the intersection of
each fiber with this neighborhood is a Frobenius manifold. Let V}, be the intersec-
tion of V with the fiber at p then it is naturally a pointed Frobenius manifold with
base-point zero.

Examples 3.3.2.

(i) By the previous remarks, the exterior product bundle is actually a bundle
of pointed Frobenius manifolds.

(ii) Every tangent bundle of a Frobenius manifold is naturally a bundle of
pointed Frobenius manifolds. This can be shown in two equivalent ways.
Either one uses the pointed Frobenius manifold (®, p) to define a potential
near zero on the fiber over p or one uses the affine connection associated to
the flat structure connection of the Frobenius manifold to define on each
fiber T, v the potential ¥,(€) := ®(p') where p is the development of a
path joining p’ and £ € T}, n is the point of the development into the fiber
at p of the point p’. The latter construction is defined locally since the
local holonomy groups vanish, due to the flatness of the connection.

Definition 3.3.3. A flat affine connection on an exterior product bundle over
the Cartesian product of two Frobenius manifolds M) and M(®) which is an exten-
sion of the linear connection defined by the canonical flat structure is called tensor
product connection if it respects the flat and the Frobenius structures, i.e. it satisfies
the following two conditions:

(i) Let 6, : Ty B Thyy — Tppy W Thy2) be the map corresponding to
the tensorial (GLy, ® GLy,, C"™) 1-form defined by the affine connection
(cf. e.g. [14]) then 6, induces a linear map

6/ : T}, B Tl = T X T

@ - (3.4)
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(i) The parallel displacement w.r.t. the affine tensor projection preserves the
germs of Frobenius manifolds, i.e. for all local horizontal lifts #; a of curve
Z; in M(l) X M(2) with T = (p, q) and To=0¢ TM(1) X TM(z) [(p,q) into
V C Ty XT3y, where 0 is the zero section of the corresponding vector
bundle:

-
(Tyrny MTM@)I(p,q),fZ'O) = (Tyoy BTy |z, %) Vi€V, (3.5)

Remark 3.3.4. Since the linear connection is flat and torsion free, such a
tensor product connection locally identifies the germs of Frobenius manifolds in
different fibers of the bundle of pointed Frobenius manifolds via affine parallel dis-
placement along arbitrary paths connecting the base-points.

Proposition 8.3.5. If the Frobenius manifolds M) and M@ both carry flat
identities then the affine connection defined by the 1-forms:

(9.(,] : TM(l) 25} TM(z) IU - TM(1) X TM(z) IU

0, (6¢(11)) = Oq0, 61'(6(52)) = Bos

is a tensor product connection. Here again (6&1) , 6,52)) i8 the restriction of a chosen

basis of Tz{/ﬂl) | TJ{N) and (8gp = OV ® 3,52)) the tensor basis of T1{4(1) X TI{N).

Proof. It is clear that the locally defined forms glue together and that the
condition (i) is met. The proof of the condition (ii) is given below by calculating
the respective ACFs. We give the proof including odd coordinates. O

Lemma 3.3.6. Let {Y?} be the ACFs corresponding to ®, and {Y¥'} be the
ACFs corresponding to <I>;,, where p' is some point which lies inside the domain of
convergence of the potential ®,. Let z°(p’) =: z§ be the x-coordinates of this point.
The new operadic ACFs are then given by, see (1.22):

For any stable n-tree 7:

/ 1
YP (7)(00, @ - ®8,,) = Z i Z e(bla) v - - - 2l
N>0"" " (by,....bn):b€A

Yp(”fn+1,...,n+1v}(T))(aal ®: @0, ®0, @+ ®py). (3.6)

Proof. Inserting (1.22) into the definition of Y(7) (1.13), we see that the
correlation functions having a pre-factor ngv ---wgl are those belonging to trees
with N tails added in an arbitrary fashion to 7. The sum over all of these trees is

JuSt TE Ly N}('r), whence the Lemma follows. O
In order to prove the Proposition, we also need a Lemma about the diagonal

A7 which extends Lemma 2.1.11.
0s

Lemma 3.3.7. For any two disjoint subsets S,T C {1,...,n}

(T8 TE )N Aogs,... mprcsumy) = (0 s) (B, ) - 3.7)
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Proof. Writing (7%, 7%) as (r%,id) o (id, 7}), we obtain, after repeated appli-
cation of Lemma 2.1.11 in an appropriate version, that

(05 T Bz oom) = (15 0 Tresid)(Agz,

.....

Since 7g and mp commute if T NS = @, we can prove Eq. (3.7) again by
Lemma 2.1.11. O

Proof of the PropOSItlon 3.3.5. For any point (p,q) € M™) x M® denote
the domain of convergence of <I> 2 by Up and the domain of convergence of <I>(2) by
U, and set Uy, oy = Up X Uy

Choose a point (p,¢’) € Up,q). Let p’ have the coordinates x (p ) =

q' the coordinates :1:,(),2,)( ) = (()2)1,'/.

Denote the ACFs corresponding to <I>£’I @ by {Y?} and denote the ACFs corre-
sponding to &)/ @ by {¥¥'}. Likewise denote the ACFs corresponding to & @ by
{Y,2} and denote the ACF's for the expansion (I’fl‘if @ by {vay.

The correlation functions of the formal tensor product potential ®,, are be
given by {Y?? = Y?®Y?(Ag;, )}. The ACFs of the potential @54 will be denoted
vz},

Finally let 6.((p',q')) be the image of the affine development w.r.t. 8, of 0 €
Ty int0 Tpyay p @ Tape ¢ and suppose that 0-((p',q")) € Viq

Denote the ACFs corresponding to the expansion of the holomorphic function
given by ®yq at 6-((¢,¢)) by {¥a~ "7},

Since 6 is linear, the point 6,((p',¢")) € Tpr) p ® Ty ¢ has the coordinates

(l)a and

Zart (0 (0, 4))) = B0z + barozs?” .
Equation (3.5) in terms of these correlation functions reads
Y- (@) — vy yn >3, (3.8)
Now
ynef((p’,q’))(aa, ar® ® Bt arr)
yay o ()
l

N>0 T =0 (2 ,b’)|b'GA'
(61l )b €A

% €(b/0|al ”)e(Ob"Ia’ //) (()2)1’5(1—1 . m((]Q)b'{xgl)bi . x(()l)bﬁ (Yp ® Yq)

X (A%7y won) ajay ® - @ Oaaly ® Opy0 @ -+ Byyo ® Dopy @ -+ ® Doy _,)
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N
= ..1_' Z Z <1;[) e(b’[a')e(b”|a")e(b’|a")e(b”|a’) ,

N20" " 1=0 (b},..b])|b/€A’
(bll’l"'rbxl'l)lb”GA”

y x((f)bN—l ---m(()z)b/{a:(()l)b; _“w‘gl)b; (YP @ YY)

X (('K{n+l+1,...,n+N}*’ 7T{n+1,...,n+l}*)(Aﬁ0’N+n))

X (3a'1a’1’ R 3a;,a;; X Bb'l & --- Bb; ® 6(,;' R D 8,,%_1) (3.9)

due to Proposition 2.1.8.

On the other hand, tensoring the ACFs {Y?'} and {Y,} and then utilizing
Lemma 3.3.6 yields

Y2 (Bapar @+ ® Bagyar) = (VP @YV )(Agz, )Barar @+ ® By ar)

E : § : 1
= Z — e(b’|a')e(b"|a")e(b'|a”)e(b”[a')
N -]
N>01=0 (biv'--ybi)|b,€A, N'(N l).
(BY 1yt ) b €A

« mé2)b$v~z B .x(()i’)b'l'x(()l)bi .“w(()l)bll (Y? @ YY)

X ((an+1,...,n+z}’W?n+l+1,...,n+N})(AMO,NM))
X (Oapay @+ ® Barar @ Oy @ .. Oy @0y ® - @0y, ). (3.10)

Applying Lemma 3.3.7 with S = {n=1,...,n+{},T={n+1+1,...,n+ N},
we see that (3.9) and (3.10) and thus the multiplications, respectively the potentials
modulo quadratic terms, coincide.

Remark 3.3.8. One should view the existence of a tensor product connection
as an expression of the independence of the choice of base-points for the operation of
forming the tensor product of pointed germs of Frobenius manifolds. More precisely,
consider two germs of pointed Frobenius manifolds realized as two small neighbor-
hoods of zero on C™, where n; are the appropriate dimensions. In this case, the
pointed tensor product is just the germ on the fiber of the exterior product bun-
dle over zero which we can again realize as some small open neighborhood of zero.
This neighborhood then contains all nearby germs (e.g. the germs of tensor product
with base-points near zero) via the affine connection. Hence all continuations of the
initial germ over zero will likewise be continuations of these germs.

3.4. The tensor product for Frobenius manifolds

In this section we will give a way to patch together all germs on the exterior
product bundle. More precisely, we will construct a Frobenius manifold which
contains a submanifold parameterizing all these germs. In order to give a general
construction we will need the following technical assumption.
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Definition 3.4.1. A flat identity on Frobenius manifold M is called factori-
zable if M = M x Al and this induces the following direct sum decomposition:

TM =TM®@ {e). (3.11)
Definition 3.4.2. Consider a commutative diagram of the type

Tay B Tapr ———> 1*(Twy) — Ty (3.12)

b
N

MO x M@ x Al

where (M(l),TI{l(l),gM(x),<I>M(1)), (M(z),TI{/[(z),gM(z),q)M(z)) and (N, TJ{,,gN,‘I'N)
are Frobenius manifolds with factorizable flat identities, 7 is an affine map, which
factors through p : MM x M@ = M® x Al x M@ x Al — MM x M?) x A! which
is given in some fixed choice of coordinates on the factors A by p(my,z, me,y) =
(my, mg, T +y), © is an embedding of affine flat manifolds and © is an isomorphism
of metric bundles with affine flat structure between the pulled back tangent bundle
of N and the exterior product bundle over M (M) x M), Where the statement that
© is an isomorphism of metric bundles with affine flat structure means that it is an
isomorphism of metric bundles and 7*T} = @(TI{N) ® Tj\f,[(2) )-

We will call such a diagram a tensor product diagram and N a tensor product
manifold for M(®) and M®) if it additionally preserves the structure of bundles of
Frobenius manifolds, i.e. it satisfies the following conditions:

(i) for all points (p,q) € MV x M@

@
(@C 04 ® O, gy ® gM<z>,<I>ff“) ®eM" )
FoO . N
~ (@c (# 0 ©(8a ® By)), gn, @T((p,q))) , (3.13)
where 7 0 ©(0 ® 9p) € Tr((p,q)),N-
In other words, at all points in the image of 7, ¥ 0 © gives an isomorphism
of pointed germs of Frobenius manifolds defined in Example 3.3.2:

70O
(Tp,M(l) ®T ,M(2)s O) = (T‘r((p,q)),N, 0) = (N’ T((p, Q))) . (314)

(ii) The affine connection defined on Tysa) B Ty by the pullback of the
canonical affine connection on Ty — defined by the flat structure on Tn
and the canonical 1-form 6, — is the tensor product connection 6, of
the Proposition 3.3.5:

T*(fcan) = O 00, (3.15)

as maps.
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Remark 3.4.3. Due to the condition (i) for a tensor product diagram the
condition (ii) for a tensor product connection is already satisfied by the pulled
back affine connection cf. Example 3.3.2. The condition (i) for a tensor product
connection then forces that 7 is affine in the affine coordinates of the source and
target spaces.

Definition 3.4.4. Two tensor product diagrams

TM(1) X TM(z) ——e—-—v‘- T*(TN) -i-—\ TN (3.16)

.
——

MO x M) x Al

Thra B Thpa —S> 77%(Ty) > Ty (3.17)

MY x M@ = N!
Lp/ /

M® x M@ x Al

are called equivalent if there exist open neighborhoods Un,Up: of the images of
7,7 and an isomorphism ¢ of of Frobenius manifolds Uy — Up- s.t. the induced
diagram satisfying the conditions of a tensor product diagram is commutative.

T
Tnlus r ™TN G) Trpey BTy o . T* TN —I s TN’|UN/ (3.18)
M) % M(z)
/ pl/ Lpl \
Un 3 i NI x M) x ALC > Uy

Note that we take the notion of isomorphism of Frobenius manifold in the strict
sense that all data should be compatible and we do not allow for instance a conformal
change in the metric as in [§].

Theorem 3.4.5. For any two Frobenius manifolds with factorizable flat iden-
tities there exists a tensor product diagram and hence a tensor product manifold of



THE TENSOR PRODUCT IN THE THEORY OF FROBENNIUS MANIFOLDS 189

these two manifolds. Furthermore, any two tensor product diagrams for two given
Frobenius manifolds M) and M(? are equivalent.

Proof.

Construction. We construct a tensor product manifold and the structure iso-
morphism for Frobenius manifolds with factorizable flat identities (for a generaliza-
tion see below). We start from a pointed cover which is a refinement of the cover
given by the domains of convergence of the various <I’§,1) and <I>¢(12). Another choice
of refinement would lead to an equivalent diagram. We define W = {U,,)|(p,q) €
M@ x M@}, where the U(p,q) are defined as above. The affine structure provides
the affine transition functions for the respective coordinate maps @y

o =pveg touUNV) s ov(VNU) YU VEW, UNV £0

which can be written in matrix form relative to the chosen basis

o (e
v 0 1)°
They satisfy the conditions

Ay &y Ay —AVEY Ay & AGAY AVE) + &7
o1/ \o0o 1 ’ 0 1) 0 1 ’

(3.19)
where ¢}, are product transition functions, ie. AY = (AL @ A@)Y and ¢ =
af +yy. )

Notice that the U, 4) can be decomposed as Uy, q) = U(p,q) X C, where we choose
the direction C to be the “anti-diagonal” in C2 given by () — e(2), Furthermore,
the map p has a section s defined by s(mi, ma, z) 1= (my, %x, mo, %w)

Using the tensor product connection we can map each U into the fiber of the
exterior product bundle over its base-point, say (p,q). This yields an embedding of
U into Vpq, where Vp, is, as defined above, the domain of convergence of <I>§,1) ®<I>,(12).
Let 8, be the tensor connection of 3.3.5. Denote the affine parallel displacement
w.r.t. 6, of Thyy ® TM(2)|(p,q) into Thyay X TM("’)I(po,qo) by (97)8?(1’;10). We define
a pointed coordinate neighborhood, to be a pair (U, (po, go)) s.t. U is a connected
simply-connected coordinate neighborhood of a fixed point (po,q0) € U. For such
a pointed coordinate neighborhood (U, (po, go)) with U C Upg,g), We define 7V :
U~ TM(U X TM("’) l(po,qo) by

7V (p,q) = (6,) 8 (0).. (3.20)

From now on we will always use pointed neighborhoods and sometimes drop the
explicit mention of the base-point.

Denote the matrix in the chosen basis defined by 8/ on an open pointed coordi-
nate neighborhood U € W by V. These matrices satisfy

(AD @ ADYU — gV (A1) ¢ AT, (3.21)
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In this notation,
TU( aQ) = 01[-](1)’ q) ) (3'22)

where we identified the point (p, q) with its coordinate vector in Tpo,90)-

Now choose an open pointed cover of I the image of s inside M x M
subordinate to W along which is small enough for our purposes, i.e. all open sets of
the cover are connected simply-connected coordinate neighborhoods, their union is
a tubular neighborhood of s(Af) and all intersections of these opens are connected
simply-connected as well. Furthermore, V(U, (p,q)) € U : (p,q) € Im(s),U C Uy, o),
and TV (U) € Vp,q,.

For each U € U, we choose U to be a tubular neighborhood of the image of U
inside Vpq. Again, different choices lead to equivalent diagrams.

We obtain the desired tensor product manifold by gluing the open sets U together
using the tensor product of the transition functions. More precisely, for a given pair
U, VelU,UNV # B we define the affine transformation

AV 7V v v
(pU = ’ ( . )
01 0 1
where AY; = Agl‘;:g:g;)). It is straightforward to check using (3.19) and (3.21) that
o =7y, Vel =0y, (3:24)
and therefore we get a manifold
N :=(Uyeu U)/R, (3.25)

where R is the equivalence relation induced by the .

The cover U := {U|U € U} together with the inclusion maps ¥ : T — Crnz
and the transition functions wg (3.23) define an affine atlas of N. The canonical flat
structure @a,b C (8, ® B) on each U together with the tensor metric g = 9p D gq
glue together under the affine transformations to form an affine flat structure on N.

Due to the condition (3.21) the maps 7¥ : U — U C V,, of (3.22) satisfy

oV 7Y (u) =7V (u) (3.26)

for u € UNV and thus glue together to a map t : iy U = N. We can now define
the map 7 as
Ti=tosop. (3.27)

Note that since T,y and T2 are trivial along the factors C of the decomposition
M® = M® x C, sop induces the following identity between bundles:

(3 o p)*(TM(l) X TM(2)) = TM(I) X TM(z) . (328)

Due to the fact that all higher (i.e. higher than the third) derivatives of the poten-
tials @ are independent of the coordinates of the identities, the above identity of
bundles induces an isomorphism of germs of pointed Frobenius manifolds

(TM(l) X TM(Z) Ima 0) = (TM(I) X TM(Z) 'sop(m)’ 0) . (329)
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So far we have constructed an affine flat manifold N amap 7: MM x M) » N
and it is easy to confirm that 7*(0can) = © 0 0, and that 7*(Tn) and Tha) Ty
are naturally isomorphic under the composition © of the identification of the tangent
space of a vector space at a point with the vector space itself and the isomorphism
of (3.28).

Furthermore, by construction the map 7 factors through p and since ¢ is an
injection on Im(s), 7 := ¢ o s is an embedding.

To endow N with the desired Frobenius manifold structure, we have to check
that the U glue together as Frobenius manifolds.

This follows from the properties of the tensor product connection. Letu € UNV,
U have the base-point (p,q) and (p’,¢’) be the base-point of V. The Frobenius
structure of U is given by the potential ®,, and the Frobenius structure of V by
the potential ®,/,. Using the tensor connection we see that the germ of ®,, at
7Y(u) and the germ of ®,, at 0 in V,, can be given by the same power series. This
equality between the germs holds as well for the germ of ®,, at 0 in V,, and the germ
of &, at 7V (u) and since the whole germs coincide so do the functions:

Bpo(2) = Ty (y) Yy =G5(x). (3.30)

Since 6, is a tensor connection the definition of ¢ and the isomorphism (3.28)
show that the condition (i) for a tensor product diagram also holds.

Uniqueness

Let two diagrams as in 3.4.4 be given. To construct the open subsets Uy,
Up+ and the isomorphism of Frobenius manifolds ¢ we choose a pointed cover Un
of a tubular neighborhood of the image of 7 which additionally has the following
properties:

(i) Y(U,n) € Uy : n € Im(7),U C U, where U, is again the notation for the
domain of convergence of ®%.

(i) The opens and their intersections should be connected and simply-
connected and all open sets should be coordinate neighborhoods.

(iii) Using the isomorphisms © and ©’ we can identify a small neighborhood
of 0 on the fiber of Ty;1) Ty at (p,q) with a neighborhood of 7((p, g))
on N and a neighborhood of 7/((p, ¢)) on N’. The condition for our cover
is that all open neighborhoods of the cover are so small that the above
identifications exist.

We define the map ¢ as the concatenation of these identifications, i.e.
PV = exp |rs(aoi=t () © ' 0O 0O 0 Fl o 0 expT |, (3.31)

where %ls_oli,l () 18 the inverse of 7 restricted to the fiber of Thy) (2 at s0i~1(n).

We set Uy = Uy,nyeuy U and Unr = Uwmyeun SUM(U). Since T 0can = O ©
6, and © o0, = 7'*0.,, and all maps preserve the relevant germs of Frobenius
manifolds, it is clear that the maps ¢(U'"") patch together as a morphism of Frobenius

manifolds. On the image of ¢ we have @¢|im(;) = 7' osoi~ 1. A short calculation shows
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that this map yields a bijection between Im(i) and Im(i') with inverse 7 0 s’ 0 4'~ 1,
After making the original cover smaller if necessary, we can assume that the induced
cover Uy := {(¢(U), ¢(n))|(U,n) € Un} also satisfies the conditions (i)~(iii) and
the union of the opens of this cover is again a tubular neighborhood of Im(7’).
Hence, we can perform the analogous construction starting from Uy yielding an
inverse morphism. Thus ¢ is an isomorphism of Frobenius manifolds which satisfies
the condition ¢ o 7 = 7’ and the commutativity of the upper part of the diagram
(3.18) follows directly from the construction.

Proposition 3.4.6. Given two Frobenius manifolds with factorizable flat iden-
tities and Euler fields (with d = 1) then any tensor product manifold carries the na-
tural tensor product identity and can be endowed with an Euler field locally defined
by 2.1.10.

Proof. We will define the identity and the Euler field on a tensor on the
product manifold IV constructed above. The results can be pushed to any equivalent
manifold. Let

=8V @8? EY:=E,, (3.32)

where Ej,; is the Euler field constructed for the formal tensor product in 2.1.10.
The gluing condition for the identities is clear from the compatibility of the flat
structures. What still remains to be shown is that the locally defined Euler fields
glue together J¢g EV(z) = EV(gbg(m)), where J is the Jacobian. O

Let gﬁg (x) = AW @ APz + 6V (£)). Furthermore, we will write all Euler fields
in matrix form; for U = UM x U@, v = v x v

EVY (@) =Dz ++U", i=1,2.
The gluing conditions for E(V and E(? read
AOpU? _ pv® AD A@ U Dv“’)gg((:)) 4 V@ . i=1,2.
In this notation for all (p, ¢):
Epy = (DY @ Id+Id®@ DV — 1d® Id)(z) + 0¥ (V" +rU?).
And hence
AW @ AP Ey(2) = (DY @ Id+ Id® DV - Id ® Id)(3% ()
+6Y (- (DY ©Id+ Ide DV
~ Id @ Id)(F) + AU 4 AU

= Eyq (9} (@) -
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Remarks 3.4.7.

(i) The restriction of factorizable identity is not too severe. In all presently
known examples this is the case. This includes all semi-simple Frobenius
manifolds considered on C" without the diagonals, as well as the split
semi-simple Frobenius manifolds on the universal cover of the previous
space given by special initial conditions.

(i) Locally one can always complete the direction of the identity by using an
appropriate embedding into C" (see below).

3.5. Embedded Frobenius manifolds

Notice that the universal cover of every affine manifold of dimension n has an
immersion into C" (cf. e.g. [18]). This immersion can be quite non-trivial however,
see e.g. [26]. We will call a Frobenius manifold an embedded Frobenius manifold if the
manifold itself has an embedding into C". In this case we will identify the Frobenius
manifold with its image under the embedding. It then has global coordinates given
by a choice of basis for the affine flat tangent bundle.

Actually, most constructions of Frobenius manifolds use global coordinates,
e.g. the ones coming from quantum cohomology, unfolding of singularities or
Landau—Ginzburg models.

Lemma 3.5.1. An embedded Frobenius manifold M, M C C"™, with flat iden-
tity can be completed in the direction of the identity, i.e. there exists a Frobenius
manifold M with factorizable flat identity which contains M as a Frobenius mani-
folds M = M x C D M and the other structures are given by restriction.

Proof. Since the potential a polynomial of order less or equal three in the
coordinate of the identity for a Frobenius manifold with flat identity, the respective
three-tensor defining the Frobenius structure is independent of the coordinate of the
flat identity. Hence, since the tangent bundle is trivial, we can enlarge the domain
of definition of this three-tensor so that it contains all lines in the direction of the
identity. Likewise, we can extend the metric to these points too. |

The structure of a tensor product manifold for two embedded Frobenius mani-
folds with factorizable flat identity allows a more explicit description.

Let M and M® be realized in C™ respectively C™ and consider the map
7 Cmtnz oy CMinz = C™ @ C™2 given by 7( él)) = 8,0, 7'(6,52)) = Opp. Looking at
the construction we arrive immediately at the following:

Proposition 3.5.2. The tensor product manifold for embedded Frobenius ma-
nifolds is equivalent to an embedded Frobenius manifold given by a neighborhood of
the image T(MD x M®) c C™ @ C™ and the image is isomorphic to M x
M®) x C in the notation of Lemma 3.5.1
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Remark 3.5.3. The tensor product in the particular cases considered in this
subsection thus contains a subset isomorphic to the image of p parameterized by
the coordinates 40, Zop (Zap = 0 for ab # 0). The third derivatives of the potential
® of the tensor product satisfies

Baatee m(r) (Tio, o) = B (2 = 2i0)80) o (@) = @5), 1,5 #0 (3.33)

but moreover along the image of 7 the whole germs of ® are given by the tensor
product of the associated pointed germs. Vice versa, the condition (3.33) does not
suffice to identify a tensor product manifold, since it does not determine the higher
derivatives in the 0, directions for ab # 0.

3.6. General tensor products

The construction and the universality statement easily generalize to the following
setting,.

Definition 3.6.1. Let 6, be a tensor product connection on the exterior pro-
duct bundle over a Cartesian product of two Frobenius manifolds M) and M®.
We call the Cartesian product M) x M® @, -reducible if there exists a flat affine
manifold M, an affine projection p : M) x M — M together with an affine
section s of this projection which is an embedding of affine flat manifolds satisfying
the following conditions

(i) The projection condition of (3.28)
(S op)*(TMu) X TM(z)) & TM(‘) X TM(z).. (3.34)

(i) The condition on the respective germs of Frobenius manifolds (3.29)

(TM(l) x TM(z) |sop(m)7 0) (TM(l) & TM(Z) lm, 0) (3.35)

(iif) The compatibility with the tensor product connection; under the identifi-
cation of (i):
(sop)*0, =6,. (3.36)

(iv) And the embedding condition
Ty B Th1a [tm(s) = Tim(s) D ker(87)m(s) - (3.37)
The triple (M, p, s) is then called a 8, -reduction.

Lemma 3.6.2. Ifin a Cartesian product M) x M@ eqch of the factors M®
can be decomposed as M) x A™ as flat affine manifolds and the whole Cartesian
product can be decomposed as M x A™ where the third derivatives of the potential
are constant on the A™ and the kernel of 0, gives coordinates on A and furthermore
the A™ is an affine flat factor of A™ x A", then M(Y) x M@ s 8, -reducible.
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Proof. We can decompose M) x M® as M1 x M) x Amtnz—n x A"
where A"1+727" » A™ s the postulated decomposition of A™1*"2. Now consider the
projection p: MM x M® — M = M® x M® x Am+72=" and the zero section
s. They satisfy all the conditions of a #.-reduction. g

Lemma 3.6.3. For two Frobenius manifolds with not necessarily factorizable
flat identities a general tensor product diagram for the canonical tensor product
connection 6, (3.3.5) exists.

Proof. Locally we can achieve the following situation: let U in M M x M@ be
an open set which satisfies: U = U x U® = TW x D, x U? x D,., where D, is
a disc of radius r in C centered at 0 — D, = {2 | |z| < r} — which is coordinatized
by the identity. Now take M := U x U® x Dy, where Dy, = {z | |2| < 2r} and
define p and s as in the construction of 3.4.5. Since again the potential is constant
on the factors D all necessary properties directly follow. O

Definition 3.6.4. For three Frobenius manifolds M), M(® and N consider
a diagram of the type

TM(U X TM(z) ° T*TN 7 TN (3.38)
MO x M@ < N
s( lp ;
M

together with a tensor product connection 8., such that M® x M® is §,-reducible,
(M,p,s) is a .-reduction, 7 is an affine map and © is an isomorphism of metric
bundles with affine flat structure.

We will call such a diagram a 8,-tensor product diagram if it satisfies the con-
ditions (i) and (ii) of a tensor product diagram where now 6; is given in the data.

Definition 3.6.5. Two general tensor product diagrams are called egquivalent
if there exist open neighborhoods Un, Un+ of the images of 7,7’ and an isomorphism
¢ of of Frobenius manifolds Uy — Un- s.t. the induced diagram of the form (3.18)
satisfying the conditions of a general tensor product diagram is commutative.

Theorem 3.6.6. Given a tensor product connection 6, on an exterior product
bundle over the Cartesian product of two Frobenius manifolds M® and M@ with
0, -reducible Cartesian product, there exists a 0, -tensor product diagram and thus a
tensor product manifold. Furthermore, fizing a 6-reduction all diagrams involving
this reduction are equivalent.
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Proof. In the case that and 6, is not identically zero we can retrace the proof
of 3.4.5, since we only used that #, is a non-zero tensor product connection and the
existence of a f;-reduction. In case . = 0 the image of p is just a point and the
tensor product already exists by the construction for convergent germs of Frobenius
manifolds. The uniqueness then follows directly from the condition (i) for a general
tensor product diagram. (W]

Remark 3.6.7. The local situation for Frobenius manifolds with flat identities
can be described in three different ways:

(i) Via the tensor product connection.
Given any point (p,q) € M) x M® we have the corresponding pointed
germ of the tensor product relative to the pair of base-points (p,q) on
the fiber of T4y & T2 over (p,q). This germ can be seen as the germ
describing the situation locally since by virtue of the existence of the tensor
product connection of 3.3.5 all continuations of this germ will contain all
neighboring germs.

(i) Via an embedding and completion.
Locally we can embed any complex affine manifold of dimension n into C™.
Using the analysis of embedded Frobenius manifolds with flat identity we
can complete our embedded manifold and use the Theorem for tensor
product diagrams to find a local tensor product manifold.

(iii) Via the local general tensor product.
See Lemma, 3.6.3.

Of course all these descriptions are compatible. The compatibility of (i) with (ii)
and (iii) is manifest in the condition (i) of the definition of (general) tensor pro-
duct diagrams. For a suitable neighborhood, we can pass from the (ii) to (iii) by
restricting everything to the image of this neighborhood in the completion of its
embedding and its image under .

Remark 3.6.8. One necessary condition for the existence of a general tensor
product diagram is the existence of a tensor product connection. In some cases
there are many such connections in others there may be none. If there is none one
this shows that the tensor product can only defined w.r.t. a fixed base-point and
there is no way of naturally parameterizing the tensor products by a submanifold
in a Frobenius manifold.

Examples 3.6.9.

(i) Choose two vector spaces V, V' with a constant product and consider the
constant tensor product multiplication in the sense of algebrason V@ V",
Now any linear map 6, : V x V! =+ V ® V' will provide a tensor product
connection.

(ii) Consider two one-dimensional Frobenius manifolds whose potentials both
have a zero; say at the points p and g, but are not constantly zero near these
points. Using the Proposition 2.2.13 we see that the Frobenius structure
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on the tangent space at (p, g) would be given by a vanishing potential. On
the other hand, near the point (p,q) the potentials are non-vanishing by
assumption and so is their product which is the value of ¥ on the zero
section of the exterior product bundle. Thus there is no tensor product
connection on a neighborhood of the point (p, g). (For a general statement
about the one-dimensional situation see below.)

(iii) A tensor product connection always exists for the product of any Frobe-
nius manifold M with C carrying a constant multiplication, i.e. the third
derivative potential @ is constant ®,,, = o — where 2 is a fixed coordi-
nate on C. Notice that after scaling % we can assume that the multipli-
cation is either constantly zero or % is a flat identity for C. In this case,
0-(8,) = a0, 0-(8p) = 0 provides a tensor product connection. The tensor
product manifold is M itself and the map 7 = my the first projection of
M x C. Here p = 7 and s is the zero section.

3.6.10. The tensor product of one-dimensional Frobenius manifolds

In this subsection we give a complete answer to the existence question of a tensor
product connection in the case of two one-dimensional Frobenius manifolds.

Proposition 3.6.11. A tensor product connection for two one-dimensional
Frobenius manifolds exists, if and only if one of the factors has a locally constant
multiplication, i.e. locally ®,,, = o, where z is the coordinate function of the flat
vector field adz or equivalently it carries a flat identity or o zero multiplication.

In other words, the tensor product of one-dimensional theories is essentially
pointed and does not contain perturbations of the base-points.

Proof. Using the notation of the previous subsection, suppose a tensor pro-
duct connection exists. Choose any point (p,q) € M 1) x M® and a coordinate
neighborhood U of (p,q) with the local normalized product coordinate (z1,22),
ie. (z1,22)(p,q) = (0,0). Write ¢; := ‘I’,(zi)zlzl and @y = <I>£§),,2z2 and @, 5, =
0., 00,

set

¥(21, 22, 2) 1= Q2. (2 — T(21, 22)) -
The function v is independent of 21,2 since by definition of a tensor product
connection
(21, 22, 2) = o,0(2) .
Therefore, 5
8z ="
and thus

0 002122 or
5‘/)(21,22,7'(21,22)) = —%%—z(o) - '67i|(z1,zz)90'z1,z2(0) =0

[

9 ar
& a—zi(%m) - gzl(zl,zz)(so'lwg +@fph) =0,
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where / denotes the derivative and we used the short-hand notation @1,¢2 for
1(21), v2(22). Furthermore,

(pzh

0 2
a—ziwl(zla 22y T(Zl, 22)) 2 ( ) I(ZI,ZZ)(pzl z2(0) =0

19} or
A g(w’wﬁ +ieh) — £|(z1,z2)((p,1,<pg + 501020105 + P3p5) = 0. (3.39)
1 7
Therefore we have
0 o ,
Prg -ty V' (21, 22, 7(21, 22)) ) ¥ (1(21, 22))

= 01020105 (01 03 + P3ph) = 0.

Therefore either ¢; or @2 constantly vanish, or we may assume that on some
open set ¢1(z1) # 0 and p2(22) # 0 and therefore if also neither ¢} nor ¢} constantly
vanish we must have

! /
¥1 (21) - _ @2(22) =c (340)
pir(z1)  p2(z2)
where ¢ is a constant.
The solution to these simple differential equations is ¢1(21) = — + sora; and pa(z2) =

= + s+4;- Inserting (3.40) into Eq. (3.39) we find

which yields that ¢ = 0 a contradiction to the last assumption.
Therefore either ¢] = 0 or ) = 0 and the proposition follows. |

4. Semi-Simple Frobenius Manifolds
4.1. Semi-simple Frobenius manifolds

We will briefly recall the main notions of semi-simple Frobenius manifolds as
explained in [19]. For other versions see [5] or [11]. A Frobenius manifold of dimen-
sion n is called semi-simple (respectively split semi-simple), if an isomorphism of
the sheaves of Oj-algebras

(Twm, o) ~ (O}, componentwise multiplication) (4.1)

exists everywhere locally (respectively globally).

If a Frobenius manifold M is semi-simple, one can find so-called canonical
coordinates u; — unique up to constant shifts and renumbering — s.t. the me-
tric and the three-tensor A defining the multiplication become particularly simple.
Let e; = aa v; = du;, then

=Y n), A=Y 0. (42
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If in addition an Euler field exists, then it has the form E = Y (u® + c%)e;. In
this situation, we will normalize the coordinates in such a way that

E= Zuiei. (4.3)

This normalization fixes the ambiguity in the coordinates u’ and renders them
unique up to the S,-action.

Definition 4.1.1. In the above situation, we will call a point m € M tame, if
it satisfies u;(m) # u;(m) for all ¢ # j. In other words, the point m is tame, if the
spectrum of the operator Eo on Ty is simple.

In the theory of semi-simple Frobenius manifolds one then defines certain na-
tural structure connections which give rise to isomonodromic deformations. These
deformations are governed by the Schlesinger differential equations [25, 23|, thus
providing a link between Frobenius manifolds and solutions of the Schlesinger equa-
tions; the details can be found in [5, 19, 22].

Theorem 4.1.2 (2.6.1 of [22]). Let (M, (u),T,(A;)) be a strictly special
solution and e an identity of weight D, then these data come from a unique structure

of semi-simple split Frobenius manifold M with an identity (dy = 1) and an Euler
field via

T =D(M,T;,), (u'):the canonical coordinates

Aile) =0 foriti, Ae)=-—ze+ S —u) e @4)
Jiti ’

The operator V is given by V(X) = Vo x(F) — —?X.

Here, the manifold M only has tame points which means that by definition ut(m) #
u?(m),Vi # j,m € M. M should be regarded as a splitting cover of the subspace of
tame points of a given Frobenius manifold.

For the notion of strictly special solutions consult [22].

4.1.3. Special initial conditions

Fixing a base-point in a solution to Schlesinger’s equations and taking the co-
ordinates e; for T' call a family of matrices AY,... A% € End(T) special initial
conditions, if there exists a diagonal metric g and a skew-symmetric operator V
s.t. AY = —(V + 31d)P;, where P; is the projector onto Ce;.

In the case of semi-simple Frobenius manifolds with an Euler field and a flat
identity, the special initial conditions are given by the value of the structures listed
in 4.1.2 at a fixed tame point mg € M with coordinates (u}); more precisely, the
metric is given by the 7;(mg) and the operator V by the matrix (vy;)s; defined
by (Vo,e,(E) — 2(e:))(mo) = (X, vije;)(mo). The matrix coefficients vj; can be
calculated as follows: -

vij = (' =) 7 (o). (4.5)

i
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4.2. The tensor product for split semi-simple Frobenius manifolds
with Euler field and flat identity

In the previous section we constructed a tensor product of Frobenius manifolds
with factorizable flat identity. Moreover any split semi-simple Frobenius manifold
is already determined by the special initial conditions at a tame semi-simple point.

If there is a pair of tame semi-simple points (p,q) € M’ x M", then the image
7((p,q)) is again a semi-simple point, since the algebra in the tangent space over
the base-point of the tensor product is just the tensor product of two semi-simple
algebras and thus it is itself semi-simple.

Thus, the tensor product manifold is given locally near 7((p,q)) by the special
initial conditions at 7((p,q)) if this new base-point is again tame. The tensor
product is globally given by these conditions for the tensor product of two split
semi-simple Frobenius manifolds.

This condition, however, is not very restrictive and if there is a pair of tame
semi-simple points in some open U one can always find a pair of tame semi-simple
points (p', ¢') € U whose image is also tame semi-simple as we will show later.

4.2.1. Canonical coordinates

Since the proof of existence of the tensor product makes extensive use of the
flat coordinates, a natural question to ask in the setting of semi-simple Frobenius
manifolds is: Is there also a nice formulation in terms of canonical coordinates?
Generally, one cannot expect simple formulas, since the algebra in the tangent
space over a given point in the tensor product manifold is generally not a tensor
product of algebras — this locus is described by the image of the Cartesian product
— and the “coupling” of algebras results in a destruction of the pure tensor form
of the idempotents.

Using the definitions of the tensor product for formal Frobenius manifolds, we
can, however, calculate the idempotents of the tensor product in terms of flat coor-
dinates in the formal situation. They are given by the following Proposition up to
terms of order two in flat coordinates which is the precision needed to calculate the
special initial conditions.

Proposition 4.2.2. Given two semi-simple Frobenius manifolds M/, M", let
the idempotents near the base-points m{, m{l have the expansions e} = €[04+ /%' /o’
+0(2'%), and e}/ = €[04+ 3" a"'%" e/'2" 1 O(="?) in the flat coordinates =’ and z", then
the idempotents e;; of the tensor product (M’ ®(my,myy M”,0) have the following
expansion in the flat coordinates x around 0:

/) " ’ 7 "
eij(@) = @'+ Y ¥ (N ¥ @’ + A el @€f) + O(a?),  (4.6)
a/,all
_ ! 10 _ "o
where 9y, = 3" € and 3y = 3N €]°.
Furthermore, the respective coordinate functions for the tensor metric n; =
n(eij, eij) have the expansions:
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mi(@) = mi(mp)nf (mg) + > @ (A3 (mi) (o)} (mg)

a/ all

+ Xf 13 (mg) (8w (mg)) (4.7)
and their derivatives 1;j 1 = er7i; have the following values at the base-point my:
Mgkt (0) = 8;,1mix (mo)m; (mg) + 84, km; (mg)m51(mg) (4.8)

where 0; . is the Kronecker delta symbol.
If the factors carry flat identities and Euler fields, then the normalized canonical
coordinates of my are:
u¥(0) = u"*(mg) +u" (mg). (4.9)

Proof. To check the formula (4.6), expand the potential ® up to order four in
the flat coordinates and verify the idempotency by direct calculation. O

The equations for the idempotents e; = € + 3 z%e¢ + O(z?) in flat coordinates
are in zeroth order:

= (¢, €?) (4.10)
and in first order
ef = (e, €],0a) +2(ef, 7). (4.11)
Here we used the notation (8;,...,8;) for the higher order multiplications.

We can now check both conditions for (4.6). For the zeroth order we obtain:
(efj edy) = (e, ) ® (€%, €]%) = €’ ® €]° = €55
And for the first order terms:
(e €8y Bavar) + 2(es™ efy)

= (e, €, 00) ® ((¢°, €1°)0ar) + (€7, €1°)0ar, ®(€7°, €7, D)
+2X8" (e ) @ (€]°, ") + 207 (€, ) ® (¢ €°)

= X (0P, 80) + 2(el )] @ €0 + N € @ [(€]°, €%, Bur) + 2el  ¢}0)

= )\?”e;“, ® e}'o + )\?'eéo ® e}'“u

0

= eij

since ((e;’o,e"o) Barr) = (€f°,84r) = X" €e0 and ((e},e)0u) = (e, 0r) = A% el0,
The expansion for the metrics of the factors reads:

nz(w ) - m(mo + lea 2g(ez ,6 ) + O(wl2)’

n;l(ml/) — "73 mO) + Zx/la 2 Ha IIO) + 0(.’1:"2) .
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Inserting (4.6) into the tensor metric we obtain (4.7):
15 (€) = g(e; €i5)
_ g(e’0®eg’°,e ®e”0 +9 Z z% /a ®e//0
a’,all

FA e ® el el ® ef) + O(a?)

= g'(eP B ey (€, +2 3 o [N g (el g (€0 )

al aII
/\a g/(e /0) //(e//a ,e ;’0)]+O(m2)
=1 (ma)n;’(mo)

+ Z 2" (A3 (%} (mp)my () + A ml(mip)(@Lnml)) (m{)) -

The formula (4.8) then follows by derivating (4.7) w.rt. ey = > .0
AL, M, where (A.,) and (N, are the inverse matrices of (A%) and (/\“ ') defined
above.

(ermi;)(0) = (Z )\'iff\fw@a'a“mj) (0)

ala/I

= NN (X (@ mh) () (m) + A ml(m) (DLl ) (mi))

a al/

= 0j1 (Z)\ /771) (mo)nj (mg) + dixm}(mg) (Z /\a~5’~n§’> (mg

= 8,k (mo)ny (mg) + 8i,6mi (Mg )0 (mg) .

Finally, (4.9) can be derived from the expansion of the equation E = ¥ u¥/e;;
with the Euler field E given by Theorem 2.2.2.

Y u(0)e; = B(0) = E'(mp) @ 8 + 8 ® E" (mp)

- (Zu'«mg)eg’) Nan (Z ego) o S wimp)ers

J

= > (" (mp) +u'¥ (mp))e;
i

Remark 4.2.3. Notice that since dp = ), e; we always have that \? = N =1,
so that we retrieve the previous result for the tensor product constructed in the last
section

eijlimr =€, ® €;

up to order two as it should be.
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4.3. Tensor product of special initial conditions

In the Lemma 4.2.2, we have calculated all of the structures (4.4) necessary to

determine the special initial conditions. We find
i i,k
vij et = (U — Ukl)—nzJ

Nkl

/ " !t
= (ui +uf —uF — ul)(sﬂniknj ,‘"/5ik77¢77jl
e

nzk nJl
=d;ut —u + 8 (ud —
= d;1( )ﬂk k( )m

= 8j1vik + GikVjt - (4.12)
Another approach using the Euler field is given by the following observation:

Remark 4.3.1. To give the special initial conditions for a tensor product with
the choice of tensor metric and the Euler field (2.14), it suffices to determine the
operator

V:V(X) = Vox(E) - %X (4.13)

in the tangent space to the base-point Tas,m,. Since V is an Ops-linear tensor, its
value on a vector field X is already determined by X |mo€ TM,me, SO that, if we
are only interested in the operator V restricted to Tas,mq, We can use any extension
of the vector X |m0 to a vector field in a neighborhood of mg. Choosing a flat

extension X/, the formula (4.13) simplifies to

V)|, = ([Xf,E] _ gxf)

(4.14)

mo

In particular, in the situation of Theorem 2.1.10, we can extend the idempotents
€5 | to flat vector fields e ;,; and use the formula (4.14) to calculate the special
1n1t1al conditions via the operator V for the semi-simple tensor Euler field. Now it
is clear that (e;;) | =e] | ® e’ | " since the algebra over my is just the tensor

of the algebras at the chosen ZEeros mO and mg. Recalling the form of E given by
(2.14), we find for flat X,Y

(X®Y,E|=[X,E|Y+XQ|Y,E"| -dX®Y. (4.15)
Thus,
V(C,{) [ez]’E] Y
1
([e’f E— L ) Refl +ef ® ({ " E") %-e;.’f ) . (4.16)

Using the explicit formulas of Lemma 4.2.2 or the Remark 4.3.1, we obtain:
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Theorem 4.3.2. Let (N',p) and (N”,q) be two germs of semi-simple Frobe-
nius manifolds with tame base-points, Euler fields and flat identities which satisfy
u''(p) + u(q) # u'*(p) + u"(q) for i # k and j # | and let the corresponding
special initial conditions be given by (V',n') and (V",n"), then the special initial
conditions for the Schlesinger equations corresponding to the tensor product with
the flat identity and the Euler field of the product chosen as in Theorem 2.1.10 are
given by

~

Mg = M0;

Vig ket = 010y, + ikvyy - (4.17)

Corollary 4.3.3. In the neighborhood of a pair of tame semi-simple base points
the tensor product can be locally given in terms of special initial conditions.

Proof. Since the condition w' (p) + u"¥ (q) # u*(p) +u"(q) for i # k and j #1
is an open condition we can always find a pair of tame semi-simple points satisfying
the equation. Since the tensor product is locally unique up to isomorphism the
Corollary follows. O

Remark 4.3.4. The virtue of the Corollary above (together with the existence
theorem of the last section and the Theorem on the existence of an Euler field) is that
it is thus possible to consider special initial conditions to identify a tensor product
which was originally defined by the tensor product of two germs with nilpotent
base-point.

In many examples this is exactly the case. For instance in quantum cohomology
as well as in Saito’s unfolding spaces [24, 21] and the constructions in [5, 7].

4.4. Ezample: Special initial conditions for P™x P™

Using the Theorem we can calculate the special initial conditions for P* x P™

using the results of [22]. Set ¢, = exp(Z5%).

Proposition 4.4.1. The point (2%, 20, 2%1,0,...) has canonical coordinates
X 210 : 201
ug; =20 + E(n+ )ent + ¢ (m+ 1)em+.
The special initial conditions at this point corresponding to Hgyant(P™ x P™) are
given by

P
Vij, ol = — <1 — %_ké’j[ -+ 1_ Cj"l 6;]9) (4.18)
m
and -
Crzzcgn —gl0_n__ g0l _m_
P ./ — L AT, 4.19
M ) m 1) (4.19)
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