Plan	Feynman categories	Hopf algebras	Universal operations	Transforms and Master equations	Outlook

Around Feynman categories

Ralph Kaufmann

Purdue University

Topology Seminar, Bloomington Nov 18, 2015

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Plan	Feynman categories	Hopf algebras	Universal operations	Transforms and Master equations	Outlook

References

References

- 1 with B. Ward. Feynman categories. Arxiv 1312.1269
- with B. Ward and J. Zuniga. The odd origin of Gerstenhaber brackets, Batalin-Vilkovisky operators and master equations. Journal of Math. Phys. 56, 103504 (2015).
- **3** with I. Galvez–Carrillo and A. Tonks. *Three Hopf algebras and their operadic and categorical background*. Preprint.
- with J. Lucas Decorated Feynman categories. Preprint in progress.

•0000	0000000000000000	0000	0000	0000	00
Goa	S				

Main Objective

Provide a *lingua universalis* for operations and relations in order to understand their structure.

Internal Applications

- Realize universal constructions (e.g. free, push-forward, pull-back, plus construction, decorated).
- Construct universal transforms. (e.g. bar,co-bar) and model category structure.
- Oistill universal operations in order to understand their origin (e.g. Lie brackets, BV operatos, Master equations).
- Construct secondary objects, (e.g. Lie algebras, Hopf algebras).

Plan	Feynman categories	Hopf algebras	Universal operations	Transforms and Master equations	Outlook
00000					

Applications

Applications

- Find out information of objects with operations. E.g. Gromov-Witten invariants, String Topology, etc.
- Find out where certain algebra structures come from naturally: pre-Lie, BV, ...
- Find out origin and meaning of (quantum) master equations
- Find background for certain types of Hopf algebras.
- Find formulation for TFTs.
- Transfer to other areas such as algebraic geometry, algebraic topology, mathematical physics, number theory.

Plan 00●00	Feynman categories	Hopf algebras	Universal operations	Transforms and Master equations	Outlook 00
Plan	1				
0	Plan Warmup Feynman cate	gories			

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Universal operations Transforms and Master equations

4 Universal operations

Examples **3** Hopf algebras

Odd versions Transforms Master equations Moduli space geometry

Bi- and Hopf algebras

6 Outlook

Next steps and ideas

Plan 000●0	Feynman categories	Hopf algebras 0000	Universal operations 0000	Transforms and Master equations	Outlook 00
War	m up l				

- Data: An object A and a multiplication $\mu: A \otimes A \rightarrow A$
- An associativity equation (ab)c = a(bc).
- Think of μ as a 2-linear map. Let \circ_1 and \circ_2 be substitution in the 1st resp. 2nd variable: The associativity becomes

$$\begin{bmatrix} \mu \circ_1 \mu = \mu \circ_2 \mu : A \otimes A \otimes A \to A \end{bmatrix}.$$

$$\mu \circ_1 \mu(a, b, c) = \mu(\mu(a, b), c) = (ab)c$$

$$\mu \circ_2 \mu(a, b, c) = \mu(a, \mu(b, c)) = a(bc)$$

- We get *n*-linear functions by iterating μ:
 *a*₁ ⊗ · · · ⊗ *a*_n → *a*₁ . . . *a*_n.
- There is a permutation action $au\mu(a,b)=\mu\circ au(a,b)=ba$
- This give a permutation action on the iterates of μ. It is a free action there and there are n! n-linear morphisms generated by μ and the transposition.

Plan 000●0	Feynman categories	Hopf algebras 0000	Universal operations	Transforms and Master equations	Outlook 00
M/ar	m un l				

- Data: An object A and a multiplication $\mu: A \otimes A \rightarrow A$
- An associativity equation (ab)c = a(bc).
- Think of μ as a 2-linear map. Let \circ_1 and \circ_2 be substitution in the 1st resp. 2nd variable: The associativity becomes

$$\left[\begin{array}{c} \mu \circ_1 \mu = \mu \circ_2 \mu : A \otimes A \otimes A \to A \\ \mu \circ_1 \mu(a, b, c) = \mu(\mu(a, b), c) = (ab)c \\ \mu \circ_2 \mu(a, b, c) = \mu(a, \mu(b, c)) = a(bc) \end{array} \right]$$

- We get *n*-linear functions by iterating μ:
 *a*₁ ⊗ · · · ⊗ *a*_n → *a*₁ . . . *a*_n.
- There is a permutation action $au\mu(a,b)=\mu\circ au(a,b)=ba$
- This give a permutation action on the iterates of μ. It is a free action there and there are n! n-linear morphisms generated by μ and the transposition.

Plan 000●0	Feynman categories	Hopf algebras	Universal operations 0000	Transforms and Master equations	Outlook 00
M/ar	mun l				

- Data: An object A and a multiplication $\mu: A \otimes A \rightarrow A$
- An associativity equation (ab)c = a(bc).
- Think of μ as a 2-linear map. Let \circ_1 and \circ_2 be substitution in the 1st resp. 2nd variable: The associativity becomes

$$\begin{array}{|} \mu \circ_1 \mu = \mu \circ_2 \mu : A \otimes A \otimes A \rightarrow A \end{array} \\ \mu \circ_1 \mu(a, b, c) = \mu(\mu(a, b), c) = (ab)c \\ \mu \circ_2 \mu(a, b, c) = \mu(a, \mu(b, c)) = a(bc) \end{array}$$

- We get *n*-linear functions by iterating μ : $a_1 \otimes \cdots \otimes a_n \rightarrow a_1 \dots a_n$.
- There is a permutation action $au\mu(a,b)=\mu\circ au(a,b)=ba$
- This give a permutation action on the iterates of μ. It is a free action there and there are n! n-linear morphisms generated by μ and the transposition.

Plan 000●0	Feynman categories	Hopf algebras	Universal operations 0000	Transforms and Master equations	Outlook 00
M/ar	mun l				

- Data: An object A and a multiplication $\mu: A \otimes A \rightarrow A$
- An associativity equation (ab)c = a(bc).
- Think of μ as a 2-linear map. Let \circ_1 and \circ_2 be substitution in the 1st resp. 2nd variable: The associativity becomes

$$\left\lfloor \begin{array}{c} \mu \circ_1 \mu = \mu \circ_2 \mu : A \otimes A \otimes A \to A \right\rfloor. \\ \mu \circ_1 \mu(a, b, c) = \mu(\mu(a, b), c) = (ab)c \\ \mu \circ_2 \mu(a, b, c) = \mu(a, \mu(b, c)) = a(bc) \end{array} \right\}.$$

• We get *n*-linear functions by iterating μ : $a_1 \otimes \cdots \otimes a_n \rightarrow a_1 \dots a_n$.

• There is a permutation action $au\mu(a,b) = \mu \circ au(a,b) = ba$

 This give a permutation action on the iterates of μ. It is a free action there and there are n! n-linear morphisms generated by μ and the transposition.

Plan 000●0	Feynman categories	Hopf algebras	Universal operations 0000	Transforms and Master equations	Outlook 00
M/ar	mun l				

- Data: An object A and a multiplication $\mu: A \otimes A \rightarrow A$
- An associativity equation (ab)c = a(bc).
- Think of μ as a 2-linear map. Let \circ_1 and \circ_2 be substitution in the 1st resp. 2nd variable: The associativity becomes

$$\left\lfloor \begin{array}{c} \mu \circ_1 \mu = \mu \circ_2 \mu : A \otimes A \otimes A \to A \right\rfloor. \\ \mu \circ_1 \mu(a, b, c) = \mu(\mu(a, b), c) = (ab)c \\ \mu \circ_2 \mu(a, b, c) = \mu(a, \mu(b, c)) = a(bc) \end{array} \right\}.$$

- We get *n*-linear functions by iterating μ : $a_1 \otimes \cdots \otimes a_n \rightarrow a_1 \dots a_n$.
- There is a permutation action $au\mu(a,b) = \mu \circ au(a,b) = ba$
- This give a permutation action on the iterates of μ. It is a free action there and there are n! n-linear morphisms generated by μ and the transposition.

Plan 000●0	Feynman categories	Hopf algebras	Universal operations 0000	Transforms and Master equations	Outlook 00
M/ar	mun l				

- Data: An object A and a multiplication $\mu: A \otimes A \rightarrow A$
- An associativity equation (ab)c = a(bc).
- Think of μ as a 2-linear map. Let \circ_1 and \circ_2 be substitution in the 1st resp. 2nd variable: The associativity becomes

$$\left\lfloor \begin{array}{c} \mu \circ_1 \mu = \mu \circ_2 \mu : A \otimes A \otimes A \to A \right\rfloor. \\ \mu \circ_1 \mu(a, b, c) = \mu(\mu(a, b), c) = (ab)c \\ \mu \circ_2 \mu(a, b, c) = \mu(a, \mu(b, c)) = a(bc) \end{array} \right\}.$$

- We get *n*-linear functions by iterating μ : $a_1 \otimes \cdots \otimes a_n \rightarrow a_1 \dots a_n$.
- There is a permutation action $au\mu(a,b)=\mu\circ au(a,b)=ba$
- This give a permutation action on the iterates of μ. It is a free action there and there are n! n-linear morphisms generated by μ and the transposition.

Plan 0000●	Feynman categories	Hopf algebras	Universal operations	Transforms and Master equations	Outlook 00
M/2r	m un II				

- \underline{G} the category with one object * and morphism set G.
- $f \circ g := fg$.
- This is associative √
- Inverses are an extra structure $\Rightarrow \underline{G}$ is a groupoid.
- A representation is a functor ρ from <u>G</u> to $\mathcal{V}ect$.
- $\rho(*) = V, \ \rho(g) \in Aut(V)$
- Induction and restriction now are pull-back and push-forward (*Lan*) along functors $\underline{H} \rightarrow \underline{G}$.

Plan 0000●	Feynman categories	Hopf algebras	Universal operations	Transforms and Master equations	Outlook 00
M/2r	m un II				

- \underline{G} the category with one object * and morphism set G.
- $f \circ g := fg$.
- This is associative √
- Inverses are an extra structure $\Rightarrow \underline{G}$ is a groupoid.
- A representation is a functor ρ from <u>G</u> to Vect.
- $\rho(*) = V, \ \rho(g) \in Aut(V)$
- Induction and restriction now are pull-back and push-forward (*Lan*) along functors $\underline{H} \rightarrow \underline{G}$.

Plan 0000●	Feynman categories	Hopf algebras	Universal operations	Transforms and Master equations	Outlook 00
M/ar	m un II				

- \underline{G} the category with one object * and morphism set G.
- $f \circ g := fg$.
- This is associative \checkmark
- Inverses are an extra structure $\Rightarrow \underline{G}$ is a groupoid.
- A representation is a functor ρ from <u>G</u> to $\mathcal{V}ect$.
- $\rho(*) = V, \ \rho(g) \in Aut(V)$
- Induction and restriction now are pull-back and push-forward (*Lan*) along functors $\underline{H} \rightarrow \underline{G}$.

Plan 0000●	Feynman categories 000000000000000	Hopf algebras 0000	Universal operations	Transforms and Master equations	Outlook 00
M/ar	m un II				

- \underline{G} the category with one object * and morphism set G.
- $f \circ g := fg$.
- This is associative √
- Inverses are an extra structure $\Rightarrow \underline{G}$ is a groupoid.
- A representation is a functor ρ from <u>G</u> to $\mathcal{V}ect$.
- $\rho(*) = V$, $\rho(g) \in Aut(V)$
- Induction and restriction now are pull-back and push-forward (*Lan*) along functors $\underline{H} \rightarrow \underline{G}$.

Plan 0000●	Feynman categories	Hopf algebras	Universal operations 0000	Transforms and Master equations	Outlook 00
M/ar	m un II				

- \underline{G} the category with one object * and morphism set G.
- $f \circ g := fg$.
- This is associative √
- Inverses are an extra structure $\Rightarrow \underline{G}$ is a groupoid.
- A representation is a functor ρ from <u>G</u> to Vect.
- $\rho(*) = V$, $\rho(g) \in Aut(V)$
- Induction and restriction now are pull-back and push-forward (*Lan*) along functors $\underline{H} \rightarrow \underline{G}$.

Plan 0000●	Feynman categories	Hopf algebras	Universal operations 0000	Transforms and Master equations	Outlook 00
M/ar	m un II				

- \underline{G} the category with one object * and morphism set G.
- $f \circ g := fg$.
- This is associative √
- Inverses are an extra structure $\Rightarrow \underline{G}$ is a groupoid.
- A representation is a functor ρ from <u>G</u> to Vect.
- ho(*) = V, $ho(g) \in Aut(V)$
- Induction and restriction now are pull-back and push-forward (*Lan*) along functors $\underline{H} \rightarrow \underline{G}$.

Plan 0000●	Feynman categories	Hopf algebras	Universal operations	Transforms and Master equations	Outlook 00
M/ar	m un II				

- \underline{G} the category with one object * and morphism set G.
- $f \circ g := fg$.
- This is associative √
- Inverses are an extra structure $\Rightarrow \underline{G}$ is a groupoid.
- A representation is a functor ρ from <u>G</u> to Vect.
- $\rho(*) = V$, $\rho(g) \in Aut(V)$
- Induction and restriction now are pull-back and push-forward (Lan) along functors $\underline{H} \rightarrow \underline{G}$.

Plan 00000	Feynman categories	Hopf algebras 0000	Universal operations	Transforms and Master equations	Outlook 00
Feyr	nman catego	ories			

Data

- 1 \mathcal{V} a groupoid
- **2** \mathcal{F} a symmetric monoidal category
- **3** $i: \mathcal{V} \to \mathcal{F}$ a functor.

Notation

 \mathcal{V}^\otimes the free symmetric category on \mathcal{V} (words in $\mathcal{V}).$

Plan 00000	Feynman categories	Hopf algebras 0000	Universal operations 0000	Transforms and Master equations	Outlook 00
Feyr	nman catego	ory			

Definition

Such a triple $\mathfrak{F} = (\mathcal{V}, \mathcal{F}, \imath)$ is called a Feynman category if

i[∞] induces an equivalence of symmetric monoidal categories between V[∞] and *Iso*(F).

- **(1)** *i* and *i*^{\otimes} induce an equivalence of symmetric monoidal categories *Iso*($\mathcal{F} \downarrow \mathcal{V}$)^{\otimes} and *Iso*($\mathcal{F} \downarrow \mathcal{F}$).
- **(f)** For any $* \in \mathcal{V}$, $(\mathcal{F} \downarrow *)$ is essentially small.

Plan 00000	Feynman categories	Hopf algebras 0000	Universal operations	Transforms and Master equations	Outlook 00
Here	editary cond	ition (ii)			

In particular, fix φ : X → X' and fix X' ≃ ⊗_{v∈I} i(*_v): there are X_v ∈ F, and φ_v ∈ Hom(X_v, *_v) s.t. the following diagram commutes.

2 For any two such decompositions $\bigotimes_{v \in I} \phi_v$ and $\bigotimes_{v' \in I'} \phi'_{v'}$ there is a bijection $\psi : I \to I'$ and isomorphisms $\sigma_v : X_v \to X'_{\psi(v)}$ s.t. $P_{\psi}^{-1} \circ \bigotimes_v \sigma_v \circ \phi_v = \bigotimes \phi'_{v'}$ where P_{ψ} is the permutation corresponding to ψ .

3 These are the only isomorphisms between morphisms.

Plan 00000	Feynman categories	Hopf algebras 0000	Universal operations	Transforms and Master equations	Outlook 00
Here	editary cond	ition (ii)			

In particular, fix φ : X → X' and fix X' ≃ ⊗_{v∈I} i(*_v): there are X_v ∈ F, and φ_v ∈ Hom(X_v, *_v) s.t. the following diagram commutes.

2 For any two such decompositions $\bigotimes_{v \in I} \phi_v$ and $\bigotimes_{v' \in I'} \phi'_{v'}$ there is a bijection $\psi : I \to I'$ and isomorphisms $\sigma_v : X_v \to X'_{\psi(v)}$ s.t. $P_{\psi}^{-1} \circ \bigotimes_v \sigma_v \circ \phi_v = \bigotimes \phi'_{v'}$ where P_{ψ} is the permutation corresponding to ψ .

3 These are the only isomorphisms between morphisms.

Plan 00000	Feynman categories	Hopf algebras 0000	Universal operations	Transforms and Master equations	Outlook 00
Here	editary cond	ition (ii)			

In particular, fix φ : X → X' and fix X' ≃ ⊗_{v∈l} ι(*_v): there are X_v ∈ F, and φ_v ∈ Hom(X_v, *_v) s.t. the following diagram commutes.

2 For any two such decompositions $\bigotimes_{v \in I} \phi_v$ and $\bigotimes_{v' \in I'} \phi'_{v'}$ there is a bijection $\psi : I \to I'$ and isomorphisms $\sigma_v : X_v \to X'_{\psi(v)}$ s.t. $P_{\psi}^{-1} \circ \bigotimes_v \sigma_v \circ \phi_v = \bigotimes \phi'_{v'}$ where P_{ψ} is the permutation corresponding to ψ .

3 These are the only isomorphisms between morphisms.

Plan 00000	Feynman categories	Hopf algebras 0000	Universal operations	Transforms and Master equations	Outlook 00
Fxa	mple 1				

$\mathcal{F} = \mathcal{S}$ ur, $\mathcal{V} = \mathbb{I}$

- *Sur* be the category of finite sets and surjection with II as monoidal structure
- \mathbbm{I} be the trivial category with one object * and one morphism $\mathit{id}_*.$
- \mathbb{I}^{\otimes} is equivalent to the category with objects $\overline{n} \in \mathbb{N}_0$ and $Hom(\overline{n},\overline{n}) \simeq \mathbb{S}_n$, where we think $\overline{n} = \{1, \ldots, n\} = \{1\} \amalg \cdots \amalg \{1\}, \ 1 = \imath(*).$
- $\mathbb{I}^{\otimes} \simeq Iso(Sur).$

Plan 00000	Feynman categories	Hopf algebras 0000	Universal operations	Transforms and Master equations	Outlook 00
Fxa	mple 1				

$\mathcal{F} = Sur$, $\mathcal{V} = \mathbb{I}$

- *Sur* be the category of finite sets and surjection with II as monoidal structure
- \mathbbm{I} be the trivial category with one object * and one morphism $\mathit{id}_*.$
- \mathbb{I}^{\otimes} is equivalent to the category with objects $\overline{n} \in \mathbb{N}_0$ and $Hom(\overline{n}, \overline{n}) \simeq \mathbb{S}_n$, where we think $\overline{n} = \{1, \ldots, n\} = \{1\} \amalg \cdots \amalg \{1\}, \ 1 = \imath(*).$
- $\mathbb{I}^{\otimes} \simeq Iso(Sur)$. \checkmark

Plan 00000	Feynman categories	Hopf algebras 0000	Universal operations	Transforms and Master equations	Outlook 00
Fxa	mple 1				

$\mathcal{F} = Sur$, $\mathcal{V} = \mathbb{I}$

- *Sur* be the category of finite sets and surjection with II as monoidal structure
- \mathbbm{I} be the trivial category with one object * and one morphism $\mathit{id}_*.$
- \mathbb{I}^{\otimes} is equivalent to the category with objects $\bar{n} \in \mathbb{N}_0$ and $Hom(\bar{n}, \bar{n}) \simeq \mathbb{S}_n$, where we think $\bar{n} = \{1, \ldots, n\} = \{1\} \amalg \cdots \amalg \{1\}, \ 1 = \imath(*).$
- $\mathbb{I}^{\otimes} \simeq \mathit{lso}(\mathit{Sur}). \checkmark$

Plan 00000	Feynman categories	OOOO	Oniversal operations	OOOO	Outlook 00
Ops	and Mods	5			

Definition

Fix a symmetric monoidal category $\mathcal C$ and $\mathfrak F=(\mathcal V,\mathcal F,\imath)$ a Feynman category.

- Consider the category of strong symmetric monoidal functors \mathcal{F} - $\mathcal{O}ps_{\mathcal{C}} := Fun_{\otimes}(\mathcal{F}, \mathcal{C})$ which we will call \mathcal{F} -ops in \mathcal{C}
- \mathcal{V} - $\mathcal{M}ods_{\mathcal{C}} := Fun(\mathcal{V}, \mathcal{C})$ will be called \mathcal{V} -modules in \mathcal{C} with elements being called a \mathcal{V} -mod in \mathcal{C} .

Theorem

The forgetful functor $G : \mathcal{O}ps \to \mathcal{M}ods$ has a right adjoint F (free functor) and this adjunction is monadic.

Plan 00000	Feynman categories	Hopf algebras 0000	Universal operations 0000	Transforms and Master equations	Outlook 00
0.1					

Other versions

Enriched version

We can consider Feynman categories and target categories enriched over another monoidal category, such as Top, Ab or dgVect.

Theorem

The category of Feynman categories with trivial \mathcal{V} enriched over \mathcal{E} is equivalent to the category of operads (with the only iso in $\mathcal{O}(1)$ being the identity) in \mathcal{E} with the correspondence given by $O(n) :=: \operatorname{Hom}(\bar{n}, \bar{1})$. The \mathcal{O} ps are now algebras over the underlying operad.

Plan Feynman categories Hopf algebras Universal operations Occo

Examples of this simple stucture

Examples

Operad of surjections (corollas), non-symmetric version ordered surjections (planar corollas), simplices (Joyal dual). Operad of leaf labelled rooted trees (gluing at leaves), non-symmetric version planar rooted trees.

More

Other examples are twisted modular operads, non-sigma versions, the simplicial category, crossed simplicial groups, FI-algebras.

Plan 00000	Feynman categories	Hopf algebras 0000	Universal operations	Transforms and Master equations	Outlook 00

More constructions +–construction

In general

there is a "+" construction, like for polynomial monads, that produces a new Feynman category out of an old one. The main theorem is that enrichments of \mathcal{F} are basically in 1–1 correspondence with \mathcal{F}^+ – $\mathcal{O}ps$.

Examples

 $\mathcal{F}_{modular}^{+} = \mathcal{F}_{hyper}$ and twisted modular operads as algebras over the twisted triple. $\mathcal{F}_{surj}^{+} = \mathcal{F}_{operads}, \ \mathcal{F}_{monoid}^{+} = \mathcal{F}_{surj}$. (Slightly more complicated)

Algebras

The \mathcal{F}^+ - $\mathcal{O}ps$ then give enrichments for \mathcal{F} and given such an $\mathcal{O} \in \mathcal{F}^+$ - $\mathcal{O}ps$ the $\mathcal{F}_{\mathcal{O}}$ - $\mathcal{O}ps$ are (by definition) algebras over \mathcal{O} .

In general

Given an $\mathcal{O} \in \mathcal{F}-\mathcal{O}ps$, then there is a Feynman category $\mathcal{F}_{dec\mathcal{O}}$ which is indexed over \mathcal{F} . It objects are pairs $(X, dec \in \mathcal{O}(X))$ and $Hom_{\mathcal{F}_{dec\mathcal{O}}}((X, dec), (X', dec'))$ is the set of $\phi : X \to X'$, s.t. $\mathcal{O}(\phi) : dec \to dec'$.

Examples

Non-sigma operads, cyclic non-Sigma operads, non-Sigma modular operads.

Here \mathcal{O} is *Assoc*, *CyAssoc*, *ModCycAssoc*.

There is a general theorem saying that the decoration by the push-forward exists and how such push-forwards factor. This recovers e.g. that the modular envelope of CyAssoc factors through non–Sigma modular operads (Result of Markl).

Plan 00000	Feynman categories	Hopf algebras 0000	Universal operations	Transforms and Master equations	Outlook 00
Mor	e $\mathcal{F}_{dec\mathcal{O}}$				

Further applications

Further applications will be

- 1 the Westerland–Wahl A_{∞} moduli space operations generalizing those of R.K. . Moduli space actions on Hochschild Cochains
- **2** The Stolz–Teichner setup for twisted field theories.

3 Kontsevich's graph comlexes.

Plan 00000	Feynman categories ○○○○○○○○○○○○○○○	Hopf algebras 0000	Universal operations	Transforms and Master equations	Outlook 00
Exa	mple 2				

The Borisov-Manin category of graphs.

- A graph Γ is a tuple (F, V, ∂, i) of flags F, vertices V, incidence ∂ : F → V and flag gluing i : F^O. i² = id. We either glue two half-edges or keep a tail.
- 2 A graph morphism φ : Γ → Γ' is a triple (φ_V, φ^F, i_φ), where φ_V : V → V' is a surjection on vertices, φ^F : F' → F is an injection and i_φ : F \ φ^F(F')[☉] a pairing (ghost edges).
- A graph morphism from a collection of corollas Γ to a corolla
 * has a ghost graph Γ = (V_Γ, F_Γ, ι_φ)

$\mathfrak{F} = (\mathcal{A}gg, \mathcal{C}rl, \imath)$

 $\mathcal{A}gg$ the full subcategory whose objects are aggregates of corollas. $\mathcal{C}rl$ the category of corollas with isomorphisms.

Plan 00000	Feynman categories	Hopf algebras 0000	Universal operations	Transforms and Master equations	Outlook 00
Exar	mples				

Roughly (in the connected case and up to isomorphism)

The source of a morphism are the vertices of the ghost graph Γ and the target is the vertex obtained from Γ obtained by contracting all edges. If Γ is not connected, one also needs to merge vertices according to ϕ_V .

Composition corresponds to insertion of ghost graphs into vertices.

up to isomorphisms (if Π_0 , Π_1 are connected) corresponds to inserting Π_v into $*_v$ of Π_1 to obtain Π_0 .

00000	000000000000000000000000000000000000000	0000	0000	0000	00				
Gran	Granh Examples								

$\mathcal{O}ps$

We can restrict the underlying ghost graphs of maps to corollas to obtain several Feynman categories. The Ops will then yield types of operads or operad like objects.

Types of operads and graphs					
Ops	Graphs				
Operads	rooted trees				
Cyclic operads	trees				
Modular operads	connected graphs (add genus marking)				
PROPs	directed graphs (and input output marking)				
NC modular operad	graphs (and genus marking)				
Broadhurst-Connes	1-PI graphs				
-Kreimer					

Plan	Feynman categories	Hopf algebras	Universal operations	Transforms and Master equations	Outlook
00000	○○○○○○○○○○○○	0000	0000		00
Phys	sics connect	ion			

Feynman graphs

are the morphisms in the Feynman category. The possible vertices are the objects.

S-matrix

The external lines are given by the target of the morphism. The comma/slice category over a given target is then a graphical version of the S-matrix.

Correlation functions

These are given by the functors \mathcal{O} .

Open Questions

What corresponds to algebras and plus construction, functors. Possible answers via Rota-Baxter (in progress).

 Plan
 Feynman categories
 Hopf algebras
 Universal operations
 Transforms and Master equations
 Outlook

 0000
 000
 000
 000
 000
 000
 000

Universal constructions: What we can do:

Push-forwards and pull-backs along functors between Feynman categories.
TUNK INDUCTION (PROTECTION (EXTENSION DV 0)

Think induction/restriction/extension by 0.

- Co(bar) transforms and resolutions. Think (co)bar transformation/resolution for algebras as well as Feynman transforms and master equations.
 NB: THIS NEEDS MODEL CATEGORY THEORY WHICH WE PROVIDE
- 3 Universal operations. Lie-brackets, BV etc.
- Hopf algebra structures (joint with I. Gálvez–Carrillo and A. Tonks).

This includes Connes–Kreimers Renormalization Hopf algebra, Goncharov's Hopf algebra for multi–zetas (polylogs) and Baues' double cobar Hopf algebra.

Plan 00000	Feynman categories	Hopf algebras ●000	Universal operations	Transforms and Master equations	Outlook 00
Hon	f algebras				

Basic structures

Assume \mathcal{F} is decomposition finite. Consider $\mathcal{B} = Hom(Mor(\mathcal{F}), \mathbb{Z})$. Let μ be the tensor product with unit $id_{\mathbb{I}}$. $\Delta(\phi) = \sum_{(\phi_0, \phi_1): \phi = \phi_1 \circ \phi_0} \phi_0 \otimes \phi_1$ and $\epsilon(\phi) = 1$ if $\phi = id_X$ and 0 else.

Theorem (Galvez-Carrillo, K , Tonks)

 ${\cal B}$ together with the structures above is a bi–algebra. Under certain mild assumptions, a canonical quotient is a Hopf algebra

Examples

In this fashion, we can reproduce Connes–Kreimer's Hopf algebra, the Hopf algebras of Goncharov and a Hopf algebra of Baues that he defined for double loop spaces. This is a non–commutative graded version. There is a three-fold hierarchy. A non-commutative version, a commutative version and an "amputated" version.

Plan 00000	Feynman categories	Hopf algebras 0●00	Universal operations 0000	Transforms and Master equations	Outlook 00
Det	aile I				

Non-commutative version

Use Feynman categories whose underlying tensor structure is only monoidal (not symmetric). \mathcal{V}^{\otimes} is the the free monoidal category.

Key Lemma

The bi-algebra equation holds due to the hereditary condition.

Unit

The unit of the co–algebra is given by $1 = id_{\emptyset}$, i.e. the identity morphism of the empty word.

Quotient by Isomorphisms

If there are any isomorphism in \mathcal{V} then \mathcal{F} one can quotient out the co-ideal defined by equiv. rel. generated by isomorphism diagrams of type (1). The result is called almost connected. (This is automatic if there are no isomorphism except for identities in \mathcal{V}).

Plan 00000	Feynman categories	Hopf algebras 00●0	Universal operations	Transforms and Master equations	Outlook 00
Deta	ails II				

Theorem

For the almost connected version let \mathscr{I} be the ideal generated by $1 - id_X$. Then this is a co-ideal and the quotient \mathcal{B}/\mathscr{I} is a connected Hopf algebra and hence a bi-algebra. Goncharov and Baues (shifted co-bar version), planar Connes-Kreimer with external lines (both tree and 1-PI).

Commutative version

For the commutative version, one looks at the co-invariants in the symmetric case. Non-planar Connes-Kreimer with external lines.

Amputated version

For this one needs a semi-cosimplicial structure, i.e. one must be able to forget external legs coherently. Then there is a colimit, in which all the external legs can be forgotten. Connes-Kreimer without external legs (e.g. the original tree version).

Plan 00000	Feynman categories	Hopf algebras 000●	Universal operations 0000	Transforms and Master equations	Outlook 00
Deta	ails III				

Generalization: co-operad with multiplication

In a sense the above examples were free. One can look at a more general setting where this is not the case. The length of an object is the replaced by a depth filtration. The algebras are then deformations of their associated graded. Main example (cooperad with multiplication) generalizes enrichment of F_{surj} .

Grading/Filtration

Co-operad with multiplicationoperad degree - depthAmputated versionco-radical degree + depth

q deformation - infinitesimal version

Taking a slightly different quotient, one can get a non-unital, co-unital bi-algebra and a q-filtration. Sending $q \rightarrow 1$ recovers \mathcal{H} .

Plan 00000	Feynman categories	Hopf algebras 0000	Universal operations ●000	Transforms and Master equations	Outlook 00
Univ	versal operat	tions			

Cocompletion

Let $\hat{\mathcal{F}}$ be the cocompletion of \mathcal{F} . This is monoidal with Day convolution \circledast . If \mathcal{C} is cocomplete, and $\mathcal{O} \in \mathcal{O}ps$ factors.

Theorem

Let $\mathbb{I} := \operatorname{colim}_{\mathcal{V}\mathcal{I}} \circ i \in \hat{\mathcal{F}}$ and let $\mathcal{F}_{\mathcal{V}}$ the symmetric monoidal subcategory generated by \mathbb{I} . Then $\mathfrak{F}_{\mathcal{V}} := (\mathcal{F}_{\mathcal{V}}, \mathbb{I}, i_{\mathcal{V}})$ is a Feynman category. (This gives an underlying operad of universal operations).

Plan 00000	Feynman categories	Hopf algebras 0000	Universal operations 0●00	Transforms and Master equations	Outlook 00
Exai	mples				

Operads

 $\mathfrak O$ the Feynman category for operads, $\mathcal C = dg\mathcal Vect$.

- Then Ô(I) = ⊕_n O(n)_{S_n} and the Feynman category is (weakly) generated by ○ := [∑ ○_i]. (This is a two line calculation).
- This gives rise to the Lie bracket by using the anti-commutator. The operations go back to Gerstenhaber and Kapranov-Manin.
- It lifts to the non-Sigma case i.e. a pre-Lie structure on $\bigoplus_n \mathcal{O}(n)_{\mathbb{S}_n}$.

Plan 00000	Feynman categories	Hopf algebras 0000	Universal operations 0●00	Transforms and Master equations	Outlook 00
Exar	mples				

Operads

 $\mathfrak O$ the Feynman category for operads, $\mathcal C = dg\mathcal Vect$.

- Then Ô(I) = ⊕_n O(n)_{S_n} and the Feynman category is (weakly) generated by ○ := [∑ ○_i]. (This is a two line calculation).
- This gives rise to the Lie bracket by using the anti-commutator. The operations go back to Gerstenhaber and Kapranov-Manin.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• It lifts to the non-Sigma case i.e. a pre-Lie structure on $\bigoplus_n \mathcal{O}(n)_{\mathbb{S}_n}$.

Plan 00000	Feynman categories	Hopf algebras 0000	Universal operations 0●00	Transforms and Master equations	Outlook 00
Exar	mples				

Operads

 $\mathfrak O$ the Feynman category for operads, $\mathcal C = dg\mathcal Vect$.

- Then Ô(I) = ⊕_n O(n)_{S_n} and the Feynman category is (weakly) generated by ○ := [∑ ○_i]. (This is a two line calculation).
- This gives rise to the Lie bracket by using the anti-commutator. The operations go back to Gerstenhaber and Kapranov-Manin.

• It lifts to the non-Sigma case i.e. a pre-Lie structure on $\bigoplus_n \mathcal{O}(n)_{\mathbb{S}_n}$.

Plan 00000	Feynman categories	Hopf algebras 0000	Universal operations 00●0	Transforms and Master equations	Outlook 00
Univ	ersal Opera	tions			

F	Feynman category for	$\mathfrak{F},\mathfrak{F}_{\mathcal{V}},\mathfrak{F}_{\mathcal{V}}^{nt}$	weakly gen. subcat.
D	Operads	rooted trees	$\mathfrak{F}_{pre-Lie}$
\mathfrak{O}^{odd}	odd operads	rooted trees + orientation of set of edges	odd pre-Lie
\mathfrak{O}^{pl}	non-Sigma operads	planar rooted trees	all \circ_i operations
\mathfrak{O}_{mult}	Operads with mult.	b/w rooted trees	pre-Lie + mult.
C	cyclic operads	trees	commutative mult.
C ^{odd}	odd cyclic operads	trees + orientation of set of edges	odd Lie
M ^{odd}	\mathfrak{K} –modular	connected + orientation on set of edges	odd dg Lie
$\mathfrak{M}^{\mathit{nc,odd}}$	nc £-modular	orientation on set of edges	BV

Table: Here $\mathfrak{F}_{\mathcal{V}}$ and $\mathfrak{F}_{\mathcal{V}}^{nt}$ are given as $\mathcal{F}_{\mathcal{O}}$ for the insertion operad. The former for the type of graph with unlabelled tails and the latter for the version with no tails.

Plan 00000	Feynman categories	Hopf algebras 0000	Universal operations	Transforms and Master equations	Outlook 00
Fxa	mples				

Odd/anti-cyclic Operad

The universal operations are (weakly) generated by a Lie bracket. [, ,] := [$\sum_{st} \circ_{st}$], (see [KWZ]). This actually lifts to cyclic coinvariants (non–sigma cyclic operads). Specific examples:

- *End*(*V*) for a symplectic vector space is anti-cyclic.
- Any tensor product: O ⊗ P(n) := (O(n) ⊗ P)(n) with O cyclic and P anti-cyclic is anti-cyclic.

Three geometries (Kotsevich, Conant-Vogtmann

Fix V^n *n*-dim symplectic $V^n \to V^{n+1}$. For each *n* get Lie algebras (1) $Comm \otimes End(V^n)$ (2) $Lie \otimes End(V^n)$ (3) $Assoc \otimes End(V^n)$ Take the limit as $n \to \infty$.

Plan	Feynman categories	Hopf algebras	Universal operations	Transforms and Master equations	Outlook
00000	000000000000000000000000000000000000000	0000	0000	0000	00

Odd versions

Odd versions

Given a well-behaved presentation of a Feynman category (generators+relations for the morphisms) we can define an odd version which is enriched over Ab.

Odd Feynman categories over graphs

In the case of underlying graphs for morphisms, odd usually means that edges get degree 1, that is we use a Kozsul sign with that degree.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Plan 00000	Feynman categories 0000000000000000	Hopf algebras 0000	Universal operations	Transforms and Master equations	Outlook 00
		. (

(Co)Bar Feynman transform

Algebra case

- C associative co-algebra. ΩC := Free_{alg}(Σ⁻¹C̄)+ differential coming from co-algebra structure
- A associative algebra. $BA = T\Sigma^{-1}\overline{A} + \text{co-differential from}$ algebra structure
- ΩBA is a free resolution.
- A say finite dim or graded with finite dim pieces \check{A} its dual. $FA := \Omega \check{A} + \text{differential from multiplication.}$ FFA a resolution.

We can define the same transformation for elements of $\mathcal{O}ps$ for well–presented Feynman categories

- The result of a Feynman transform is an *op* over the odd version of the Feynman category
- For the freeness we need model structures, which we give.

Plan 00000	Feynman categories	Hopf algebras 0000	Universal operations	Transforms and Master equations ○○●○	Outlook 00		
Mas	Master equations						

The Feynman transform is quasi-free. An algebra over $F\mathcal{O}$ is dg-if and only if it satisfies the following master equation.

Name of	Algebraic Structure of FO	Master Equation (ME)
\mathcal{F} - $\mathcal{O}ps_{\mathcal{C}}$		
operad ,[?]	odd pre-Lie	$d(-) + - \circ - = 0$
cyclic operad [?]	odd Lie	$d(-) + \frac{1}{2}[-, -] = 0$
modular operad	odd Lie + Δ	$d(-) + \frac{1}{2}[-, -] + \Delta(-) = 0$
[?]		_
properad [?]	odd pre-Lie	$d(-) + - \circ - = 0$
wheeled prop-	odd pre-Lie + Δ	$d(-) + - \circ - + \Delta(-) = 0$
erad [?]		
wheeled prop [?]	dgBV	$d(-) + \frac{1}{2}[-, -] + \Delta(-) = 0$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Plan 00000	Feynman categories	Hopf algebras 0000	Universal operations	Transforms and Master equations ○○○●	Outlook 00
~					

Geometry and moduli spaces

Modular Operads

The typical topological example are \bar{M}_{gn} . These give rise to chain and homology operads.

- Gromov–Witten invariants make $H^*(V)$ and algebra over $H_*(\bar{M}_{g,n})$

Odd Modular

The canonical geometry is given by \bar{M}^{KSV} which are real blowups of \bar{M}_{gn} along the boundary divisors.

- We get 1-parameter gluings parameterized by S¹. Taking the full S¹ family on chains or homology gives us the structure of an odd modular operad.
- Going back to Sen and Zwiebach, a viable string field theory action *S* is a solution of the quantum master equation.

Plan 00000	Feynman categories	Hopf algebras	Universal operations	Transforms and Master equations	Outlook •0
Next steps					

- Formalize the dual pictures of primitive elements and + construction as well as universal operations and PBW.
- Connect to Tannakian categories. E.g. find out the role of fibre functors or special large/small object. (Idea: special properties of \mathcal{H}_{CK}).
- Connect to Rota-Baxer, Dynkin-operators, *B*⁺-operators (we can do this part) etc.
- Construct Feynman category for the open/closed version of Homological Mirror symmetry.

- Find action of Grothendieck-Teichmüller group (GT).
- . . .

The	end				
Plan 00000	Feynman categories 0000000000000000	Hopf algebras	Universal operations 0000	Transforms and Master equations	Outlook 0●

Thank you!

(ロ)、(型)、(E)、(E)、 E) の(の)