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Goals

Main Objective

Provide a lingua universalis for operations and relations in order to
understand their structure.

Internal Applications

1 Realize universal constructions (e.g. free, push–forward,
pull–back, plus construction, decorated).

2 Construct universal transforms. (e.g. bar,co–bar) and model
category structure.

3 Distill universal operations in order to understand their origin
(e.g. Lie brackets, BV operatos, Master equations).

4 Construct secondary objects, (e.g. Lie algebras, Hopf
algebras).
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Applications

Applications

• Find out information of objects with operations. E.g.
Gromov-Witten invariants, String Topology, etc.

• Find out where certain algebra structures come from
naturally: pre-Lie, BV, ...

• Find out origin and meaning of (quantum) master equations

• Find background for certain types of Hopf algebras.

• Find formulation for TFTs.

• Transfer to other areas such as algebraic geometry, algebraic
topology, mathematical physics, number theory.
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Warm up I

Operations and relations for Associative Algebras

• Data: An object A and a multiplication µ : A⊗ A→ A

• An associativity equation (ab)c = a(bc).

• Think of µ as a 2-linear map. Let ◦1 and ◦2 be substitution in
the 1st resp. 2nd variable: The associativity becomes

µ ◦1 µ = µ ◦2 µ : A⊗ A⊗ A→ A .

µ ◦1 µ(a, b, c) = µ(µ(a, b), c) = (ab)c
µ ◦2 µ(a, b, c) = µ(a, µ(b, c)) = a(bc)

• We get n–linear functions by iterating µ:
a1 ⊗ · · · ⊗ an → a1 . . . an.

• There is a permutation action τµ(a, b) = µ ◦ τ(a, b) = ba

• This give a permutation action on the iterates of µ. It is a
free action there and there are n! n–linear morphisms
generated by µ and the transposition.
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Warm up II

Categorical formulation for representations of a group G .

• G the category with one object ∗ and morphism set G .

• f ◦ g := fg .

• This is associative X

• Inverses are an extra structure ⇒ G is a groupoid.

• A representation is a functor ρ from G to Vect.

• ρ(∗) = V , ρ(g) ∈ Aut(V )

• Induction and restriction now are pull–back and push–forward
(Lan) along functors H → G .
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Feynman categories

Data

1 V a groupoid

2 F a symmetric monoidal category

3 ı : V → F a functor.

Notation

V⊗ the free symmetric category on V (words in V).

V


  

ı // F

V⊗

ı⊗
>>
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Feynman category

Definition

Such a triple F = (V,F , ı) is called a Feynman category if

i ı⊗ induces an equivalence of symmetric monoidal categories
between V⊗ and Iso(F).

ii ı and ı⊗ induce an equivalence of symmetric monoidal
categories between Iso(F ↓ V)⊗ and Iso(F ↓ F) .

iii For any ∗ ∈ V, (F ↓ ∗) is essentially small.
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“Algebras” over Feynman categories: Ops and Mods

Definition

Fix a symmetric monoidal category C and F = (V,F , ı) a Feynman
category.

• Consider the category of strong symmetric monoidal functors
F-OpsC := Fun⊗(F , C) which we will call F–ops in C

• V-ModsC := Fun(V, C) will be called V-modules in C with
elements being called a V–mod in C.

Theorem

The forgetful functor G : Ops →Mods has a left adjoint F (free
functor) and this adjunction is monadic.

Theorem

Feynman categories form a 2–category and it has push–forwards
f∗ = f! and pull–backs f ∗ for Ops and Mods.
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Examples based on G: morphisms have underlying graphs

F Feynman category for condition on graphs additional decoration

O operads rooted trees
Omult operads with mult. b/w rooted trees.
C cyclic operads trees
G unmarked nc modular operads graphs
Gctd unmarked modular operads connected graphs
M modular operads connected + genus marking
Mnc, nc modular operads genus marking
D dioperads connected directed graphs w/o directed

loops or parallel edges
P PROPs directed graphs w/o directed loops
Pctd properads connected directed graphs

w/o directed loops
D	 wheeled dioperads directed graphs w/o parallel edges
P	,ctd wheeled properads connected directed graphs
P	 wheeled props directed graphs

Table: List of Feynman categories with conditions and decorations on the
graphs, yielding the zoo of examples
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Examples on G with extra decorations

Decoration and restriction allows to generate the whole zoo and
even new species

FdecO Feynman category for decorating O restriction

Fdir directed version Z/2Z set edges contain one input
and one output flag

Frooted root Z/2Z set vertices have one output flag.
Fgenus genus marked N
Fc−col colored version c set edges contain flags

of same color
O¬Σ non-Sigma-operads Ass
C¬Σ non-Sigma-cyclic operads CycAss
M¬Σ non–Signa-modular ModAss
Cdihed dihedral Dihed
Mdihed dihedral modular ModDihed

Table: List of decorates Feynman categories with decorating O and
possible restriction. F stands for an example based on G in the list.
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Hereditary condition (ii)

1 In particular, fix φ : X → X ′ and fix X ′ '
⊗

v∈I ı(∗v ): there
are Xv ∈ F , and φv ∈ Hom(Xv , ∗v ) s.t. the following diagram
commutes.

X
φ //

'
��

X ′

'
��⊗

v∈I Xv

⊗
v∈I φv //

⊗
v∈I ı(∗v )

(1)

2 For any two such decompositions
⊗

v∈I φv and
⊗

v ′∈I ′ φ
′
v ′

there is a bijection ψ : I → I ′ and isomorphisms
σv : Xv → X ′ψ(v) s.t. P−1

ψ ◦
⊗

v σv ◦ φv =
⊗
φ′v ′ where Pψ is

the permutation corresponding to ψ.

3 These are the only isomorphisms between morphisms.
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Simplification: weak hereditary condition

Proposition

If (F ,⊗) has a fully faithful functor to (Set,q) then it is enough
to check that (1) exists and that is unique up to isomorphism.
Moreover the existence of (1) is equivalent to

Remark

This is not the case for k–linear F .
It is the case for the usual versions of operad–like objects, which all
have combinatorial Feynman categories.
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Example 1

F = Sur , V = I
• Sur the category of finite sets and surjection with q as

monoidal structure

• I the trivial category with one object ∗ and one morphism id∗.

• I⊗ is equivalent to the category with objects n̄ ∈ N0 and
Hom(n̄, n̄) ' Sn, where we think
n̄ = {1, . . . , n} = {1} q · · · q {1}, 1 = ı(∗).

• I⊗ ' Iso(Sur).

X

• T ' {1, . . . , n}. S
f //

'
��

T

'
��

q|T |i=1f −1(i)
qf |f−1(i) // q|T |i=1ı(∗)
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Further examples

More examples of this type

1 Finite sets and injections.

2 ∆+S crossed simplicial group.

There is a non–symmetric monoidal version

Example: ∆+, Order preserving surjections/injections. Joyal
duality.
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Examples

Mods and Ops for Example 1

ModsC is just Obj(C) and Ops are associative algebra objects or
monoids in C.

Tautological example

(V,V⊗, ). ModsC ' OpsC .
If V = G , we recover the motivating example of group theory.
Not so trivial: there is always a morphism of Feynman categories
(V,V⊗, )→ (V,F , ı) and the push–forward along it is the free
construction.

Trival O
Let O : F → C be the functor that assigns I ∈ Obj(C) to any
object in V, and which sends morphisms to the identity or the unit
constraints.



Plan Feynman categories Constructions Universal operations Hopf algebras Transforms & ME Model structures W-construction Geometry Outlook

Example 2

The Borisov-Manin category of graphs.

1 A graph Γ is a tuple (F ,V , ∂, ı) of flags F , vertices V ,
incidence ∂ : F → V and flag gluing ı : F	. ı2 = id . Either
glue two half-edges to an edge or keep a tail.

2 A graph morphism φ : Γ→ Γ′ is a triple (φV , φ
F , ıφ), where

φV : V → V ′ is a surjection on vertices, φF : F ′ → F is an
injection and ıφ : F \ φF (F ′)	 a pairing (ghost edges).

3 A graph morphism from a collection of corollas Γ to a corolla
∗ has a ghost graph ΓΓ = (VΓ,FΓ, ıφ).

G = (Crl ,Agg , ı)

Crl the category of corollas with isomorphisms. Agg the full
subcategory whose objects are aggregates of corollas.



Plan Feynman categories Constructions Universal operations Hopf algebras Transforms & ME Model structures W-construction Geometry Outlook

Examples

Roughly (in the connected case and up to isomorphism)

The source of a morphism are the vertices of the ghost graph ΓΓ
and the target is the vertex obtained from ΓΓ obtained by
contracting all edges. If ΓΓ is not connected, one also needs to
merge vertices according to φV .

Composition corresponds to insertion of ghost graphs into vertices.

X

φ0

==
φ2 // Y

φ1 // ∗

up to isomorphisms (if ΓΓ0, ΓΓ1 are connected) corresponds to
inserting ΓΓv into ∗v of ΓΓ1 to obtain ΓΓ0.

qv qw∈Vv ∗w
qvΓΓv //

ΓΓ0

::qv∗v
ΓΓ1 // ∗
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Graph Examples

Ops

We can restrict the underlying ghost graphs of maps to corollas to
obtain several Feynman categories. The Ops will then yield types
of operads or operad like objects.

Types of operads and graphs

Ops Graphs

Operads rooted trees
Cyclic operads trees
Modular operads connected graphs (add genus marking)
PROPs directed graphs (and input output marking)
NC modular operad graphs (and genus marking)
Broadhurst-Connes 1-PI graphs
-Kreimer
. . . . . .
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Other versions

Enriched version

We can consider Feynman categories and target categories
enriched over another monoidal category, such as T op, Ab or
dgVect. Note there are two cases. Either the enrichment is
Cartesian, then we simply have to replace all limits by indexed
limits. Or, the enrichment is not Cartesian, then there is an extra
condition replacing the groupoid condition.

Cartesian case

We proved that in the non–enriched case we can equivalently
replace (ii) by (ii’).

(ii’) The pull-back of presheaves ı⊗∧ : [Fop, Set]→ [V⊗op,Set]
restricted to representable presheaves is monoidal.

This is then yields the definition in the Cartesian case.
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Examples on the simple structure

Theorem

The category of Feynman categories with trivial V enriched over E
is equivalent to the category of operads (with the only iso in O(1)
being the identity) in E with the correspondence given by
O(n) :=: Hom(n̄, 1̄). The Ops are now algebras over the
underlying operad.

Examples

1 Operad of surjections (corollas), non–symmetric version
ordered surjections (planar corollas), simplices (Joyal dual).
Operad of leaf labelled rooted trees (gluing at leaves),
non–symmetric version planar rooted trees.

2 linear operads. e.g. Ass,Com, Lie, A∞.

3 E (k), topological, semi-simple operads etc.
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Non–trivial examples

Definition

Let F be a Feynman category. An enrichment functor is a lax
2–functor D : F → E with the following properties

1 D is strict on compositions with isomorphisms.

2 D(σ) = IE for any isomorphism.

3 D is monoidal, that is D(φ⊗F ψ) = D(φ)⊗E D(ψ)

Theorem

The indexed enriched (over E) Feynman category structures on a
given FC F are in 1–1 correspondence with Fhyp-Ops and these are
in 1–1 correspondence with enrichment functors.

Twisted (modular) operads.

Looking at F = M, we recover the notion of twisted modular
operad. In the cyclic case, an example are anti–cyclic operads.



Plan Feynman categories Constructions Universal operations Hopf algebras Transforms & ME Model structures W-construction Geometry Outlook

Odd versions

Odd versions

Given a well-behaved presentation of a Feynman category
(generators+relations for the morphisms) we can define an odd
version which is enriched over Ab.

Odd Feynman categories over graphs

In the case of underlying graphs for morphisms, odd usually means
that edges get degree 1, that is we use a Kozsul sign with that
degree. More later.
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Suspension vs. odd

Suspensions

There is also a twist which realizes suspensions. These are
equivalent to the odd version if we are in the directed case, see
[KWZ12] .

Examples

1 Operads are very special they are equivalent to their odd
version.

2 The odd cyclic operads are equivalent to anti–cyclic operads.

3 For modular operads the suspended version is not equivalent
to the odd versions a.k.a K–modular operads. The difference
is given by the twist H1(ΓΓ(φ)) (Barannikov,
Getzler–Kapranov).
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Examples

F Feynman category for condition on graphs additional decoration

Codd odd cyclic operads trees + orientation of set of edges
Modd K–modular connected + orientation on set of edges

+ genus marking
Mnc,odd nc K-modular orientation on set of edges

+ genus marking
D	odd odd wheeled dioperads directed graphs w/o parallel edges

+ orientations of edges
P	,ctd,odd odd wheeled properads connected directed graphs w/o parallel edges

+ orientation of set of edges
P	,odd odd wheeled props directed graphs w/o parallel edges

+ orientation of set of edges

Table: List of Feynman categories with conditions and decorations on the
graphs
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Physics connection

Feynman graphs

are the morphisms in the Feynman category. The possible vertices
are the objects.

S–matrix

The external lines are given by the target of the morphism. The
comma/slice category over a given target is then a graphical
version of the S–matrix.

Correlation functions

These are given by the functors O.

Open Questions

What corresponds to algebras and plus construction, functors.
Possible answers via Rota–Baxter (in progress).
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Constructions yielding Feynman categories

A partial list

1 + construction: Twisted modular operads, twisted versions of
any of the previous structures. Quotient gives Fhyp.

2 FdecO: non–Sigma and dihedral versions.It also yields all
graph decorations.

3 free constructions F�, s.t. F�-OpsC = Fun(F , C). Used for
the simplicial category, crossed simplicial groups and
FI–algebras.

4 Non–connected construction Fnc , whose Fnc -Ops are
equivalent to lax monoidal functors of F .

5 The Feynman category of universal operations on F–Ops.

6 Cobar/bar, Feynman transforms in analogy to algebras and
(modular) operads.

7 W–construction.
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+–construction

In general

there is a ”+” construction, like for polynomial monads, that
produces a new Feynman category out of an old one. Inverting
isomorphisms one obtains Fhyp.
The main theorem is that enrichments of F are in 1–1
correspondence with Fhyp–Ops.

Examples

Fhyp
modular = Fhyper and twisted modular operads as algebras over

the twisted triple. F+
surj = FMayoperads , Fhyp

surj = O, F+
triv = Fsurj .

(Slightly more complicated)

Algebras

The Fhyp–Ops then give enrichments for F . Given such an
O ∈ Fhyp-Ops the FO-Ops are (by definition) algebras over O.
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FdecO joint w/ Jason Lucas

Theorem

Given an O ∈ F–Ops, then there is a Feynman category FdecO
which is indexed over F . It objects are pairs (X , dec ∈ O(X )) and
HomFdecO((X , dec), (X ′, dec ′)) is the set of φ : X → X ′, s.t.
O(φ) : dec → dec ′. This construction works a priori for Cartesian
C, but with modifications it also works for the non–Cartesian case.

Examples

Non–sigma operads, cyclic non–Sigma operads, non–Sigma
modular operads.
Here O is Assoc, CycAssoc, ModCycAssoc.
There is a general theorem saying that the decoration by the
push–forward exists and how such push–forwards factor. This
recovers e.g. that the modular envelope of CycAssoc factors
through non–Sigma modular operads (Result of Markl).



Plan Feynman categories Constructions Universal operations Hopf algebras Transforms & ME Model structures W-construction Geometry Outlook

Results

Theorem

Theorem there commutative squares which are natural in O

FdecO
f O //

forget

��

F′dec f∗(O)

forget′

��
F

f // F′

FdecO
σdec //

f O

��

FdecP

f P

��
F′decf∗(O)

σ′dec // F′decf∗(P)

(2)

On the categories of monoidal functors to C, we get the induced
diagram of adjoint functors.

FdecO-Ops
f O∗ ..

forget∗

��

F ′dec f∗(O)-Ops
f O∗
mm

forget′∗




F-Ops
f∗ --

forget∗

UU

F ′-Ops

forget′∗
KK

f ∗
mm

(3)
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More FdecO

Theorem

If T is a terminal object for F-Ops and forget : FdecO → F is the
forgetful functor, then forget∗(T ) is a terminal object for
FdecO-Ops. We have that forget∗forget∗(T ) = O.

Definition

We call a morphism of Feynman categories i : F→ F′ a minimal
extension over C if F-OpsC has a a terminal/trivial functor T and
i∗T is a terminal/trivial functor in F′-OpsC .

Proposition

If f : F→ F′ is a minimal extension over C, then
f O : FdecO → F′decf∗(O) is as well.
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Example

Markl’s Non-Σ modular (see also [KP06])

Fdec CycAss = C¬Σ iCycAss//

forget

��

Mdec i∗(CycAss) = M¬Σ

forget

��
C

i //M

(4)

1 On the left side, if ∗C is final for C and hence
forget∗(∗C ) = ∗C is final for C¬Σ . The pushforward
forget∗(∗C ) = CycAss.

2 On the right side, if ∗M is final for M and hence
forget∗(∗M) = ∗M is final for M¬Σ. The pushforward
forget∗(∗M) = ModAss.

3 The inclusion i is a minimal extension.

4 Hence iCycAss is also a minimal extension.
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FdecO 2.0

Further applications

Further applications will be

1 New decorated interpretation moduli space operations
generalizing those of R.K. Moduli space actions on Hochschild
Cochains

2 The Stolz–Teichner setup for twisted field theories.

3 Kontsevich’s graph comlexes.
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Universal operations

Cocompletion

Let F̂ be the cocompletion of F . This is monoidal with Day
convolution ~. If C is cocomplete, and O ∈ Ops factors.

F


��

O // C

F̂

Ô
??

Theorem

Let I := colimV ◦ ı ∈ F̂ and let FV the symmetric monoidal
subcategory generated by I. Then FV := (FV , I, ıV) is a Feynman
category. (This gives an underlying operad of universal operations).
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Examples

Operads

O the Feynman category for operads, C = dgVect.

• Then Ô(I) =
⊕

nO(n)Sn and the Feynman category is
(weakly) generated by ◦ := [

∑
◦i ]. (This is a two line

calculation).

• This gives rise to the Lie bracket by using the
anti–commutator. The operations go back to Gerstenhaber
and Kapranov-Manin.

• It lifts to the non-Sigma case i.e. a pre–Lie structure on⊕
nO(n)Sn .
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Examples

Operads
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⊕
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∑
◦i ]. (This is a two line
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nO(n)Sn .
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Examples

Odd/anti–cyclic Operad

The universal operations are (weakly) generated by a Lie bracket.
[ , , ] := [

∑
st ◦st ], (see [KWZ]). This actually lifts to cyclic

coinvariants (non–sigma cyclic operads).
Specific examples:

• End(V ) for a symplectic vector space is anti–cyclic.

• Any tensor product: (O ⊗P)(n) := O(n)⊗ P(n) with O
cyclic and P anti–cyclic is anti–cyclic.

Three geometries (Kotsevich, Conant-Vogtmann)

Fix V n n–dim symplectic V n → V n+1. For each n get Lie algebras
(1) Comm ⊗ End(V n) (2) Lie ⊗ End(V n) (3) Assoc ⊗ End(V n)
Take the limit as n→∞.
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Universal Operations

F Feynman cat for F,FV ,Fnt
V weak gen. subcat.

O Operads rooted trees Fpre−Lie

Oodd odd operads rooted trees + orientation odd pre-Lie
of set of edges

Opl non-Sigma operads planar rooted trees all ◦i operations
Omult Operads with mult. b/w rooted trees pre-Lie + mult.
C cyclic operads trees com. mult.
Codd odd cyclic operads trees + orientation odd Lie

of set of edges
Modd K–modular connected + orientation odd dg Lie

on set of edges
Mnc,odd nc K-modular orientation on set of edges BV
D Dioperads connected directed graphs w/o Lie–admissible

directed loops or parallel edges

Table: Here FV and Fnt
V are given as FO for the insertion operad. The

former for the type of graph with unlabelled tails and the latter for the
version with no tails.
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Hopf algebras

Basic structures

Assume F is decomposition finite. Consider
B = Hom(Mor(F),Z). Let µ be the tensor product with unit idI.

∆(φ) =
∑

(φ0,φ1):φ=φ1◦φ0
φ0 ⊗ φ1

and ε(φ) = 1 if φ = idX and 0 else.

Theorem (Galvez-Carrillo, K , Tonks)

B together with the structures above is a bi–algebra. Under certain
mild assumptions, a canonical quotient is a Hopf algebra

Examples

In this fashion, we can reproduce Connes–Kreimer’s Hopf algebra,
the Hopf algebras of Goncharov and a Hopf algebra of Baues that
he defined for double loop spaces. This is a non–commutative
graded version. There is a three-fold hierarchy. A non-commutative
version, a commutative version and an “amputated” version.
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Details I

Non–commutative version

Use Feynman categories whose underlying tensor structure is only
monoidal (not symmetric). V⊗ is the the free monoidal category.

Key Lemma

The bi–algebra equation holds due to the hereditary condition.

Unit

The unit of the co–algebra is given by 1 = id∅, i.e. the identity
morphism of the empty word.

Quotient by Isomorphisms

If there are any isomorphism in V then F one can quotient out the
co–ideal defined by equiv. rel. generated by isomorphism diagrams
of type (1). The result is called almost connected. (This is
automatic if there are no isomorphism except for identities in V).
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Details II

Theorem

For the almost connected version let I be the ideal generated by
1− idX . Then this is a co–ideal and the quotient B/I is a
connected Hopf algebra and hence a bi–algebra. Goncharov and
Baues (shifted co–bar version), planar Connes-Kreimer with
external lines (both tree and 1-PI).

Commutative version

For the commutative version, one looks at the co–invariants in the
symmetric case. Non–planar Connes–Kreimer with external lines.

Amputated version

For this one needs a semi–cosimplicial structure, i.e. one must be
able to forget external legs coherently. Then there is a colimit, in
which all the external legs can be forgotten. Connes–Kreimer
without external legs (e.g. the original tree version).
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Details III

Generalization of special case: co–operad with multiplication

In a sense the above examples were free. One can look at a more
general setting where this is not the case. The length of an object
is the replaced by a depth filtration. The algebras are then
deformations of their associated graded. Main example (cooperad
with multiplication) generalizes enrichment of Fsurj .

Grading/Filtration

Co-operad with multiplication operad degree − depth
Amputated version co-radical degree + depth

q deformation - infinitesimal version

Taking a slightly different quotient, one can get a non–unital,
co–unital bi–algebra and a q–filtration. Sending q → 1 recovers H.
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Coproduct for cooperad with multiplication

Theorem

Let Ǒ be a co-operad with compatible associative multiplication
µ : Ǒ(n)⊗ Ǒ(m)→ Ǒ(n + m) in an Abelian symmetric monoidal
category with unit I. Then B :=

⊕
n Ǒ(n) is a (non-unital,

non-co-unital) bialgebra, with multiplication µ and comultiplication
∆ given by (I⊗ µ)γ̌:

Ǒ(n)

∆ := (I⊗ µ)γ̌

++

γ̌ //
⊕
k≥1,

n=m1+···+mk

(
Ǒ(k)⊗

k⊗
r=1

Ǒ(mr )

)

I⊗µk−1

��⊕
k≥1

Ǒ(k)⊗ Ǒ(n).

(5)
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Example

Free cooperad with multiplication on a cooperad

Ǒnc(n) =
⊕

k

⊕
(n1,...,nk ):

∑
ni=n Ǒ(n1)⊗ · · · ⊗ Ǒ(nk)

Multiplication given by µ = ⊗.

Hopf algebras/(co)operads/Feynman category

HGont Inj∗,∗ = Surj∗ FSurj

HCK leaf labelled trees FSurj ,O
HCK ,graphs graphs Fgraphs

HBaues Injgr∗,∗ FSurj ,odd
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(Co)Bar Feynman transform

Algebra case

• C associative co–algebra. ΩC := Freealg (Σ−1C̄ )+ differential
coming from co–algebra structure

• A associative algebra. BA = T Σ−1Ā + co–differential from
algebra structure

• ΩBA is a free resolution.

• A say finite dim or graded with finite dim pieces Ǎ its dual.
FA := ΩǍ + differential from multiplication. FFA a resolution.

We can define the same transformation for elements of Ops for
well–presented Feynman categories

• The result of a Feynman transform is an op over the odd
version of the Feynman category

• For the freeness we need model structures, which we give.
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Bar/Cobar/Feynman transform

Presentations

In order to define the transforms, one has to fix a version Fodd of
F. This is analogous to the suspension in the usual bar transforms.
In fact, the following is more natural, see [KW15, KWZ12]. The
degree is 1 for each bar.

Degrees of morphisms

For the operads or modular operads, the degree is 1 for each edge.
This puts a degree on morphisms. A morphism of degree n has a
ghost graph with n edges.
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Basic example

In G

1 There are 4 types of basic morphisms: Isomorphisms, simple
edge contractions, simple loop contractions and mergers. Call
this set Φ.

2 These one–comma generate all morphisms. Furthermore,
isomorphisms act transitively on the other classes. The
relations on the generators are given by commutative
diagrams.

3 The relations are quadratic for edge contractions as are the
relations involving isomorphisms. Finally there is a
non–homogenous relation coming from a simple merger and a
loop contraction being equal to a edge contraction.

4 We can therefore assign degrees as 0 for isomorphisms and
mergers, 1 for edge or loop contractions and split Φ as
Φ0 q Φ1. This gives a degree to any morphism.
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Setup

Summary

Up to isomorphism any morphism of degree n can be written in n!
ways up to morphisms of degree 0. These are the enumerations of
the edges of the ghost graph.

Setup

F be a Feynman category enriched over Ab and with an ordered
presentation and let Fodd be its corresponding odd version.
Furthermore let Φ1 be a resolving subset of one-comma generators
and let C be an additive category, i.e. satisfying the analogous
conditions above.

Differential

dΦ1 =
∑

[φ1]∈Φ1/∼ φ1◦ defines a differential on the Abelian group
generated by the isomorphism classes morhpisms. The non–defined
terms are set to zero.
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Bar/Cobar/Feynman transform

The bar construction

is the functor

B: F-OpsKom(C) → Fodd -OpsKom(Cop)

B(O) := ıFodd ∗(ı
∗
F(O))op

together with the differential dOop + dΦ1 .

The cobar construction

is the functor

Ω: Fodd -OpsKom(Cop) → F-OpsKom(C)

Ω(O) := ıF ∗(ı
∗
Fodd (O))op

together with the co-differential dOop + dΦ1 .
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Bar/Cobar/Feynman transform

Feynman transform

Assume there is a duality equivalence ∨ : C → Cop. The Feynman
transform is a pair of functors, both denoted FT,

FT: F-OpsKom(C) � Fodd -OpsKom(C) : FT

defined by

FT(O) :=

{
∨ ◦ B(O) if O ∈ F-OpsKom(C)

∨ ◦ Ω(O) if O ∈ Fodd -OpsKom(C)
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Master equations

Theorem

([Bar07],[MV09],[MMS09],[KWZ12]) Let O ∈ F-OpsC and
P ∈ Fodd -OpsC for an F represented in Table 2. Then there is a
bijective correspondence:

Hom(FT(P),O) ∼= ME (lim(P ⊗O))

This holds in general for the master equation given by

dQ +
∑
n

ΨQ,n = 0
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Master equations

The Feynman transform is quasi–free. An algebra over FO is dg–if
and only if it satisfies the following master equation.

Name of
F-OpsC

Algebraic Structure of FO Master Equation (ME)

operad ,[GJ94] odd pre-Lie d(−) +− ◦ − = 0

cyclic operad
[GK95]

odd Lie d(−) + 1
2
[−,−] = 0

modular operad
[GK98]

odd Lie + ∆ d(−) + 1
2
[−,−] + ∆(−) = 0

properad
[Val07]

odd pre-Lie d(−) +− ◦ − = 0

wheeled prop-
erad [MMS09]

odd pre-Lie + ∆ d(−) +− ◦ −+ ∆(−) = 0

wheeled prop
[KWZ12]

dgBV d(−) + 1
2
[−,−] + ∆(−) = 0
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Bar/Cobar

Lemma

The bar and cobar construction form an adjunction:

Ω: Fodd -OpsKom(Cop) � F-OpsKom(C) :B

Theorem

Let F be a quadratic Feynman category and O ∈ F-OpsKom(C).
Then the counit ΩB(O)→ O of the above adjunction is a
levelwise quasi-isomorphism.
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Model structure

Theorem

Let F be a Feynman category and let C be a cofibrantly generated
model category and a closed symmetric monoidal category having
the following additional properties:

1 All objects of C are small.

2 C has a symmetric monoidal fibrant replacement functor.

3 C has ⊗-coherent path objects for fibrant objects.

Then F-OpsC is a model category where a morphism φ : O → Q
of F-ops is a weak equivalence (resp. fibration) if and only if
φ : O(v)→ Q(v) is a weak equivalence (resp. fibration) in C for
every v ∈ V.



Plan Feynman categories Constructions Universal operations Hopf algebras Transforms & ME Model structures W-construction Geometry Outlook

Examples

Examples

1 Simplicial sets. (Straight from Theorem)

2 dgVectk for char(k) = 0 (Straight from Theorem)

3 Top (More work)

Remark

Condition (i) is not satisfied and so we can not directly apply the
theorem. Instead, we follow [Fre10] and use the fact that all
objects in Top are small with respect to topological inclusions.

Theorem

Let C be the category of topological spaces with the Quillen model
structure. The category F-OpsC has the structure of a cofibrantly
generated model category in which the forgetful functor to V-SeqC
creates fibrations and weak equivalences.
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Quillen adjunctions from morphisms of Feynman categories

Adjunction from morphisms

We assume C is a closed symmetric monoidal and model category
satisfying the assumptions of Theorem above. Let E and F be
Feynman categories and let α : E→ F be a morphism between
them. This morphism induces an adjunction

αL : E-OpsC � F-OpsC : αR

where αR(A) := A ◦ α is the right adjoint and αL(B) := Lanα(B)
is the left adjoint.

Lemma

Suppose αR restricted to VF-ModsC → VE-ModsC preserves
fibrations and acyclic fibrations, then the adjunction (αL, αR) is a
Quillen adjunction.
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Example

1 Recall that C and M denote the Feynman categories whose
ops are cyclic and modular operads respectively and that
there is a morphism i : C→M by including as genus zero.

2 This morphism induces an adjunction between cyclic and
modular operads

iL : C-OpsC �M-OpsC : iR

and the left adjoint is called the modular envelope of the
cyclic operad.

3 The fact that the morphism of Feynman categories is inclusion
means that iR restricted to the underlying V-modules is given
by forgetting, and since fibrations and weak equivalences are
levelwise, iR restricted to the underlying V-modules will
preserve fibrations and weak equivalences.

4 Thus by the Lemma above this adjunction is a Quillen
adjunction.
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Cofibrant replacement

Theorem

The Feynman transform of a non-negatively graded dg F-op is
cofibrant.
The double Feynman transform of a non-negatively graded dg
F-op in a quadratic Feynman category is a cofibrant replacement.
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Setup: quadratic Feynman category F

The category w(F,Y ), for Y ∈ F Objects:

Objects are the set
∐

n Cn(X ,Y )× [0, 1]n, where Cn(X ,Y ) are
chains of morphisms from X to Y with n degree ≥ 1 maps modulo
contraction of isomorphisms.
An object in w(F,Y ) will be represented (uniquely up to
contraction of isomorphisms) by a diagram

X
t1−→
f1

X1
t2−→
f2

X2 → · · · → Xn−1
tn−→
fn

Y

where each morphism is of positive degree and where t1, . . . , tn
represents a point in [0, 1]n. These numbers will be called weights.
Note that in this labeling scheme isomorphisms are always
unweighted.
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Setup: quadratic Feynman category F

The category w(F,Y ), for Y ∈ F Morphisms:

1 Levelwise commuting isomorphisms which fix Y , i.e.:

X //

∼=
��

X1

∼=
��

// X2

∼=
��

// . . . // Xn

∼=
��

// Y

X ′ // X ′1
// X ′2

// . . . // X ′n

??

2 Simultaneous Sn action.

3 Truncation of 0 weights: morphisms of the form

(X1
0→ X2 → · · · → Y ) 7→ (X2 → · · · → Y ).

4 Decomposition of identical weights: morphisms of the form

(· · · → Xi
t→ Xi+2 → . . . ) 7→ (· · · → Xi

t→ Xi+1
t→ Xi+2 →

. . . ) for each (composition preserving) decomposition of a
morphism of degree ≥ 2 into two morphisms each of degree
≥ 1.
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W-construction

Definition

Let P ∈ F-OpsT op. For Y ∈ ob(F) we define

W (P)(Y ) := colimw(F,Y )P ◦ s(−)

Theorem

Let F be a simple Feynman category and let P ∈ F-OpsT op be
ρ-cofibrant. Then W (P) is a cofibrant replacement for P with
respect to the above model structure on F-OpsT op.

Here “simple” is a technical condition satisfied by all graph
examples.
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Geometry and moduli spaces

Modular Operads

The typical topological example are M̄gn. These give rise to chain
and homology operads.

• Gromov–Witten invariants make H∗(V ) and algebra over
H∗(M̄g ,n)

Odd Modular

The canonical geometry is given by M̄KSV which are real blowups
of M̄gn along the boundary divisors.

• We get 1-parameter gluings parameterized by S1. Taking the
full S1 family on chains or homology gives us the structure of
an odd modular operad.

• Going back to Sen and Zwiebach, a viable string field theory
action S is a solution of the quantum master equation.
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Next steps

• Formalize the dual pictures of primitive elements and +
construction as well as universal operations and PBW.

• Connect to Tannakian categories. E.g. find out the role of
fibre functors or special large/small object. (Idea: special
properties of HCK ).

• Connect to Rota–Baxer, Dynkin-operators, B+-operators (we
can do this part) etc.

• Construct Feynman category for the open/closed version of
Homological Mirror symmetry.

• Find action of Grothendieck-Teichmüller group (GT).

• . . .
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The end

Thank you!
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