◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

On CY-LG correspondence for (0,2) toric models

Ralph Kaufmann

Purdue University

UIC April 2012

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Reference

Joint work with Lev Borisov (Rutgers)

"On CY-LG correspondence for (0,2) toric models". arXiv:1102.5444 Adv. of Math. to appear.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Outline

Main question and Results Methods and Tools

2 (2,2) case after Borisov

Setup and Lattice algebras Chiral de Rham MS and LG/CY familiy

3 (0,2) case Borisov-K

Quintic Setup Twisted Chiral deRham Cohomological representation and CG/LY Chiral Rings

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Main question and setup

Main question:

Can the results of L. Borisov on the LG/CY correspondence and mirror symmetry in toric N=(2,2) models be transferred to the case of (0,2) viz. heterotic theories.

Answer: Yes!

We showed this for specific case, the quintic, but our techniques generalize.

This is also the case considered by Witten in his "Phases of N=2 theories in two dimensions" $% \left({{{\rm{T}}_{{\rm{s}}}}_{{\rm{s}}}} \right) = 0$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Main Idea

Method

- Use a lattice VOA whose cohomology is that of (an appropriate twisted version) Chiral de Rham complex (Malikov, Schechtman, Vaintrob).
- Move differential to get a CG/LY interpolating family.
- Technically this is (a gerbe of) Chiral Differential Operators (CDOs).

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

History

- Possibility of these CDOs (more generally as gerbes) developed by Gorbounov, Malikov, Schechtman '03/'04.
- Physics construction of CDO by M.C. Tan '07.
- Mathematical lattice VOA construction for toric case, with CY/LG and Mirror Symmetry construction by Borisov-K

Toric mirror and LG/CY after Borisov

Setup (Borisov)

- X hypersurface in a Fano toric variety.
- M_1 and N_1 dual lattices (free abelian groups)
- Δ and Δ^{\vee} dual reflexive polytopes in them.
- $M=M_1\oplus\mathbb{Z}$ and $N=N_1\oplus\mathbb{Z}$
- $K = \mathbb{R}_{\geq 0}(\Delta, 1) \cap M$ and
- $\mathcal{K}^{\vee} = \mathbb{R}_{\geq 0}(\Delta^{\vee}, 1) \cap \mathcal{N}.$

$\operatorname{Fock}_{M\oplus N}$ for the quintic in \mathbb{P}^4

Definition

The basic lattice VOA, $\operatorname{Fock}_{0\oplus 0}$, is the vertex algebra generated by free bosonic and free fermionic fields based on the lattice $M \oplus N$ with operator product expansions

$$m^{bos}(z)n^{bos}(w) \sim rac{m \cdot n}{(z-w)^2}, \ \ m^{ferm}(z)n^{ferm}(w) \sim rac{m \cdot n}{(z-w)}$$

and all other OPEs nonsingular.

$\operatorname{Fock}_{M\oplus N}$

Extension

Fock_{*M*⊕*N*} has additional vertex operators $e^{\int m^{bos}(z) + n^{bos}(z)}$ with the appropriate cocycle, the normal ordering implicitly applied and r.h.s. expanded at z = w.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$\operatorname{Fock}_{\mathcal{M}\oplus\mathcal{N}}^{\Sigma}$ for the quintic in \mathbb{P}^4

Setup

Let Σ be the appropriate (generalized) fan in N.

- Fock^Σ_{M⊕N} is the partial lattice vertex algebra defined by setting the product in (2.1) to zero if n₁ and n₂ do not lie in the same cone of Σ.
 Similarly define the vertex algebras
- $\operatorname{Fock}_{M \oplus K^{\vee}}$ and
- $\operatorname{Fock}_{M\oplus K^{\vee}}^{\Sigma}$.

Details for the quintic

Details

- $M := \{(a_0, \ldots, a_4) \in \mathbb{Z}^5, \sum a_i = 0 \mod 5\};$
- $N := \mathbb{Z}^5 + \mathbb{Z}(\frac{1}{5}, \dots, \frac{1}{5})$
- deg = $(1, \ldots, 1) \in M$
- deg^{\vee} = $(\frac{1}{5}, \ldots, \frac{1}{5})$ in N.
- Δ is the four-dimensional simplex given by the convex hull of $(5,0,0,0,0),\ldots,(0,0,0,0,5)$
- Δ^{\vee} is the simplex with vertices $(1, 0, 0, 0, 0), \dots, (0, 0, 0, 0, 1)$.
- Σ has maximum-dimensional cones generated by deg[∨], deg[∨] and four out of the five vertices of Δ[∨].

Lattice version for Chiral de Rham of the canonical bundle

Proposition (Borisov)

Let $W \to \mathbb{P}^4$ be the canonical bundle. Then the cohomology of the chiral de Rham complex MSV(W) is isomorphic to the cohomology of $\operatorname{Fock}_{M \oplus K^{\vee}}^{\Sigma}$ with respect to the differential

$$D_g = \operatorname{Res}_{z=0} \sum_{n \in \Delta^{\vee}} g_n n^{ferm}(z) \mathrm{e}^{\int n^{bos}(z)}$$

for any collection of nonzero numbers $g_n, n \in \Delta^{\vee}$.

Lattice version for Chiral de Rham of the quintic

Theorem (Borisov)

The cohomology of the chiral de Rham complex of a smooth quintic $F(x_0, ..., x_4) = 0$ which is transversal to the torus strata is given by the cohomology of $\operatorname{Fock}_{M \oplus K}^{\Sigma}$ w.r.t. the differential

$$D_{f,g} = \operatorname{Res}_{z=0} \Big(\sum_{m \in \Delta} f_m m^{ferm}(z) e^{\int m^{bos}(z)} + \sum_{n \in \Delta^{\vee}} g_n n^{ferm}(z) e^{\int n^{bos}(z)} \Big)$$

where g_n are arbitrary nonzero numbers and f_m is the coefficient of F of the corresponding monomial.

The vertex algebras of mirror symmetry

Definition (Borisov)

The vertex algebras of mirror symmetry are defined as the **cohomology** of the **lattice vertex algebra** $\operatorname{Fock}_{M \oplus N}$ w.r.t. the differential

$$D_{f,g} = \operatorname{Res}_{z=0} \left(\sum_{m \in \Delta} f_m m^{ferm}(z) e^{\int m^{bos}(z)} + \sum_{n \in \Delta^{\vee}} g_n n^{ferm}(z) e^{\int n^{bos}(z)} \right)$$

where f_m and g_n are complex parameters.

Mirror Symmetry

Flip M, N and Δ, Δ^{\vee}

LG/CY Family

A family of vertex algebras of mirror symmetry

Fix F and the corresponding f_m . As the g_n vary, consider the family of vertex algebras $V_{f,g}$ which are the cohomology of $\operatorname{Fock}_{M \oplus K^{\vee}}$ with respect to the differential

$$D_{f,g} = \operatorname{Res}_{z=0} \Big(\sum_{m \in \Delta} f_m m^{ferm}(z) \mathrm{e}^{\int m^{bos}(z)} + \sum_{n \in \Delta^{\vee}} g_n n^{ferm}(z) \mathrm{e}^{\int n^{bos}(z)} \Big)$$

Limits

 $(\prod_i g_{v_i})/g_{deg^{\vee}}^5 \to 0 \rightsquigarrow$ Cohomology of Chiral de Rham. $g_{deg^{\vee}}^5 \to 0 \rightsquigarrow LG$

(0,2) for a quintic in \mathbb{P}^4

Setup

For i = 1, ..., 5, let $F^i = x_i R^i$ five polynomials of degree 5 s.t. $F^i|_{x_i=0} = 0$. The equation for the quintic is $\sum_i F^i = 0$. Fock_{$M \oplus K^{\vee}$} as before. Set

$$D_{(F^{\cdot}),g} = \operatorname{Res}_{z=0} \left(\sum_{\substack{m \in \Delta \\ 0 \le i \le 4}} F_m^i m_i^{ferm}(z) \mathrm{e}^{\int m^{bos}(z)} + \sum_{n \in \Delta^{\vee}} g_n n^{ferm}(z) \mathrm{e}^{\int n^{bos}(z)} \right)$$

where m_i the basis of $M_{\mathbb{Q}}$ which is dual to the basis of $N_{\mathbb{Q}}$ given by the vertices of Δ^{\vee} , g_n are six generic complex numbers and F_m^i is the coefficient of the monomial of degree 5 of F^i that corresponds to m. (2,2) case after Borisov

(0,2)-analogue

Definition

The vertex algebras of the (0,2) sigma model on $\sum_{i} F^{i} = 0$ are the corresponding cohomology spaces $V_{(F^{\cdot}),g}$

Remark 1

In the case when $F^i = x_i \partial_i f$ are logarithmic derivatives of some degree five polynomial f, we have $V_{(F^{\cdot}),g} = V_{f,g}$

Remark 2

Witten considered a homogeneous polynomial G of degree 5 in the homogeneous coordinates x_i on \mathbb{P}^4 and five polynomials G^i of degree four in these coordinates with the property $\sum_i x_i G^i = 0$. Equivalently, we consider five polynomials of degree four $R^i = \partial_i G + G^i$ and use $F^i = x_i R^i$.

Twisted Chiral deRham [GMS]

Setup

X be a smooth manifold. E a vector bundle on X s.t. **Conditions**: $c_1(E) = c_1(TX)$ and $c_2(E) = c_2(TX) \Lambda^{\dim X} E$ is isomorphic to $\Lambda^{\dim X} TX$, and pick a choice of such an isomorphism.

\sim Collection of sheaves MSV(X, E) of vertex algebras on X

Different regluings given by $H^1(X, (\Lambda^2 TX^{\vee})^{closed})$. Locally, any such sheaf is again generated by b^i, a_i, ϕ^i, ψ_i , however ϕ^i and ψ_i now transform as sections of E^{\vee} and E respectively. The OPEs between the ϕ and ψ are governed by the pairing between sections of E^{\vee} and E.

Our Special Case

Ambient Y and W

 $\pi: W \to Y$ be a line bundle over an *n*-dimensional manifold Ywith zero section $s: Y \to W$. α be a holomorphic one-form on Ws.t. $\lambda \in \mathbb{C}^*$: $\lambda^* \alpha = \lambda \alpha$.

X and E

Consider the locus $X \subset Y$ of points y such that $\alpha(s(y))$ as a function on the tangent space $TW_{s(y)}$ is zero on the vertical subspace. Consider the subbundle E of $TY|_X$ which is locally defined as the kernel of $s^*\alpha$.

Condition

We will assume that it is of corank 1

Ambient and cohomology representation

Theorem (BK)

The cohomology sheaf of $\pi_*MSV(W)$ with respect to $\operatorname{Res}_{z=0}\alpha(z)$ is isomorphic to a twisted chiral de Rham sheaf of (X, E).

Theorem (BK)

The cohomology of $\operatorname{Fock}_{M\oplus K^{\vee}}^{\Sigma}$ with respect to $D_{(F^{\cdot}),g}$ is isomorphic to the cohomology of a twisted chiral de Rham sheaf on the quintic $\sum_{i=0}^{i} F^{i} = 0$ given by R^{i} .

CG/CY

Consider the vertex algebras which are the cohomology of $\operatorname{Fock}_{M\oplus K^{\vee}}$ by $D_{(F^{\cdot}),g}$ as (F^{\cdot}) is fixed and g varies.

Calabi-Yau Limit

Fix g_n for $n \neq \deg^{\vee}$ and $g_{\deg^{\vee}} \to \infty$. In the limit the action of $D_{(F^{\cdot}),g} \to$ action on $\operatorname{Fock}_{M \oplus K^{\vee}}^{\Sigma}$, after an appropriate reparametrization.

Landau-Ginzburg limit

 $g_{\mathrm{deg}^{ee}}=0$, as in the N=2 case.

Chiral Rings

Proposition

The algebra $V_{(F^{\cdot}),g}$ can be alternatively described as the cohomology of $\operatorname{Fock}_{M\oplus N}$ or $\operatorname{Fock}_{K\oplus N}$ by $D_{(F^{\cdot}),g}$.

Differential

 $\mathbb{C}[(K \oplus K^{\vee})_0]$ is the quotient of $\mathbb{C}[K \oplus K^{\vee}]$ w.r.t. the ideal spanned by monomials with positive pairing. $d_{(F^{\cdot}),g}$ is defined to be the endomorphism on $\mathbb{C}[(K \oplus K^{\vee})_0] \otimes \Lambda^* M_{\mathbb{C}}$ defined by

$$\sum_{i=0}^{4} \sum_{m \in \Delta} F_m^i[m] \otimes (\wedge m_i) + \sum_{n \in \Delta^{\vee}} g_n[n] \otimes (\text{contr.}n).$$
(3.1)

(2,2) case after Borisov

Chiral Rings

The Chiral Rings

are the parts of the vertex algebra where $H_A = 0$ or $H_B = 0$. $H_A = \operatorname{Res}_{z=0} zL(z), \quad H_B = \operatorname{Res}_{z=0} (zL(z) + J(z)).$

Theorem (BK)

For generic F^{\cdot} and g the eigenvalues of H_A and H_B on $V_{(F^{\cdot}),g}$ are nonnegative integers.

The $H_A = 0$ part is given as the cohomology of the corresponding eigenspace of $\operatorname{Fock}_{K \oplus K^{\vee} - \deg^{\vee}}$. As a vector space, this is isomorphic to the cohomology of $\mathbb{C}[K \oplus K^{\vee}] \otimes \Lambda^* M_{\mathbb{C}}$ w.r.t. $d_{(F^{\cdot}),g}$ from (3.1).

The $H_B = 0$ part comes from the corresponding eigenspace of $\operatorname{Fock}_{K-\deg \oplus K^{\vee}}$. As a vector space it is isomorphic to the cohomology of $\mathbb{C}[K \oplus K^{\vee}] \otimes \Lambda^* N_{\mathbb{C}}$ by an operator similar to (3.1) where one replaces all wedge products by contractions and vice versa.

MS and generalization

General Ansatz for the differential

Consider the lattice vertex algebra $\operatorname{Fock}_{M\oplus N}$. Pick a basis m_i of M and n_i of N. Let F_m^i and G_n^i be complex numbers for all $i, m \in \Delta$, $n \in \Delta^{\vee}$ such that the operator

$$\mathcal{D}_{(F^{\cdot}),(G^{\cdot})} = \operatorname{Res}_{z=0} \Big(\sum_{i} \sum_{m \in \Delta} F_m^i m_i^{ferm}(z) \mathrm{e}^{\int m^{bos}(z)} \Big)$$

$$+\sum_{i}\sum_{n\in\Delta^{\vee}}G_{n}^{i}n_{i}^{ferm}(z)\mathrm{e}^{\int n^{bos}(z)}\Big)$$

is a differential on $\operatorname{Fock}_{M\oplus N}$ the OPE of the above field with itself to be nonsingular.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Questions/End

Questions

- 1 What is the most general setting?
- 2 Can we treat singularities.
- **3** What is the geometry that one describes.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Questions/End

Questions

- 1 What is the most general setting?
- 2 Can we treat singularities.
- 3 What is the geometry that one describes.

The End

Thank you!