Background story	Specific results	Geometry	Bundle geometry	Time reversal symmetry

Condensed matter, C^* -geometry and topological invariants

Ralph Kaufmann

Purdue University

Fields Institute, March 17, 2015

1/52

Background story 00000000	Specific results	Geometry 0000	Bundle geometry 00000000	Time reversal symmetry
References				

R. Kaufmann, S. Khlebnikov, and B. Wehefritz-Kaufnann

- "The geometry of the Double Gyroid wire network: Quantum and Classical". J. Noncomm. Geom. 6 (2012) 623-664.
- "The noncommutative geometry of wire networks from triply periodic surfaces" J. Phys.: Conf. Ser. 343 (2012), 012054.
- Singularities, swallowtails and Dirac points. An analysis for families of Hamiltonians and applications to wire networks, especially the Gyroid". Ann. Phys. 327 (2012) 2865-2884.
- "Re-gauging groupoid, symmetries and degeneracies for Graph Hamiltonians and applications to the Gyroid wire network". arXiv:1208.3266.
- Geometry of the momentum space: From wire networks to quivers and monopoles".

Background story	Specific results	Geometry 0000	Bundle geometry 00000000	Time reversal symmetry
References				

D. Li, R Kaufmann, and B. Wehefritz-Kaufmann

White the second sec

Background story 000000000	Specific results	Geometry 0000	Bundle geometry 00000000	Time reversal symmetry
Plan				

4 / 52

- Setup
- 2 Specific results
 - Bravais/Honeycomb
 - Gyroid

Momentum space geometry

- Eigenvalue and Eigenbundle geometry 0
- 4 Bundle geometry
 - Setup and Chern classes
 - Othern classes

5 Time reversal symmetry

- $\mathbb{Z}/2Z$ -invariants
- K-theories
- Tenfold way

Condensed matter and C^*

Disclaimer

This will be a very short glimpse which is not intended to be complete, exhaustive or anything else of that sort. There are excellent reviews of this subject starting with Bellissard, Schulz-Baldes and van Elst, to Prodan more recently ('14). Background story ○●○○○○○○○ Geometry 2000 Bundle geometry

Time reversal symmetry

Basic appearance of C^*

Condensed matter/ Lattice/ Tanslational symmetry

We consider a condensed matter system, which has a crystal structure. This means that it is a structure that is invariant under a translational symmetry. (Recall disclaimer).

Mathematical version

We start with a graph $\Gamma \subset \mathbb{R}^d$ which has a symmetry group $L \simeq \mathbb{Z}^d$ that acts on \mathbb{R}^d and leaves Γ invariant. $L(\Gamma) = \Gamma$. Set $\overline{\Gamma} = \Gamma/L$.

Adding translation operators

Hilbert space

Let Λ be the vertices of Γ and $\overline{\Lambda}$ those of $\overline{\Gamma}$. $\mathscr{H} = \ell^2(\Lambda) = \bigoplus_{\overline{\nu} \in \overline{\Lambda}} H_{\overline{\nu}}$ where $\mathscr{H}_{\overline{\nu}} = \ell^2(\pi^{-1}(\overline{\nu}))$

Action of L

L acts via translation operators on \mathscr{H} : For $l \in L$: $T_l(\phi)(v) = \phi(v - l)$. This action is by isometries and it maps: $\mathscr{H}_{\bar{v}} \to \mathscr{H}_{\bar{v}}$.

Action of T (free Abelian) subgroup of \mathbb{R}^n generated by the edge vectors by partial isometries.

then the translation yields an operator $T_{\vec{e}} : \mathscr{H}_{\bar{w}} \to \mathscr{H}_{\bar{v}}$. This extends to an operator $\hat{T}_{\vec{e}}$ on \mathscr{H} via $\hat{T}_{\vec{e}} = i_{\bar{v}} T_{\vec{e}} P_{\bar{w}}$ where $i_{\bar{v}} : \mathscr{H}_{\bar{v}} \to \mathscr{H}$ is the inclusion and $P_{\bar{w}} : \mathscr{H} \to \mathscr{H}_{\bar{w}}$ is the projection.

Magnetic field the appearance of NCG

Projective 2-cocycle

We may also use a 2-cocycle $\alpha \in Z^2(T, U(1))$ and use projective translation operators or magnetic translation operators.

Constant magnetic field

Fix 2-form $\hat{\Theta} = \Theta_{ij} dx_i \wedge dx_j$ given by a skew symmetric matrix Θ . We let $B = 2\pi\hat{\Theta}$. We obtain a two-cocycle $\alpha_B \in Z^2(\mathbb{R}^n, U(1))$: $\alpha_B(u, v) = \exp(\frac{i}{2}B(u, v))$, and its restriction to Γ .

Magnetic translations

Let A be a potential for B (on \mathbb{R}^n). The magnetic translation partial isometry is now given by

$$U_{l'}\psi(l) = e^{-i\int_{l}^{(l-l')}A}\psi(l-l').$$

8 / 52

	·//	0000		
Background story	Specific results	Geometry	Bundle geometry	Time reversal symmetry
00000000	0000000000000	0000	00000000	

Physics action

Use Weyl quantization and Peierls substitution for one particle action. In the magnetic case the magnetic translations were introduced by Wannier. And the magnetic field gives rise to a projective representation whose commutators include the fluxes of the magnetic field.

Harper Hamiltonian

If \vec{e} is a directed edge whose image under π is from \vec{v} to \vec{w} , The (magnetic) Harper operator is

$$H = \sum_{e \in E} \hat{U}_{\vec{e}} + \hat{U}_{-\vec{e}}$$

Background story 00000000	Specific results	Geometry 0000	Bundle geometry 00000000	Time reversal symmetry
C^* -geometry	/			

Connes–Bellissard–Harper approach to electronic properties of a Γ wire system

Consider a C^* -algebra \mathscr{B} which is the smallest algebra containing the Hamiltonian and the symmetries.

Here Hamiltonian is the Harper Hamiltonian, which acts on the Hilbert space $\mathscr{H} = \ell^2(\Lambda)$ where Λ are the vertices.

Base algebra and cover

The translations alone generate a C^* -subalgebra $\mathscr{A} \subset \mathscr{B}$. This inclusion is the *effective* geometry

Background story 000000000	Specific results	Geometry 0000	Bundle geometry 00000000	Time reversal symmetry
Examples				

The main examples

Figure: Graphs with rooted spanning trees. The root is A. The petal graphs P_n the graphs D_n and the graph G

Remarks

The P_n graph arises from the square lattice \mathbb{Z}^n , D_2 corresponds to the honeycomb lattice, D_3 to the Diamond lattice and G to the Gyroid lattice. \mathbb{Z}^2 is the geometry for the QHE, and D_2 is the geometry for graphene.

Expectation

Generically expect that $\mathcal{B} = M_k(\mathbb{T}_{\Theta}) \sim_{Morita} \mathbb{T}_{\Theta}$. k = #vertices.

Theorem [KKWK]

This is true for P, D_2 , D_3 and G cases and we classified the locus where \mathscr{B} is a proper subalgebra. Also at rational B-field there are only finitely many gaps in the spectrum (Hofstadter's butterfly).

Commutative case [KKWK]

X is a branched cover of T. For the lattice case $T = T^n$ and the cover is generically unramified. We gave the ramification locus and branching for $P D_3 G$ and the honeycomb.

Background story	Specific results	Geometry 0000	Bundle geometry 00000000	Time reversal symmetry
Discussion				

Remarks

- The gaps are important for gap-labeling by K-theory. Here the gap is labelled by the projector P_{≤E} which projects to Eigenstates of energy ≤ E. It is assumed that E is in a gap.
- Notice for Z² there is no gap in the commutative case. QHE only works in the presence of *B*-field. Get quantization. The Kubo formula says that the relevant quantity is the first Chern class [BvES-B].
- For D₂, D₃ and G the commutative singular geometry is interesting. Graphene D₂ and the Gyroid have Dirac points. This means that there is a linear dispersion relation near these points and hence relativistic quasi-particles. (Nice characterization using singularity theory [KKWK])
- The choice of rooted spanning tree gives rise to a re-gauging groupoid, which captures all additional symmetries.

 Background story
 Specific results
 Geometry
 Bundle geometry
 Time reversal symmetry

 •••••••
 •••••
 ••••
 ••••
 •••
 •••
 •••

 Example 1: The Bravais lattice case aka. \mathbb{Z}^n

Setup

•
$$T = L = \mathbb{Z}^n$$

- Magnetic translations: $U_i := U_{e_i}$ generate. Relations $U_i U_j = e^{2\pi i \Theta_{ij}} U_j U_j$.
- $H = \sum_{i} U_{e_i} + U_{e_i}^*$: $H \in$ algebra generated by the magnetic translations.

Result

The Bellissard-Harper algebra is $\mathscr{B} = \mathbb{T}_{\Theta}^{n}$. The non–commutative *n*–torus.

Example 2: The Honeycomb lattice aka. Graphene

Setup

The honeycomb lattice is a subset of the lattice generated by $-e_1 := (1,0)$ and $e_3 := \frac{1}{2}(1,-\sqrt{3})$. Set $e_2 = -e_1 - e_3 = \frac{1}{2}(1,\sqrt{3})$.

• $L \simeq \mathbb{Z}^2$ generated by $f_2 := e_2 - e_1 = \frac{1}{2}(-3,\sqrt{3})$ and $f_3 := e_3 - e_1 = \frac{1}{2}(3,\sqrt{3})$.

• T is generated by the e_i

Background story cocococococo December 2000 Bundle geometry cocococococo December 2000 Dec

The Honeycomb lattice II

The Harper Operator

$$\begin{split} \mathscr{H} &= \mathscr{H}_A \oplus \mathscr{H}_B \text{ and } U_{e_i} : \mathscr{H}_B \to \mathscr{H}_A. \text{ Fix the magnetic field by } \\ \phi &= \hat{\Theta}(-e_1, e_2), \ \chi := e^{i\pi\phi}. \\ \text{Set } \hat{U}_i := \begin{pmatrix} 0 & 0 \\ U_{e_i} & 0 \end{pmatrix}, \quad \hat{U}_{-i} := \begin{pmatrix} 0 & U_{-e_i} \\ 0 & 0 \end{pmatrix} \\ \text{where } U_{e_i} \text{ and } U_{-e_i} = U_{e_i}^{-1} = U_{e_i}^* \text{ are the isomorphisms between } \\ \mathscr{H}_A \text{ and } \mathscr{H}_B. \\ \text{The Harper Hamiltonian now reads:} \end{split}$$

$$H = \sum_{i=1}^{3} \hat{U}_{i} + \hat{U}_{i}^{-1} = \begin{pmatrix} 0 & U_{e_{1}}^{*} + U_{e_{2}}^{*} + U_{e_{3}}^{*} \\ U_{e_{1}} + U_{e_{2}} + U_{e_{3}} & 0 \end{pmatrix}$$

The Honeycomb lattice III

The Matrix Harper Operator

Fixing bases, we obtain the matrix expression:

$$H = \begin{pmatrix} 0 & 1 + U^* + V^* \\ 1 + U + V & 0 \end{pmatrix} \in M_2(\mathbb{T}^2_{\theta})$$
where we have used the operators $U := \chi U_{f_2}$ and $V = \bar{\chi} U_{f_3}$ which satisfy $UV = qVU$ with $q := e^{2\pi i \theta} = \bar{\chi}^6$ where $\theta = \hat{\Theta}(f_2, f_3)$

Figure: The graph $\bar{\Gamma},$ a choice of oriented edges and a spanning tree $\tau,$ $\bar{\Gamma}/\tau$

 Background story
 Specific results
 Geometry
 Bundle geometry
 Time reversal symmetry

 000000000
 0000000000
 0000
 000000000
 0000000000

 The algebra \mathscr{B} in the honeycomb case

Theorem

If $q \neq \pm 1$ or q = -1 and $\chi^4 \neq 1$ then $\mathscr{B}_{\Theta} = M_2(\mathbb{T}^2_{\theta})$ and hence is Morita equivalent to \mathbb{T}^2_{θ} . If q = -1 and $\chi^4 = 1$ or if q = 1 and $\chi \neq \pm 1$ then \mathscr{B}_{Θ} is a proper subalgebra of $M_2(\mathbb{T}^2_{\frac{1}{2}})$ (which we know). If q = 1 and $\chi = \pm 1$ then $\mathscr{B}_{\Theta} = C^*(X)$ where X is the double cover of the torus $S^1 \times S^1$ ramified at the points $(e^{2\pi i \frac{1}{3}}, e^{2\pi i \frac{2}{3}})$ and $(e^{2\pi i \frac{2}{3}}, e^{2\pi i \frac{1}{3}})$.

Remark

The two ramification points play a special role in graphene where they are known as Dirac points. Background story

Specific results

Geometry

Bundle geometry

Time reversal symmetry

The fat surface F for the Gyroid

19 / 52

Background story

Specific results

Geometry

Bundle geometry

Time reversal symmetry

The two channel systems C_+, C_-

 $\begin{array}{c|c} \mbox{Background story} & \mbox{Specific results} & \mbox{Geometry} & \mbox{Bundle geometry} & \mbox{Time reversal symmetry} \\ \mbox{occcoccccc} & \mbox{Occccccc} & \mbox{Occcccc} & \mbox{Occcccc} & \mbox{Occccccc} & \mbox{Occccccccc} & \mbox{Occcccccccc} & \mbox{Occcccccccccccc} & \mbox{C+} & \mbox{with its skeletal graph } \Gamma_+ \end{array}$

21 / 52

The skeletal graph Γ_+

Data

- L for Γ_+ is the bcc lattice spanned by the vectors f_i or g_i .
- T is the fcc lattice spanned by the edge vectors e_4, e_5, e_6 .
- In Hilbert space decomposition the Graph Harper Operator H becomes the 4 \times 4 matrix

$$H = \begin{pmatrix} 0 & U_1^* & U_2^* & U_3^* \\ U_1 & 0 & U_6^* & U_5 \\ U_2 & U_6 & 0 & U_4 \\ U_3 & U_5^* & U_4^* & 0 \end{pmatrix}$$

Magnetic Field Parameters:

$$heta_{12} = rac{1}{2\pi}B \cdot (g_1 imes g_2), heta_{13} = rac{1}{2\pi}B \cdot (g_1 imes g_3), heta_{23} = rac{1}{2\pi}B \cdot (g_2 imes g_3)$$

The Cyrreir				
000000000		0000	00000000	00000000000000000000000000000000000000
Deelennered stem.	Constitution and the	Casasta		Time a way say and a summer about

The matrix Harper Operator

$$H = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & U_1^* U_6^* U_2 & U_1^* U_5 U_3 \\ 1 & U_2^* U_6 U_1 & 0 & U_2^* U_4 U_3 \\ 1 & U_3^* U_5^* U_1 & U_3^* U_4^* U_2 & 0 \end{pmatrix} =: \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & A & B^* \\ 1 & A^* & 0 & C \\ 1 & B & C^* & 0 \end{pmatrix}$$

The coefficients can be expressed in terms of the operators of the magnetic translation operators of the bcc lattice. Set $U := U_{f_1}, V := U_{f_2}$ and $W := U_{f_3}$.

$$A = aV^*W, \quad B = bWU^*, \quad C = cW^*UV \tag{1}$$

with *a*, *b*, *c* given explicitly in terms of the magnetic field. *A*, *B*, *C* span a \mathbb{T}_{Θ}^3 :

$$AB = \alpha_1 BA$$
, $AC = \bar{\alpha}_2 CA$, $BC = \alpha_3 CB$

Deculto for	the Crucial			
000000000	000000000000000	0000	00000000	00000000000000
Background story	Specific results	Geometry	Bundle geometry	Time reversal symmetry

Theorem

INCOULD IN LIC

If $\Phi \neq 1$ or $\Phi = 1$ and at least one $\alpha_i \neq 1$ and all ϕ_i are different then $\mathscr{B}_{\Theta} = M_4(\mathbb{T}^3_{\Theta})$ and $K(\mathscr{B}_{\Theta}) = K(\mathbb{T}^3)$. If $\phi_i = 1$ for all *i* (commutative case) then $K(\mathscr{B}_{\Theta}) = K(X)$ where X is a ramified cover of the 3-torus with explicitly given ramification locus (consisting of four isolated points). In all other cases $\mathscr{B}_{\Theta} \subsetneq M_4(\mathbb{T}^3_{\Theta})$.

Parameters

$$\begin{array}{l} \alpha_1 := e^{2\pi i\theta_{12}}, \bar{\alpha}_2 := e^{2\pi i\theta_{13}}, \alpha_3 := e^{2\pi i\theta_{23}} \\ \phi_1 = e^{\frac{\pi}{2}i\theta_{12}}, \quad \phi_2 = e^{\frac{\pi}{2}i\theta_{31}}, \quad \phi_3 = e^{\frac{\pi}{2}i\theta_{23}}, \quad \Phi = \phi_1\phi_2\phi_3 \end{array}$$

Background	story
00000000	

Geometry 0000 Bundle geometry

Time reversal symmetry

Questions

Empirical data

In all cases, the degenerate points are the ones one can compute from the projective action of graph symmetries. There seems to be no *a priori* proof however. Not even for the dimension of this locus.

Duality?

In all cases, the (maximal) dimension of the locus of enhanced symmetries in the commutative case coincides with the dimension of the locus of points where \mathscr{B}_{Θ} is not the full matrix algebra.

Background story	Specific results	Geometry ●000	Bundle geometry 0000000	Time reversal symmetry
Basic setup				

A family of Hamiltonians.

$$H: T
ightarrow Herm^k$$

(Usually, $T = T^d$ a *d*-dimensional torus, and the family is generically non-degenerate and smooth).

Structures

- Universal action $Herm^k \times \mathbb{C}^k \to \mathbb{C}^k$.
- ➡ Eigenvalue geometry. Branched covers. Singularities at branch points → singularity theory.
- Eigenbundle geometry. Line bundles. ~→ Chern classes/topological charges.
- NCG of Eigenvalue geometry is *B*. NCG of Eigenbundle geometry not so clear. Numerics.

Results for F	xamples:			
Background story	Specific results	Geometry 0●00	Bundle geometry 00000000	Time reversal symmetry

P_n

This produces the trivial self cover $T^n \rightarrow T^n$. It becomes interesting in the projective setting.

D₃ Honeycomb/Graphene

In the commutative case of there are two degenerate points in the spectrum, which are cone-like/viz. Dirac. These are the famous graphene Dirac points

D₄ Diamond

Here there are three circles of double degeneracies that mutually touch in two points

Gyroid: A_3 singularity and its strata

Singularities

- two cusps: in stratum of type A₂
- double point: in stratum of type (A_1, A_1)

Theorem [KKWK]

The singular points of X for the Gyroid are given exactly by the above (analytically). And the four A_1 singularities are all Dirac points.

Figure: Spectrum of Harper Gyroid Hamiltonian for a = b = c

□ ▷ < 큔 ▷ < 트 ▷ < 트 ▷ = ∽ < ♡ < ♡ 30 / 52

		0000	0000000	0000000000000		
Bundle geometry						

Bundle geometry

- Trivial vector bundle $T \times \mathbb{C}^k \to T$.
- T_{deg} be the locus of points s.t. H(t) has multiple Eigenvalues. $T_0 := T \setminus T_{deg}$.

Need that Eigenvalues are real.

c₁(L_i) are the charges corresponding to the Berry phases.
 Integral over Berry curvature ω [Berry, Simon].

00000000	000000000000000	0000	0000000	00000000000000		
Bundle geometry						

Bundle geometry

- Trivial vector bundle $T \times \mathbb{C}^k \to T$.
- T_{deg} be the locus of points s.t. H(t) has multiple Eigenvalues. $T_0 := T \setminus T_{deg}$.

Need that Eigenvalues are real.

- c₁(ℒ_i) are the charges corresponding to the Berry phases. Integral over Berry curvature ω [Berry, Simon].
- There are versions for higher degeneracies involving higher Chern–classes. Not today.

Background story	Specific results	Geometry	Bundle geometry	Time reversal symmetry
00000000	0000000000000	0000	⊙●000000	
Chern class	ies			

2d

If T is two-dimensional compact. Then the Chern classes are given by $\int_T \omega$. This is what happens in the quantum Hall effect. Here $T = T_0 = T^2$. Notice that if $T = T^2$ but $T_{deg} \neq \emptyset$, then all $c_1(\mathscr{L}_i) = 0$. This is the case for graphene \rightsquigarrow Dirac points not topologically protected.

3d

The Chern classes are determined by their pairing with $H_2(T_0, \mathbb{Z})$. If $T = T^3$ there is nice method to encode this using slicing.

Background story 000000000	Specific results	Geometry 0000	Bundle geometry ○0●00000	Time reversal symmetry
Slicing				

Setup

- $\pi_i: T^3 = S^1 \times S^1 \times S^1 \to S^1$ the i-th projection.
- $i(t): T^2 = S^1 \times S^1 \rightarrow T^3 = S^1 \times S^1 \times S^1$ inclusion $(t_1, t_2) \mapsto (t_1, t_2, t).$
- $c^i(t) := \int_{\mathcal{T}^2} \imath(t)^* c_1(\mathscr{L}_i)$ for $t \notin \pi_3(\mathcal{T}_{deg})$.
- For $t \in \pi_3(T_{deg})$ set $c^i(t) := 0$. This is also the result of pulling back the Chern class to $T^2 \setminus i(t)^{-1}(T^{deg})$.
- There are of course similar definitions for the other two inclusions and higher dimensions.

Proposition

If T_{deg} is discrete, one can arrange that the $c^{i}(t)$ for all three projections completely determine the line bundles \mathscr{L}_{i} . (In fact slightly less is needed.)

Chern jumps and local charges

Local charges/jumps

T three dimensional, *p* isolated point in T_{deg} . The local charges at *p* are $c_{loc}^i(p) = \int_{S^2(p)} c_1(\mathscr{L}_i)$ where $S^2(p)$ is a little sphere centered at *p*.

A local model (Berry, Simons, ...) in 3d for an isolated 2k + 1-dimensional crossing

 $H(\mathbf{x}) := \mathbf{x} \cdot \mathbf{L} = xL_x + yL_y + zL_z$ where $L_{x,y,z}$ is a k dimensional representation of spin m. The local charges are $c_{loc}^i \in \{-m, \dots, m\}$.

34 / 52

Chern jumps and local charges

Local charges/jumps

T three dimensional, *p* isolated point in T_{deg} . The local charges at *p* are $c_{loc}^i(p) = \int_{S^2(p)} c_1(\mathscr{L}_i)$ where $S^2(p)$ is a little sphere centered at *p*.

A local model (Berry, Simons, ...) in 3d for an isolated 2k + 1-dimensional crossing

 $H(\mathbf{x}) := \mathbf{x} \cdot \mathbf{L} = xL_x + yL_y + zL_z$ where $L_{x,y,z}$ is a k dimensional representation of spin m. The local charges are $c_{loc}^i \in \{-m, \dots, m\}$.

Jumps for T^3

Assume for convenience that π_3 is locally bijective at p. By Stokes: $c^i(\pi_3(p) + \epsilon) - c^i(\pi_3(p) - \epsilon) = c^i_{loc}(p)$

34 / 52

Background story	Specific results	Geometry 0000	Bundle geometry 00000000	Time reversal symmetry
Questions				

Local models

For a double crossing/Dirac point, the above model is the only model. What are the other local models for higher degeneracies? Phase diagram?

Global properties

- Depending on properties of H(t) can one say something directly about the L_i or the cⁱ?
- How much does this determine them? Examples: $\sum_{i} c^{i}(t) \cong 0$ always. If there is time reversal symmetry $c^{i}(t) = -c^{i}(-t)$.
- O How much does knowing the local models determine the global structure?
- What is the behavior under perturbations?

 Background story
 Specific results
 Geometry
 Bundle geometry
 Time reversal symmetry

 000000000
 0000000000
 000000000
 000000000
 0000000000

Our favorite Example, the Gyroid. Newest results

Local Models

The A_1 singularities have the spin local model as needed, but also the A_2 singularities are locally diffeomorphic to the spin 1 case.

Local to global

The local structure of singularities and time reversal symmetry completely determines the functions c^{i} .

Deformations preserving time reversal symmetry

Numerically, the Dirac points are stable as expected. The A_2 singularities split into four A_1 singularities. This is a priori unexpected. A posteriori it can be explained as the minimal possible splitting, using the global structure and preserved time reversal symmetry.

37 / 52

Figure: Slicing along z numerically near the old A_2 . This breaks up into four A_1 points

Basic remarks

- The global results where possible because of TRS.
- If 𝒯 reverses time then 𝒯⁻¹H𝒯 = H
 . That is the vector bundles and Eigenbundles are in KR.
- Furthermore there is no gap in the Honeycomb! But there is Spin QHE. For this one needs to upgrade L_i to spinors.
 - This is possible, and one actually adds a term to the action: Spin-Orbit coupling ~> gap (Haldane, Kane-Mele)
 - There are topological invariants associated to this. These are not the Chern classes as they are zero. They are ℤ/2ℤ valued invariants. (Kane-Mele,Balents-Moore, Kitaev, Moore-Freed).
 - These have several incarnations. Such as winding numbers, odd Chern characters, Chern-Simons mod 2 or simply KR, KO, KH. (Not that easy to sort out.)

	1	0000	0000000	
Background story 000000000	Specific results	Geometry 0000	Bundle geometry 00000000	Time reversal symmetry

General setup

The time reversal operator Θ is an anti-unitary operator, i.e.,

$$\langle \Theta \psi, \Theta \phi \rangle = \langle \phi, \psi \rangle, \qquad \Theta(a\psi + b\phi) = \bar{a}\Theta \psi + \bar{b}\Theta \phi$$

For a spin- $\frac{1}{2}$ particle such as an electron, it has the property

$$\Theta^2 = -1 \tag{2}$$

which results in the Kramers degeneracy, i.e., all energy levels are doubly degenerate in a time reversal invariant electronic system.

Kramers degeneracy meant that the vector bundle of states may only split

$$\mathscr{V}\simeq\bigoplus V_n\to T^d$$

with $rk(V_n) = 2$ and $c_1(V_n) = 0$.

うへで +0 / 52

Background story	Specific results 0000000000000	Geometry 0000	Bundle geometry 0000000	Time reversal symmetry
Time rever	sal invariants			

Invariant models

A time reversal invariant model is required to have $[H(\mathbf{r}), \Theta] = 0$, or in the momentum representation

$$\Theta H(\mathbf{k})\Theta^{-1} = H(-\mathbf{k}) \tag{3}$$

Time reversal invariant (TRI) points

By the above Θ induces an action on T^d (parameterizing k). The fixed points for this action are called TRI points. Notice T^2 has 4 such points with coordinates 0 or π and T^3 has 8 such points.

C : I :	00000000 0000	
Spin orbit		

SO-Hamiltonian Kane-Mele

$$H_{KM} = \sum_{i=1}^{5} d_i(\mathbf{k}) \Gamma_i + \sum_{1=i< j}^{5} d_{ij}(\mathbf{k}) \Gamma_{ij}$$
(4)

where the gamma matrices are

$$\mathbf{\Gamma} = (\sigma_x \otimes s_0, \sigma_z \otimes s_0, \sigma_y \otimes s_x, \sigma_y \otimes s_y, \sigma_y \otimes s_z)$$

with the Pauli matrices s_i representing the electron spin and

$$\Gamma_{ij} = \frac{1}{2i} [\Gamma_i, \Gamma_j]$$

The time reversal operator

$$\Theta = i(\sigma_0 \otimes s_y)K$$

42 / 52

(5)

Local matrix representation on $V_n \rightarrow T^d$ (rk 2 bundle)

$$w_n(\mathbf{k}) = (\langle u_n^s(-\mathbf{k}), \Theta u_n^t(\mathbf{k}) \rangle) = \begin{pmatrix} 0 & -e^{-i\chi_n(\mathbf{k})} \\ e^{-i\chi_n(-\mathbf{k})} & 0 \end{pmatrix} \in U(2)$$
(6)

Kane-Mele Fomula

At the TRI points w is skew-symmetric.

$$(-1)^{\nu} = \prod_{\Gamma_i \in \Gamma} \frac{\sqrt{\det w_n(\Gamma_i)}}{p f w_n(\Gamma_i)}$$
(7)

for the fixed points $\mathbf{\Gamma}$ of the time reversal symmetry.

Other interp	retations			
Background story	Specific results 0000000000000	Geometry 0000	Bundle geometry 0000000	Time reversal symmetry

There are a lot more ways to define this invariant (reason for paper w. D. Li and B K-W.

- Via determinant line bundles.
- Via polarization.
- Via v ≡ n − h (mod 2) where n is a half winding number and h is a holonomy.
- Maslov index/ η invariant.
- In 3d it is related to Chern-Simons theory, the odd Chern character, the mod 2 index theorem and (next).
- Parity anomaly.
- Via homotopy/K-theory.

Chern-Simo	ns			
Background story	Specific results	Geometry	Bundle geometry	Time reversal symmetry
00000000	0000000000000	0000	00000000	

Idea

Think of w as a U(2)-gauge transformation g, and H as Dirac operator D.

Chern-Simons invariant

$$v \equiv \frac{1}{24\pi^2} \int_{\mathbb{T}^3} d^3 k \, tr(w^{-1} dw)^3 \pmod{2} \tag{8}$$

Spectral flow

 D_t

$$sf(D, g^{-1}Dg) = \frac{1}{\sqrt{\pi}} \int_0^1 tr(\dot{D}_t e^{-D_t^2}) dt$$
(9)
= (1-t)D + tg^{-1}Dg, $\dot{D}_t = g^{-1}[D, g]$

00000000	0000000000000	0000	0000000	00000000000000			
Index theorem							

Paring

$$index(PgP) = \langle [D], [g] \rangle = -sf(D, g^{-1}Dg)$$
 (10)

where $P := (1 + D|D|^{-1})/2$ is the spectral projection.

Toeplitz index theoerm

$$sf(D,g^{-1}Dg) = \int_{M} \hat{A}(M) \wedge ch(g)$$
(11)

where \hat{A} is the A-roof genus and ch(g) is the odd Chern character of $g \in K^{-1}(M)$, M underlying spin manifold.

$$ch(g) := \sum_{k=0}^{\infty} (-1)^k \frac{k!}{(2k+1)!} tr[(g^{-1}dg)^{2k+1}]$$
(12)

000000000	000000000000000000000000000000000000000	0000	00000000	000000000000000000000000000000000000000
3d situation				

3-torus

In particular, we have $\hat{A}(T^3) = 1$ since \hat{A} is a multiplicative genus and $\hat{A}(S^k) = 1$ for spheres. Hence the degree of g can be computed as the spectral flow on the 3d Brillouin torus,

$$sf(D,g^{-1}Dg) = -\left(\frac{i}{2\pi}\right)^2 \int_{\mathbb{T}^3} ch(g) = \deg g \qquad (13)$$

Putting all together

$$v \equiv sf(H_e, w^{-1}H_ew) \mod 2 \tag{14}$$

Main identity (Wang-Qi-Zhang, Freed-Moore)

 $v = \nu$

Symmetries and *K*-theory

Three types of discrete (pseudo)symmetries

Time reversal symmetry \mathcal{T} , the particle-hole symmetry \mathcal{P} and the chiral symmetry \mathcal{C} (Wigner-Dyson, Altland and Zirnbauer, Kitaev).

H is TRI if $THT^{-1} = H$, and $T^2 = \pm 1$ depending on the spin being integer or half-integer,

$$TRS = \begin{cases} +1 & \text{if } \mathcal{T}H(\mathbf{k})\mathcal{T}^{-1} = H(-\mathbf{k}), \ \mathcal{T}^2 = +1\\ -1 & \text{if } \mathcal{T}H(\mathbf{k})\mathcal{T}^{-1} = H(-\mathbf{k}), \ \mathcal{T}^2 = -1\\ 0 & \text{if } \mathcal{T}H(\mathbf{k})\mathcal{T}^{-1} \neq H(-\mathbf{k}) \end{cases}$$
(15)

Similarly, the particle hole symmetry (PHS) also gives three classes,

$$PHS = \begin{cases} +1 & \text{if } \mathcal{P}H(\mathbf{k})\mathcal{P}^{-1} = -H(\mathbf{k}), \ \mathcal{P}^2 = +1 \\ -1 & \text{if } \mathcal{P}H(\mathbf{k})\mathcal{P}^{-1} = -H(\mathbf{k}), \ \mathcal{P}^2 = -1 \\ 0 & \text{if } \mathcal{P}H(\mathbf{k})\mathcal{P}^{-1} \neq -H(\mathbf{k}) \end{cases}$$
(16)

Background story	Specific results	Geometry	Bundle geometry	Time reversal symmetry		
000000000	0000000000000	0000	00000000			
Chiral symmetry						

Chiral symmetry

The chiral symmetry can be defined by the product $C = T \cdot P$, sometimes also referred to as the sublattice symmetry. Since T and P are anti-unitary, C is a unitary operator.

Special case

If both \mathcal{T} and \mathcal{P} are non-zero, then the chiral symmetry is present, i.e., $\mathcal{C} = 1$. On the other hand, if both \mathcal{T} and \mathcal{P} are zero, then \mathcal{C} is allowed to be either 0 (type A or unitary class) or 1 (type AIII or chiral unitary class).

10 fold way

In sum, there are $3 \times 3 + 1 = 10 = 8 + 2$ symmetry classes. In particular, the half-spin Hamiltonian with time reversal symmetry falls into type AII or symplectic class, which is the case we are mostly interested in.

Background	story
00000000	

Specific results

Geometry 0000 Bundle geometry

Time reversal symmetry

K-theories

Symmetries

The symmetries are related to KR, KH, KO according to the action on the base and the fibers. Notice, that $\pi : (V_i, \Theta) \to (T^d, \mathcal{T})$ is a quaternionic bundle since Θ is the lift of \mathcal{T} such that $\Theta^2 = -1$.

Twisted equivariant matter (Freed–Moore)

Generalization of the above classification with possible twists.

Summary/Q	lestions			
Background story 000000000	Specific results	Geometry 0000	Bundle geometry 00000000	Time reversal symmetry

- C^* -geometry from condensed matter system. (NCG and CG)
- Extra topological information by slicing. Stability under TRI perturbations. Q: What is the NCG of this?
- Several versions of $\mathbb{Z}/2Z$. Q: Which one is good/useful in NCG?
- This is also related to Bulk/boundary correspondence. Q: can we get something for NCG?

Background story	Specific results	Geometry	Bundle geometry	Time reversal symmetry
00000000		0000	00000000	○○○○○○○○○○
The end				

Thank you!